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Introduction

The Les Houches Workshop on Physics at TeV Colliders took place from June 8-18,
1999. One of the three working groups at Les Houches concentrated on QCD issues, both
at the Tevatron Collider and at the LHC. Besides the interest in QCD in its own right,
QCD dynamics plays an important role in the production mechanisms for any new physics
processes that might be observed at either collider, as well as any processes that may form
backgrounds to the new physics. As might be expected, there was a great deal of overlap
with the other two working groups, and especially with the Higgs working group.

To provide a more specific focus, each day at Les Houches was devoted to a specific topic.
The topic and speakers are listed below:

• Thursday: parton distibutions (W.K. Tung, R. Ball)

• Friday: photons (E. Pilon, M. Fontannaz, S. Frixione); jet definitions (J. Huston, D.
Zeppenfeld)

• Saturday: Monte Carlos (F. Paige, J.Collins, K. Odagiri, Y. Kato, E. Boos, A. Skatchkova,
V. Ilyin)

• Monday: joint meeting with Higgs group (C. Balazs)

• Tuesday: (re)summation (C. Balazs)

• Wednesday: direct photons and pions (P. Aurenche), heavy flavor (S. Frixione)

• Thursday: NnLO (V. del Duca, G. Henrich)

This writeup for the QCD working group is not intended to be a comprehensive summary
of all of the QCD issues currently important in high energy physics, or expected to be impor-
tant for the LHC. Rather, we have chosen to concentrate in detail on a few selected topics
and to summarize in a pedagogical manner the current status and the progress expected in
the near future. The expertise of the people attending the workshop, and the timeliness of
the issues, resulted in a great deal of concentration on resummation calculations, and their
relation to Monte Carlos. This is also reflected in the writeup. The writeup is organized into
chapters that roughly follow the organization shown above. Preceding the discussion of the
individual topics is a general introduction to QCD phenomenology relevant for the LHC, by
S. Catani.

Joey Huston (for the Working Group).

Acknowledgements:

We would like to thank the organizers of the workshop for the pleasant and stimulating
atmosphere. Les Houches is a beautiful place to do physics; we should do this every two
years.
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Aspects of QCD, from the Tevatron to the LHC

S. Catani

Abstract

This contribution presents a selection of the topics (parton densities, fixed-
order calculations, parton showers, soft-gluon resummation) discussed in my
introductory lectures at the Workshop and includes a pedagogical overview of
the corresponding theoretical tools.

1 Introduction

The production cross sections for all the processes at hadron-collider experiments are con-
trolled by strong interaction physics and, hence, by its underlying field theory, QCD (see
recent overviews in Refs. [1, 2, 3, 4]). Studies of QCD at the Tevatron and the LHC have
two main purposes [5, 6, 7]. First, they are important to test the predictions of QCD, to
measure its fundamental parameters (e.g. the strong coupling αS) and to extract quantita-
tive information on its non-perturbative dynamics (e.g. the distribution of partons in the
proton). Second, they are relevant to a precise estimate of the background to other Standard
Model processes and to signals of new physics.

This contribution is not a comprehensive review of QCD at high-energy hadron colliders.
It is based on a selection of the topics presented in my introductory lectures at this Workshop.
The selection highlights the QCD subjects that were most discussed during the Workshop
and includes a pedagogical overview of some of the corresponding theoretical tools.

After the introduction of the general theoretical framework, I summarize in Sect. 2 the
present knowledge on the parton densities and its impact on QCD predictions for hard-
scattering processes at the Tevatron and the LHC. In Sect. 3, I then discuss some issues
related to processes that are sensitive to the gluon density and, hence, to its determination.
Section 4 presents a dictionary of different approaches (fixed-order expansions, resummed
calculations, parton showers) to perturbative QCD calculations. The dictionary continues in
Sect. 5, where I review soft-gluon resummation and discuss some recent phenomenological
applications of threshold resummation to hadron collisions.

The QCD framework to describe any inclusive hard-scattering process,

h1(p1) + h2(p2) → H(Q, {. . .}) + X , (1)
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in hadron–hadron collisions is based on perturbation theory and on the factorization theorem
of mass singularities. The corresponding cross section is computed by using the factorization
formula [8]

σ(p1, p2; Q, {. . .}) =
∑

a,b

∫ 1

xmin

dx1 dx2 fa/h1
(x1, µ

2
F ) fb/h2

(x2, µ
2
F ) σ̂ab(x1p1, x2p2; Q, {. . .}; µ2

F )

+ O ((ΛQCD/Q)p) . (2)

The colliding hadrons h1 and h2 have momenta p1 and p2, H denotes the triggered
hard probe (vector bosons, jets, heavy quarks, Higgs bosons, SUSY particles and so on)
and X stands for any unobserved particle produced by the collision. The typical scale
Q of the scattering process is set by the invariant mass or the transverse momentum of
the hard probe, and the notation {. . .} stands for any other relevant scale and kinematic
variable of the process. For instance, in the case of W production we have Q = MW and
{. . .} = {Q⊥, y, . . .}, where MW , Q⊥ and y are the mass of the vector boson, its transverse
momentum and its rapidity, respectively.

The factorization formula (2) involves the convolution of the partonic cross sections σ̂ab

(where a, b = q, q̄, g) and the parton distributions fa/h(x, µ2
F ) of the colliding hadrons. If the

hard probe H is a hadron or a photon, the factorization formula has to include an additional
convolution with the corresponding parton fragmentation function da/H(z, µ2

F ).
The term O ((ΛQCD/Q)p) on the right-hand side of Eq. (2) generically denotes non-

perturbative contributions (hadronization effects, multiparton interactions, contributions of
the soft underlying event, and so on). Provided the hard-scattering process (1) is sufficiently
inclusive1, σ̂ab is computable as a power series expansion in αS(Q

2) and the non-perturbative
contributions are (small) power-suppressed corrections (i.e. the power p is positive) as long
as the hard-scattering scale Q is larger than few hundred MeV, the typical size of the QCD
scale ΛQCD.

The parton densities fa/h(x, µ2
F ) are phenomenological distributions that describe how

partons are bounded in the colliding hadrons. Although they are not calculable in QCD per-
turbation theory, the parton densities are universal (process-independent) quantities. The
scale µF is a factorization scale introduced in Eq. (2) to separate the bound-state effects from
the perturbative interactions of the partons. The physical cross section σ(p1, p2; Q, {. . .})
does not depend on this arbitrary scale, but parton densities and partonic cross sections sepa-
rately depend on µF . In particular, higher-order contributions to σ̂ab(x1p1, x2p2; Q, {. . .}; µ2

F )
contain corrections of relative order (αS(Q

2) lnQ2/µ2
F )n. If µF is very different from Q, these

corrections become large and spoil the reliability of the perturbative expansion. Thus, in
practical applications of the factorization formula (2), the scale µF is set approximately equal
to the hard scale Q and variations of µF around this central value are used to estimate the
uncertainty of the perturbative expansion.

The lower limit xmin of the integrations over the parton momentum fractions x1 and x2,
as well as the values of x1 and x2 that dominate the convolution integral in Eq. (2), are
controlled by the kinematics of the hard-scattering process. Typically we have xmin ∼>Q2/S,

1 More precisely, it has to be defined in an infrared- and collinear-safe manner.
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Figure 1: The (x, Q2) plane of the parton kinematics for the production of a heavy system of
invariant mass M and rapidity y at LHC, HERA and fixed-target experiments.

where S = (p1 + p2)
2 is the square of the centre-of-mass energy of the collision. If the hard

probe is a state of invariant mass M and rapidity y, the dominant values of the momentum
fractions are x1,2 ∼ (Me±y)/

√
S (see Fig. 1). Thus varying M and y at fixed

√
S, we are

sensitive to partons with different momentum fractions. Increasing
√

S the parton densities
are probed in a kinematic range that extends towards larger values of Q and smaller values
of x1,2.

2 Parton densities

The parton densities are an essential ingredient to study hard-scattering collisions. Once the
partonic cross sections have been perturbatively computed, cross section measurements can
be used to determine the parton densities. Then, they can in turn be used to predict cross
sections for other hard-scattering processes.

The dependence of the parton densities2 fa(x, µ2) on the momentum fraction x and their
absolute value at any fixed scale µ are not computable in perturbation theory. However, the
scale dependence is perturbatively controlled by the DGLAP evolution equation [9]

d fa(x, µ2)

d ln µ2
=
∑

b

∫ 1

x

dz

z
Pab(αS(µ

2), z) fa(x/z, µ2) . (3)

2In the following the parton densities of the proton fa/p are simply denoted by fa and those of the
antiproton are obtained by using charge-conjugation invariance, i.e. fa/p̄ = fā/p = fā.
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Figure 2: Typical x-shape of the parton densities (set CTEQ5M at Q = 5 GeV).

The kernels Pab(αS, z) are the Altarelli–Parisi (AP) splitting functions. As the partonic cross
sections in Eq. (2), the AP splitting functions can be computed as a power series expansion
in αS:

Pab(αS, z) = αSP
(LO)
ab (z) + α2

SP
(NLO)
ab (z) + α3

SP
(NNLO)
ab (z) + O(α4

S) . (4)

The leading order (LO) and next-to-leading order (NLO) terms P
(LO)
ab (z) and P

(NLO)
ab (z) in

the expansion are known [10]. These first two terms are used in most of the QCD studies.
Having determined fa(x, Q2

0) at a given input scale µ = Q0, the evolution equation (3) can
be used to compute the parton densities at different perturbative scales µ and larger values
of x.

The parton densities are determined by performing global fits [11] to data from deep-
inelastic scattering (DIS), Drell–Yan (DY), prompt-photon and jet production. The method
consists in parametrizing the parton densities at some input scale Q0 and then adjusting the
parameters to fit the data. The parameters are usually constrained by imposing the positivity
of the parton densities (fa(x, µ2) ≥ 0) and the momentum sum rule (

∑
a

∫ 1
0 dx x fa(x, µ2) =

1).
The present knowledge on the parton densities of the proton is reviewed in Refs. [7, 12,

13]. Their typical behaviour is shown in Fig. 2. All densities decrease at large x. At small x
the valence quark densities vanish and the gluon density dominates. The sea-quark densities
also increase at small x because they are driven by the strong rise of the gluon density and
the splitting of gluons in qq̄ pairs. Note that the quark densities are not flavour-symmetric
either in the valence sector (uv 6= dv) or in the sea sector (ū 6= d̄).

In addition to having the best estimate of the parton densities, it is important to quantify
the corresponding uncertainty. This is a difficult issue. The uncertainty depends on the
kinematic range in x and Q2. Moreover, it cannot be reliably estimated by simply comparing
the parton densities obtained by different global fits. In fact, a lot of common systematic
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Figure 3: Comparison between the gluon densities of the CTEQ and MRST groups.

and common assumptions affect the global-fit procedures. Recent attempts to obtain parton
densities with error bands that take into account correlations between experimental errors
are described in Refs. [7, 13]. Some important theoretical uncertainties that are still to be
understood are also discussed in Ref. [7].

The overall conclusion is that the quark densities3 are reasonably well constrained and
determined by DIS and DY processes, while the gluon density is certainly more uncertain
[11, 17]. At small x (x∼< 10−3), the gluon density fg is at present constrained by a single
process, namely DIS at HERA. Thus, large higher-order corrections of the type (αS ln 1/x)n

could possibly affect the extraction of fg. Assuming that fg is well determined at small x,
the momentum sum rule reasonably constrains fg at intermediate values of x (x ∼ 10−2).
Jet production at the Tevatron at low to moderate values of the jet transverse energy ET can
also be useful in constraining the gluon distribution in the range 0.05∼<x∼< 0.2. At large x
(x∼> 10−1), the most sensitive process to fg is prompt-photon production. Since, at present,
prompt-photon data are not well described/predicted by perturbative QCD calculations,
they cannot be used for a precise determination of fg. Further discussion on these points is
given in Sect. 3.

The conclusion that the gluon density is not well known can also be drawn by inspection
(see Fig. 3) of the differences between the most updated analyses performed by the CTEQ
Collaboration and the MRST group.

The differences between the MRST gluons and the CTEQ ones are due to the fact that
the two groups used different data sets. The various gluon densities are very similar at small
x, because in this region both groups used the HERA data. The MRST group includes
prompt-photon data in the global fit: these data constrain the gluon directly at x∼> 10−1

3Uncertainties on the determination of the quark densities at very high x are discussed in Refs. [14, 15,
16].
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Figure 4: A picture of the gluon density uncertainty. The continuous (black) lines refer to gluon
densities that are constrained only by DIS and DY data. The dashed (coloured) lines refer to
gluon densities of the MRST group, which uses also prompt-photon data.

and indirectly (by the momentum sum rule) at x ∼ 10−2. The CTEQ group does not use
prompt-photon data, but it includes Tevatron data on the one-jet inclusive cross section.
These data give a good constraint on fg in the region 0.05∼<x∼< 0.2.

There are also differences within the MRST and CTEQ sets. The various gluon densities
of the MRST set correspond to different values of the non-perturbative transverse-momentum
smearing that can be introduced to describe the differences among the prompt-photon data
that are available at several centre-of-mass energies. The CTEQ5M and CTEQ5HJ gluons
correspond to different assumptions on the parametrization of the functional form of fg(x, Q2

0)
at large x; the CTEQ5M set corresponds to the minimum-χ2 solution of the fit while the
CTEQ5HJ set (with a slightly higher χ2) provides the best fit to the high-ET tail of the
CDF and D0 jet cross sections.

This brief illustration shows that the differences in the most recent parton densities are
mainly due to either inconsistencies between data sets and/or poor theoretical understanding
of them. A more quantitative picture of the dependence on x and Q2 of the gluon density
uncertainty is presented in Fig. 4.

We can see that the DIS and DY data sets weakly constrain fg for x∼> 10−1. Since the
AP splitting functions lead to negative scaling violation at large x, when fg(x, Q2) is evolved
at larger scales Q according to Eq. (3) the gluon uncertainty is diluted: it propagates at
smaller values of x and its size is reduced at fixed x.

Figure 5 shows the typical predictions for hard-scattering cross sections at the Tevatron
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Figure 5: QCD predictions for hard-scattering cross sections at the Tevatron and the LHC.
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and the LHC, as obtained by using the parton densities of the MRST set. These predictions
have to be supplemented with the corresponding uncertainties [7] coming from the determi-
nation of the parton densities and from perturbative corrections beyond the NLO. Owing to
the increased centre-of-mass energy and to QCD scaling violation (see Fig. 4), the kinematic
region with small uncertainties is larger at the LHC than at the Tevatron.

For most of the QCD processes at the LHC, the uncertainty from the parton densities
is smaller than ±10% and, in particular, it is smaller than the uncertainty from higher-
order corrections. Some relevant exceptions are the single-jet, W/Z and top quark cross
sections. In the case of the single-jet inclusive cross section at high ET (ET ∼> 2 TeV), the
uncertainty from the poorly known gluon density at high x is larger than that (∼ ±10%)
from higher-order corrections. The W and Z production cross sections are dominated by qq̄
annihilation. Since the quark densities are well known, the ensuing uncertainty on the W/Z
cross section is small (∼ ±5%). Nonetheless, in this case the uncertainty from higher-order
corrections is even smaller, since the partonic cross sections for the DY process are known
[18] at the next-to-next-to-leading order (NNLO) in perturbation theory. In the case of top-
quark production at the LHC, the gluon channel dominates and leads to an uncertainty of
±10% on the total cross section. Also for this process, however, the perturbative component
is known beyond the NLO. Including all-order resummation of soft-gluon contributions [19],
the estimated uncertainty from unknown higher-order corrections is approximately ±5% [19,
7].

3 The gluon density issue

At present, the processes4 that are, in principle, most sensitive to the gluon density are
DIS at HERA, b-quark production at the Tevatron, and prompt-photon production at fixed-
target experiments. These processes constrain fg for x∼< 10−3, x ∼ 10−3–10−2 and x∼> 10−1,
respectively. Nonetheless, the gluon density is, in practice, not well determined. The issue
(or, perhaps, the puzzle) is that from a phenomenological viewpoint the standard theory,
namely perturbative QCD at NLO, works pretty well for x∼< 10−3 but not so well at larger
values of x, while from theoretical arguments we should expect just the opposite to happen.
This issue is discussed below mainly in its perturbative aspects. We should however keep it
in mind that all these processes are dominated by hard-scattering scales Q of the order of
few GeV. Different types of non-perturbative contributions can thus be important.

From the study of DIS at HERA we can extract information on the gluon and sea-quark
densities of the proton. The main steps in the QCD analysis of the structure functions at
small values of the Bjorken variable x are the following. The measurement of the proton
structure function F2(x, Q2) ∼ qS(x, Q2) directly determines the sea-quark density qS =
x(fq + fq̄). Then, the DGLAP evolution equation (3) or, more precisely, the following
equations (the symbol ⊗ denotes the convolution integral with respect to x):

dF2(x, Q2)/d lnQ2 ∼ Pqq ⊗ qS + Pqg ⊗ g , (5)
4The rôle of jet production at the Tevatron has briefly been recalled in Sect. 2, and it is discussed in

detail in Ref. [12].
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dg(x, Q2)/d lnQ2 ∼ Pgq ⊗ qS + Pgg ⊗ g , (6)

are used to extract a gluon density g(x, Q2) = xfg(x, Q2) that agrees with the measured
scaling violation in dF2(x, Q2)/d lnQ2 (according to Eq. (5)) and fulfils the self-consistency
equation (6).

The perturbative-QCD ingredients in this analysis are the AP splitting functions Pab(αS, x).
Once they are known (and only then), the non-perturbative gluon density can be determined.

The standard perturbative-QCD framework to extract g(x, Q2) consists in using the
truncation of the AP splitting functions at the NLO. This approach has been extensively
compared with structure function data over the last few years and it gives a good description
of the HERA data, down to low values of Q2 ∼ 2 GeV2. The NLO QCD fits simply require
a slightly steep input gluon density at these low momentum scales. Typically [11], we have
g(x, Q2

0) ∼ x−λ, with λ ∼ 0.2 at Q2
0 ∼ 2 GeV2, and the data constrain g(x, Q2

0) with an
uncertainty of approximately ±20%.

Although it is phenomenologically successful, the NLO approach is not fully satisfactory
from a theoretical viewpoint. The truncation of the splitting functions at a fixed perturbative
order is equivalent to assuming that the dominant dynamical mechanism leading to scaling
violations is the evolution of parton cascades with strongly-ordered transverse momenta.
However, at high energy this evolution takes place over large rapidity intervals (∆y ∼ ln 1/x)
and diffusion in transverse momentum becomes relevant. Formally, this implies that higher-
order corrections to Pab(αS, x) are logarithmically enhanced:

Pab(αS, x) ∼ αS

x
+

αS

x
(αS lnx) + . . . +

αS

x
(αS lnx)n + . . . . (7)

At asymptotically small values of x, resummation of these corrections is mandatory to obtain
reliable predictions.

Small-x resummation is, in general, accomplished by the BFKL equation [20]. In the
context of structure-function calculations, the BFKL equation provides us with improved
expressions of the AP splitting functions Pab(αS, x), in which the leading logarithmic (LL)
terms (αS lnx)n, the next-to-leading logarithmic (NLL) terms αS(αS ln x)n, and so forth,
are systematically summed to all orders n in αS. The present theoretical status of small-x
resummation is discussed in Ref. [7]. Since in the small-x region the gluon channel dominates,
only the gluon splitting functions Pgg and Pgq contain LL contributions. These are known
[20, 21] to be positive but numerically smaller than naively expected (the approach to the
asymptotic regime is much delayed by cancellations of logarithmic corrections that occur at
the first perturbative orders in Pgg and Pgq). The NLL terms in the quark splitting functions
Pqg and Pqq are known [22] and turn out to be positive and large. A very important progress
is the recent calculation [23, 24] of the NLL terms in Pgg, which are found to be negative
and large. The complete NLL terms in Pgq are still unknown.

The results of Refs. [23, 24], the large size of the NLL terms and the alternating sign
(from the LL to the NLL order and from the gluon to the quark channel) of the resummed
small-x contributions have prompted a lot of activity (see the list of references in Ref. [7]) on
the conceptual basis and the phenomenological implications of small-x resummation. This
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Figure 6: Comparison between the LO (GRV98LO) and NLO (GRV98NLM) GRV parametriza-
tions of the gluon and sea-quark densities at Q2 = 5 GeV2.

activity is still in progress and definite quantitative conclusions on the impact of small-x
resummation at HERA cannot be drawn yet.

At the same time, the capability of the fixed-order approach to produce a good description
of the proton structure function F2(x, Q2) at HERA cannot be used to conclude that the
small-x behaviour of the gluon density is certainly well determined. In fact, by comparing
LO and NLO results, we could argue that the ensuing theoretical uncertainty on fg is sizeable
[4]. Going from LO to NLO, we can obtain stable predictions for F2, but we have to vary
the gluon density a lot. As shown in Fig. 6, the NLO gluon density sizeably differs from its
LO parametrization, not only in absolute normalization but also in x-shape. For instance,
at x = 10−4 and Q2 = 5 GeV2 the NLO gluon is a factor of 2 smaller than the LO gluon.
This can be understood [25] from the fact that the scaling violation of F2 is produced by the
convolution Pqg ⊗ g (see the right-hand side of Eq. (5)). The quark splitting function Pqg

behaves as

Pqg(αS, x) ≃ αSP
(LO)
qg (x)

[
1 + 2.2

CAαS

π

1

x
+ . . .

]
, (8)

where the LO term P (LO)
qg (x) is flat at small x, whereas the NLO correction is steep. To

obtain a stable evolution of F2, the NLO steepness of Pqg has to be compensated by a gluon
density that is less steep at NLO than at LO. This has to be kept in mind when concluding on
the importance of small-x resummation because the NLO steepness of Pqg is the lowest-order
manifestation of BFKL dynamics in the quark channel.

In the large-x region, there is a well-known correlation between αS and fg. At small x,
there is an analogous strong correlation between the x-shapes of Pqg and fg. In the fixed-
order QCD analysis of F2, large NLO perturbative corrections at small x can be balanced
by the extreme flexibility of parton density parametrizations. It is difficult to disentangle
this correlation between process-dependent perturbative contributions and non-perturbative
parton densities from the study of a single quantity, as in the case of F2 at HERA. The
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Figure 7: Comparison between Tevatron data and NLO QCD for b-quark production [27]. The
band is obtained by varying factorization and renormalization scales in the NLO calculation.

uncertainty on the gluon density at small x, as estimated from the NLO QCD fits of the
HERA data, is evidently only a lower limit on the actual uncertainty on fg.

The production of b quarks at the Tevatron is also sensitive to the gluon density at
relatively small values of x. The comparison between Tevatron data and perturbative-QCD
predictions at NLO [26] is shown in Fig. 7. Using standard sets of parton densities, the
theoretical predictions typically underestimate the measured cross section by a factor of 2.
This certainly is disappointing, although justifiable by the large theoretical uncertainty of
the perturbative calculation [28]. A lower limit on this uncertainty can be estimated by
studying the scale dependence and the convergence of the perturbative expansion. Varying
the factorization and renormalization scales by a factor of four around the b-quark mass mb,
the NLO cross section varies by a factor of almost 2 at the Tevatron and by a factor of 4–5
at the LHC [7]. Similar factors are obtained by considering the ratio of the NLO and LO
cross sections.

The present theoretical predictions for b-quark production at hadron colliders certainly
need to be improved [7]. Since the hard scale Q ∼ mb is not very large, a possible im-
provement regards estimates of non-perturbative contributions (for instance, effects of the
fragmentation of the b-quark and of the intrinsic transverse momentum of the colliding par-
tons). As for the evaluation of perturbative contributions at higher orders, the resummation
of logarithmic terms of the type αn

S lnn(pt/mb) is important [29] when the transverse mo-
mentum pt of the b quark is much larger than mb. The resummation of small-x logarithmic
contributions αn

S lnn x can also be relevant, because x ∼ 2mb/
√

S is as small as ∼ 10−3 at
the Tevatron and as ∼ 10−4 at the LHC. The theoretical tool to perform this resummation,
namely the k⊥-factorization approach [30], is available. Updated phenomenological studies
based on this tool and on the information from small-x DIS at HERA would be interesting.
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Figure 8: The dependence on the factorization (µF ) and renormalization (µR = µ) scale of
the LO and NLO prompt-photon cross section dσ/dET in pN collisions at ET = 5 GeV and√

S = 31.6 GeV. The resummed calculation is discussed in Sect. 5.

Prompt-photon production at fixed-target experiments is sensitive to the behaviour of the
gluon density at large x (x∼> 0.1). The theoretical predictions for this process, however, are
not very accurate. Figure 8 shows the factorization- and renormalization-scale dependence
of the perturbative cross section for the case of the E706 kinematics. If the scale is varied by
a factor of 4 around the transverse energy ET of the prompt photon, the LO cross section
varies by a factor of almost 4. Going to NLO [31] the situation improves, but not very much,
because the NLO cross section still varies by a factor of about 2.

A detailed comparison between NLO QCD calculations and data from the ISR and fixed-
target experiments has recently been performed in Ref. [32]. As shown in Fig. 9, the overall
agreement with the theory is not satisfactory, even taking into account the uncertainty com-
ing from scale variations in the theoretical predictions. Modifications of the gluon density can
improve the agreement with some data sets only at the expense of having larger disagreement
with other data sets. The differences between experiments at similar centre-of-mass energies
(see, for instance, E706 pBe/530 at

√
S = 31.6 GeV and WA70 pp at

√
S = 23 GeV) are

much larger than expected from perturbative scaling violations. This can possibly suggest
[32] inconsistencies of experimental origin.

Another (not necessarily alternative) origin of the differences between data and theory
could be the presence of non-perturbative effects that are not included in the NLO pertur-
bative calculation. This explanation has been put forward in Refs. [33, 34] by introducing
some amount of intrinsic5 transverse momentum 〈k⊥〉 of the colliding partons. Owing to

5To be precise, in Ref. [34] the 〈k⊥〉 of the colliding partons is not called ‘intrinsic’, but it is more
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the steeply falling ET distribution (dσ/dET ∝ 1/E7
T ) of the prompt photon, even a small

transverse-momentum kick6 can indeed produce a large effect on the cross section, in partic-
ular, at small values of ET . Phenomenological investigations [34] show that this additional
〈k⊥〉 kick can lead to a better agreement between calculations and data. The E706 data
suggest the value 〈k⊥〉 ∼ 1.2 GeV, the WA70 data prefer no 〈k⊥〉, and the UA6 data in the
intermediate range of centre-of-mass energy (

√
S = 24.3 GeV) may prefer an intermediate

value of 〈k⊥〉. Similar conclusions are obtained in the analysis by the MRST group [11].
A precise physical understanding of 〈k⊥〉 effects is still missing. On one side, since the

amount of 〈k⊥〉 suggested by prompt-photon data varies with
√

S, it is difficult to argue that
the transverse momentum is really ‘intrinsic’ and has an entirely non-perturbative origin. On
the other side, in the case of the inclusive production of a single photon, a similar effect can-
not be justified by higher-order logarithmic corrections produced by perturbative soft-gluon
radiation (see Sect. 5). A lot of model-dependent assumptions (and ensuing uncertainties)
certainly enter in the present implementations of the 〈k⊥〉 kick. A general framework to con-
sistently include non-perturbative transverse-momentum effects in perturbative calculations
is not yet available. Recent proposals with this aim are presented in Refs. [35] and [36].

Further studies on the consistency between different prompt-photon experiments and on
the issue of intrinsic-〈k⊥〉 effects in hadron–hadron collisions are necessary. Owing to the
present theoretical (and, possibly, experimental) uncertainties, it is difficult to use prompt-
photon data to accurately determine the gluon density at large x. Other recent theoretical
improvements, such as soft-gluon resummation, of the perturbative calculations for prompt-
photon production at large xT = 2ET /

√
S are discussed in Sect. 5.

Studies of other single-particle inclusive cross sections, such as π0 cross sections [34, 37,
38], can be valuable to constrain the parton densities and could possibly help to clarify some
of the experimental and theoretical issues arisen by prompt-photon production.

4 Partonic cross sections: fixed-order expansions,

resummed calculations, parton showers

The calculation of hard-scattering cross sections according to the factorization formula (2)
requires the knowledge of the partonic cross sections σ̂, besides that of the parton densities.
The partonic cross sections are usually computed by truncating their perturbative expansion
at a fixed order in αS:

σ̂(p1, p2; Q, {Q1, . . .}; µ2
F )= αk

S(µ
2
R)
{
σ̂(LO)(p1, p2; Q, {Q1, . . .}) (9)

+ αS(µ
2
R) σ̂(NLO)(p1, p2; Q, {Q1, . . .}; µ2

R; µ2
F )

+α2
S(µ

2
R) σ̂(NNLO)(p1, p2; Q, {Q1, . . .}; µ2

R; µ2
F ) + . . .

}
.

generically called the 〈k⊥〉 ‘from initial-state soft-gluon radiation’.
6The ET distribution of the single-photon is not calculable down to ET = 0 or, in other words, dσ/dET

is not integrable in the entire kinematic range of ET . Thus, the intrinsic 〈k⊥〉 of the incoming partons does
not simply produce a shift of events from the low-ET to the high-ET region. For this reason, the terminology
‘〈k⊥〉 kick’ seems to be more appropriate than ‘〈k⊥〉 smearing’.
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Figure 9: A comparison between NLO QCD calculations and data from the ISR and fixed-target
experiments for the prompt-photon distribution dσ/dET (xT = 2ET /

√
S).

The scale µR is the arbitrary renormalization scale introduced to define the perturbative
expansion. Although the ‘exact’ partonic cross section on the left-hand side of Eq. (9) does
not depend on µR, each term on the right-hand side (and, hence, any fixed-order truncation)
separately depends on it.

The LO (or tree-level) term σ̂(LO) gives only an estimate of the order of magnitude of the
partonic cross section, because at this order αS is not unambiguously defined. Equivalently,
we can say that since σ̂(LO) does not depend on µR, the size of its contribution can be varied
quite arbitrarily by changing µR in its coefficient αk

S(µ
2
R). The strong coupling αS can be

precisely defined only starting from NLO. A ‘reliable’ estimate of the central value of σ̂ thus
requires the knowledge of (at least) the NLO term σ̂(NLO). This term explicitly depends on
µR and this dependence begins to compensate that of αS(µ

2
R).

In general, the n-th term in the curly bracket of Eq. (9) contains contributions of the type
(αS(µ

2
R) lnQ/µR)n. If µR is very different from the hard scale Q, these contributions become

large and spoil the reliability of the truncated expansion (9). Thus, in practical applications
the scale µR should be set approximately equal to the hard scale Q. As mentioned in
Sect. 3, variations of µR around this central value are typically used to set a lower limit on
the theoretical uncertainty of the perturbative calculation.

A better estimate of the accuracy of any perturbative expansion is obtained by considering
the effect of removing the last perturbative term that has been computed. Since αS can be
precisely defined only at NLO, this procedure can consistently be applied to Eq. (9) only as
from its NNLO term. A ‘reliable’ estimate of the theoretical error on σ̂ thus requires the
knowledge of the NNLO term σ̂(NNLO) in Eq. (9).
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The LO and NLO approximations of σ̂ are used at present in (most of) the fixed-order
QCD calculations. Prospects towards NNLO calculations of partonic cross sections and AP
splitting functions are reviewed in Refs. [7, 39].

The fixed-order expansion (9) provides us with a well-defined and systematic framework
to compute the partonic cross section σ̂(p1, p2; Q, {Q1, . . .}; µ2

F ) of any hard-scattering process
that is sufficiently inclusive or, more precisely, that is defined in an infrared- and collinear-
safe manner. However, the fixed-order expansion is reliable only when all the kinematical
scales Q, {Q1, . . .} are of the same order of magnitude. When the hard-scattering process
involves two (or several) very different scales, say Q1 ≫ Q, the NnLO term in Eq. (9) can
contain double- and single-logarithmic contributions of the type (αSL

2)n and (αSL)n with
L = ln(Q1/Q) ≫ 1. These terms spoil the reliability of the fixed-order expansion and have
to be summed to all orders by systematically defining logarithmic expansions (resummed
calculations).

Typical large logarithms, L = ln Q/Q0, are those related to the evolution of the par-
ton densities from a low input scale Q0 to the hard-scattering scale Q. These logarithms
are produced by collinear radiation from the colliding partons and give single-logarithmic
contributions. They never explicitly appear in the calculation of the partonic cross section,
because they are systematically (LO, NLO and so forth) resummed in the evolved parton
densities f(x, Q2) by using the DGLAP equation (3).

Different large logarithms, L = ln Q/
√

S, appear when the centre-of-mass energy
√

S of
the collision is much larger than the hard scale Q. These small-x (x = Q/

√
S) logarithms

are produced by multiple radiation over the wide rapidity range that is available at large
energy. They usually give single-logarithmic contributions that can be resummed by using
the BFKL equation. BFKL resummation is relevant to DIS structure functions at small
values of the Bjorken variable x (see Sect. 3) and it can also be important at the LHC for
the production of b quarks and of prompt photons at relatively low ET .

Another class of large logarithms is associated to the bremsstrahlung spectrum of soft
gluons. Since soft gluons can be radiated collinearly, they give rise to double-logarithmic
contributions to the partonic cross section:

σ̂ ∼ αk
Sσ̂

(LO)

{
1 +

∞∑

n=1

αn
S

(
C

(n)
2n L2n + C

(n)
2n−1L

2n−1 + C
(n)
2n−2L

2n−2 + . . .
)}

. (10)

Soft-gluon resummation is discussed in Sect. 5.
A related approach to evaluate higher-order contributions to the partonic cross sections

is based on Monte Carlo parton showers (see [40] and the updated list of references in [6,
7]). Rather than computing exactly σ̂(NLO), σ̂(NNLO) and so forth, the parton shower gives
an all-order approximation of the partonic cross section in the soft and collinear regions. In
this respect, the computation of the partonic cross sections performed by parton showers is
somehow similar to that obtained by soft-gluon resummed calculations. There is, however, an
important conceptual difference between the two approaches. This difference and the limits
of applicability of the parton-shower method are briefly recalled below. Apart from these
limits, parton-shower calculations can give some advantages. Multiparton kinematics can be
treated exactly. The parton shower can be supplemented with models of non-perturbative
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effects (hadronization, intrinsic k⊥, soft underlying event) to provide a complete description
of the hard-scattering process at the hadron level.

For a given cross section, resummed calculations can in principle be performed to any
logarithmic accuracy. The logarithmic accuracy achievable by parton showers is instead in-
trinsically limited by quantum mechanics. The parton-shower algorithms are probabilistic.
Starting from the LO cross section, the parton shower generates multiparton final states
according to a probability distribution that approximates the square of the QCD matrix
elements. The approximation is based on the universal (process-independent) factorization
properties of multiparton matrix elements in the soft and collinear limits. Although the
matrix element does factorize, its square contains quantum interferences, which are not
positive-definite and, in general, cannot be used to define probability distributions. To lead-
ing infrared accuracy, this problem is overcome by exploiting QCD coherence (see Refs. [40,
41, 42] and referencees therein): soft gluons radiated at large angle from the partons involved
in the LO subprocess destructively interfere. This quantum mechanical effect can be simply
implemented by enforcing an angular-ordering constraint on the phase space available for the
parton shower evolution. Thus, angular-ordered parton showers can consistently compute
the first two dominant towers (αn

SL2n and αn
SL

2n−1) of logarithmic contributions in Eq. (10).
However, parton showers contain also some subleading logarithmic contributions. For in-
stance, they correctly compute the single-logarithmic terms αn

SLn of purely collinear origin
that lead to the LO evolution of the parton densities. Moreover, as discussed in Ref. [43]
by a comparison with resummed calculations, in the case of hard-scattering processes whose
LO subprocess involves two coloured partons (e.g. DIS or DY production), angular-ordered
parton showers have a higher logarithmic accuracy: they can consistently evaluate the LL
and NLL terms in Eq. (15). The extension of parton-shower algorithms to higher logarithmic
accuracy is not necessarily feasible and is, in any case, challenging.

Of course, because of quantum interferences and quantum fluctuations, the probabilistic
parton-shower approach cannot be used to systematically perform exact calculations at NLO,
NNLO and so forth. Nonetheless, important progress has been made to include matrix
element corrections in parton shower algorithms [44–47]. The purpose is to consider the
multiparton configurations generated by parton showering from the LO matrix element and
to correct them in the hard (non-soft and non-collinear) region by using the exact expressions
of the higher-order matrix elements. Hard matrix element corrections to parton showers have
been implemented for top quark decay [48] and for production of W, Z and DY lepton pairs
[49, 50, 51]. The same techniques could be applied to other processes, as, for instance,
production of Higgs boson [52] and vector-boson pairs [7].

Note also that, at present, angular-ordered parton showers cannot be considered as true
‘next-to-leading’ tools, even where their logarithmic accuracy is concerned. The consistent
computation of the first two towers of logarithmic contributions in Eq. (10) is not sufficient
for this purpose. For instance, to precisely introduce an NLO definition of αS, we should
control all the terms obtained by the replacement αS → αS + c α2

S + O(α3
S). When it is

introduced in the towers of double-logarithmic terms αn
SL2n of Eq. (10), this replacement

leads to contributions of the type αn+1
S L2n ∼ αn

SL2n−2. Since these contributions are not
fully computable at present, the parameter αS used in the parton showers corresponds to a
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simple LO parametrization of QCD running coupling.

5 Soft-gluon resummation

Double-logarithmic contributions due to soft gluons arise in all the kinematic configurations
where radiation of real and virtual partons is highly unbalanced (see Ref. [53] and references
therein). For instance, this happens in the case of transverse-momentum distributions at
low transverse momentum, in the case of hard-scattering production near threshold or when
the structure of the final state is investigated with high resolution (internal jet structure,
shape variables).

Soft-gluon resummation for jet shapes has been extensively studied and applied to hadronic
final states produced by e+e− annihilation [1, 4, 54]. Applications to hadron–hadron col-
lisions have just begun to appear [55] and have a large, yet uncovered, potential (from αS

determinations to studies of non-perturbative dynamics).
Transverse-momentum logarithms, L = ln Q2/Q2

⊥, occur in the distribution of transverse
momentum Q⊥ of systems with high mass Q (Q ≫ Q⊥) that are produced with a vanishing
Q⊥ in the LO subprocess. Examples of such systems are DY lepton pairs, lepton pairs
produced by W and Z decay, heavy quark–antiquark pairs, photon pairs and Higgs bosons.
In these processes the LO transverse-momentum distribution is sharply peaked around Q⊥ =
0 (dσ̂/d2Q⊥ ∝ δ(2)(Q⊥)). If the heavy system is produced with Q2

⊥ ≪ Q2, the emission
of real radiation at higher orders is strongly suppressed and cannot balance the virtual
contributions. The ensuing logarithms, L = ln Q2/Q2

⊥, diverge order by order when Q⊥ → 0,
but after all-order resummation they leads to a finite smearing of the LO distribution.

Threshold logarithms, L = ln(1− x), occur when the tagged final state produced by the
hard scattering is forced to carry a very large fraction x (x → 1) of the available centre-of-
mass energy

√
S. Also in this case, the radiative tail of real emission is stronly suppressed

at higher perturbative orders. Oustanding examples of hard processes near threshold are
DIS at large x (here x is the Bjorken variable), production of DY lepton pairs with large
invariant mass Q (x = Q/

√
S), production of heavy quark–antiquark pairs (x = 2mQ/

√
S),

production of single jets and single photons at large transverse energy ET (x = 2ET /
√

S).
To emphasize the difference between transverse-momentum logarithms and threshold log-

arithms generated by soft gluons, it can be instructive to consider prompt-photon production.
In the case of production of a photon pair7 with invariant mass squared Q2 = (p

(γ)
1 + p

(γ)
2 )2

and total transverse momentum Q⊥ = p
(γ)
1⊥ + p

(γ)
2⊥ , transverse-momentum logarithms and

threshold logarithms appear when Q2
⊥ ≪ Q2 and Q2

⊥ ∼ (S/4 − Q2), respectively. How-
ever, in the case of production of a single photon with transverse energy (or, equivalently,
transverse momentum) ET , soft gluons can produce logarithms only in the threshold region
xT = 2ET /

√
S → 1. If the prompt photon has a transverse energy that is not close8 to its

threshold value, the emission of accompanying radiation is not kinematically suppressed and

7The same discussion applies to the production of a DY lepton pair.
8Eventually, when xT ≪ 1, higher-order corrections are single-logarithmically enhanced. This small-x

logarithms, (αS lnxT )n, have to be taken into account by BFKL resummation.
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there are no soft logarithms analogous to those in the transverse-momentum distribution
of a photon pair. In particular, there are no double-logarithmic contributions of the type
(αS ln2 E2

T /S)n, and perturbative soft gluons are not distinguishable from perturbative hard
gluons.

Studies of soft-gluon resummation for transverse-momentum distributions at low trans-
verse momentum and for hard-scattering production near threshold started two decades ago
[42, 56]. The physical bases for a systematic all-order summation of the soft-gluon contri-
butions are dynamics and kinematics factorizations [53]. The first factorization follows from
gauge invariance and unitarity: in the soft limit, multigluon amplitudes fulfil factorization
formulae given in terms of universal (process-independent) soft contributions. The second
factorization regards kinematics and strongly depends on the actual cross section to be eval-
uated. If, in the appropriate soft limit, the multiparton phase space for this cross section
can be written in a factorized way, resummation is analytically feasible in form of generalized
exponentiation of the universal soft contributions that appear in the factorization formulae
of the QCD amplitudes.

Note that the phase space depends in a non-trivial way on multigluon configurations
and, in general, is not factorizable in single-particle contributions9. Moreover, even when
phase-space factorization is achievable, it does not always occur in the space of the kinematic
variables where the cross section is defined. Usually, it is necessary to introduce a conju-
gate space to overcome phase-space constraints. This is the case for transverse-momentum
distributions and hard-scattering production near threshold. The relevant kinematical con-
straint for Q⊥-distributions is (two-dimensional) transverse-momentum conservation and it
can be factorized by performing a Fourier transformation. Soft-gluon resummation for Q⊥-
distributions is thus carried out in b-space [60, 61], where the impact parameter b is the
variable conjugate to Q⊥ via the Fourier transformation. Analogously, the relevant kine-
matical constraint for hard-scattering production near threshold is (one-dimensional) energy
conservation and it can be factorized by working in N -moment space [62, 63], N being
the variable conjugate to the threshold variable x (energy fraction) via a Mellin or Laplace
transformation.

Using a short-hand notation, the general structure of the partonic cross section σ̂ after
summation of soft-gluon contributions is

σ̂ = σ̂res. + σ̂rem. . (11)

The term σ̂res. embodies the all-order resummation, while the remainder σ̂rem. contains no
large logarithmic contributions. The latter has the form

σ̂rem. = σ̂(f.o.) − [ σ̂res. ]
(f.o.) , (12)

and it is obtained from σ̂(f.o.), the truncation of the perturbative expansion for σ̂ at a given
fixed order (LO, NLO, ...), by subtracting the corresponding truncation [σ̂res.]

(f.o.) of the

9In the case of jet cross sections, for instance, phase-space factorization depends on the detailed definition
of jets and it can easily be violated [57]. Some jet algorithms, such as the k⊥-algorithm [58, 59], have better
factorization properties.
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resummed part. Thus, the expression on the right-hand side of Eq. (11) includes soft-gluon
logarithms to all orders and it is matched to the exact (with no logarithmic approximation)
fixed-order calculation. It represents an improved perturbative calculation that is everywhere
as good as the fixed-order result, and much better in the kinematics regions where the
soft-gluon logarithms become large (αSL ∼ 1). Eventually, when αSL∼> 1, the resummed
perturbative contributions are of the same size as the non-perturbative contributions and
the effect of the latter has to be implemented in the resummed calculation.

The resummed cross section has the following typical form:

σ̂res. = αk
S

∫

inv.
σ̂(LO) · C · S , (13)

where the integral
∫
inv. denotes the inverse tranformation from the conjugate space where

resummation is actually carried out. Methods to perform the inverse transformation are
discussed in Refs. [64] and [65] for Q⊥-resummation and threshold resummation, respectively.
The C term has the perturbative expansion

C = 1 + C1 αS + C2 α2
S + . . . (14)

and contains all the constant contributions in the limit L → ∞ (the coefficients C1, C2, . . .
do not depend on the conjugate variable). The singular dependence on L (more precisely,
on the logarithm L̃ of the conjugate variable) is entirely exponentiated in the factor S:

S = exp {L g1(αSL) + g2(αSL) + αS g3(αSL) + . . .} . (15)

In the exponent, the function L g1 resums all the leading logarithmic (LL) contributions
αn

SLn+1, while g2 contains the next-to-leading logarithmic (NLL) terms αn
SLn and so forth10

(all the functions gi are normalized as gi(λ = 0) = 0). Note that the LL terms are formally
suppressed by a power of αS with respect to the NLL terms, and so forth for the successive
classes of logarithmic terms. Thus, this logarithmic expansion is as systematic as the fixed-
order expansion in Eq. (9). In particular, using a matched NLL+NLO calculation, we
can consistently i) introduce a precise definition (say MS) of αS(µ) and ii) investigate the
theoretical accuracy of the calculation by studying its renormalization-scale dependence.

The structure of the exponentiated resummed calculations discussed so far has to be
contrasted with that obtained by organizing the logarithmic expansion on the right-hand
side of Eq. (10) in terms of towers as

σ̂ ∼ αk
Sσ̂

(LO)
{
t1(αSL

2) + αSL t2(αSL
2) + α2

SL
2 t3(αSL

2) + . . .
}

, (16)

where the double-logarithmic function t1(αSL
2) and the successive functions are normalized

as ti(0) = const. While the ratio of two successive terms in the exponent of Eq. (15) is

10To compare this notation with that of Ref. [66], we can notice that our functions gi are obtained by
the straightforward integration over µ of the functions A(αS(µ)) and B(αS(µ)) of Ref. [66]. In particular,
our terms g1, g2, g3 are not to be confused with the non-perturbative parameters of the same name used in
Ref. [66].
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formally of the order of αS, the ratio of two successive towers in Eq. (16) is formally of
the order of αSL. In other words, the tower expansion sums the double-logarithmic terms
(αSL

2)n, then the terms αn
SL2n−1 ∼ αSL(αSL

2)n−1, and so forth; it thus assumes that the
resummation procedure is carried out with respect to the large parameter αSL

2 (αSL
2 ∼< 1).

On the contrary, in Eq. (15) the large parameter is αSL∼< 1. The tower expansion allows
us to formally extend the applicability of perturbative QCD to the region L∼< 1/

√
αS, and

exponentiation extends it to the wider region L∼< 1/αS. This fact can also be argued by
comparing the amount of information on the logarithmic terms that is included in the trun-
cation of Eqs. (15) and (16) at some logarithmic accuracy. The reader can easily check
that, after matching to the NLO (LO) calculation as in Eq. (11), the NLL (LL) result of
Eq. (15) contains all the logarithms of the first four (two) towers in Eq. (16) (and many
more logarithmic terms).

In the case of Q⊥-distributions, full NLL resummation has been performed for lepton
pairs, W and Z bosons produced by the DY mechanism [61, 67] and for Higgs bosons pro-
duced by gluon fusion [68]. Corresponding resummed calculations are discussed in Refs. [52,
66] and references therein.

Threshold logarithms in hadron collisions have been resummed to NLL accuracy for DIS
and DY production [62, 63, 43, 69] and for Higgs boson production [70]. Recent theoretical
progress [71, 72, 19] regards the extension of NLL resummation to processes produced by LO
hard-scattering of more than two coloured partons, such as heavy-quark hadroproduction
[71, 19] and leptoproduction [73], as well as prompt-photon [74–77], quarkonium [78] and
vector-boson [79] production.

An important feature of threshold resummation is that the resummed soft-gluon contri-
butions regard the partonic cross section rather than the hadronic cross section. This fact has
two main consequences: i) soft-gluon contributions can be sizeable long before the threshold
region in the hadronic cross section is actually approached, and ii) the resummation effects
typically enhance the fixed-order perturbative calculations.

The first consequence follows from the fact that the evolution of the parton densities
sizeably reduces the energy that is available in the partonic hard-scattering subprocess.
Thus, the partonic cross section σ̂ in the factorization formula (2) is typically evaluated much
closer to threshold than the hadronic cross section. In other words, the parton densities are
strongly suppressed at large x (typically, when x → 1, f(x, µ2) ∼ (1 − x)η with η ∼ 3
and η ∼ 6 for valence quarks and sea-quarks or gluons, respectively); after integration over
them, the dominant value of the square of the partonic centre-of-mass energy 〈ŝ〉 = 〈x1x2〉S
is therefore substantially smaller than the corresponding hadronic value S.

The second consequence, which depends on the actual definition of the parton densities,
follows from the fact that the resummed contributions are those soft-gluon effects that are left
at the partonic level after factorization of the parton densities. After having absorbed part
of the full soft-gluon contributions in the customary definitions (for instance, those in the
MS or DIS factorization schemes) of the parton densities, it turns out that the residual effect
in the partonic cross section is positive and tends to enhance the perturbative predictions.

A quantitative illustration of these consequences is given below by discussing top-quark
and prompt-photon production. The discussion also shows another relevant feature of

23



Figure 10: The tt̄ production cross section in pp̄ collisions as a function of
√

S. The solid lines
represent the NLO results for different choices (µ = mt/2 and µ = 2mt) of the renormaliza-
tion/factorization scale µ = µR = µF , normalized to the result with µ = mt. The dashed lines
represent the NLO+NLL results for different choices of µ (µ = mt/2, mt and 2mt), normalized
to the NLO result with µ = mt.

NLO+NLL calculations, namely, their increased stability with respect to scale variations.
The effects of soft-gluon resummation on the top-quark production cross sections at

hadron colliders have been studied in Refs. [19, 80–83]. In the case of pp̄ collisions, the
comparison between QCD predictions at NLO and those after NLL resummation is shown
in Fig. 10 [19]. At the Tevatron the resummation effects are not very large and the NLO
cross section is increased by about 4%. This had to be expected because the top quark is not
produced very close to threshold (x = 2mt/

√
S ∼ 0.2, at the Tevatron). Note, however, that

the dependence on the factorization/renormalization scale of the theoretical cross section is
reduced by a factor of almost 2 by including NLL resummation. More precisely, the scale
dependence (∼ ±5%) of the NLO+NLL calculation becomes comparable to that obtained
by using different sets of parton densities [11]. Combining linearly scale and parton density
uncertainties, the NLO+NLL cross section is σtt̄ = 5.0 ± 0.6, with mt = 175 GeV and√

S = 1.8 TeV [19].
At the LHC (x = 2mt/

√
S ∼ 0.03) the top quark is produced less close to the hadronic

threshold than at the Tevatron. However this is compensated by the fact that the gluon
channel11 is more important at the LHC. As a result, the effect of including soft-gluon
resummation to NLL accuracy is very similar: the NLO cross section is enhanced by ∼
5% and its scale dependence is reduced from ∼ ±10% to ∼ ±5%. Note, however, that

11Since fg is steeper than fq at large x, partonic cross sections in gluon subprocesses are typically closer to
threshold than in quark subprocesses. Moreover, the intensity of soft-gluon radiation from gluons is larger
than that from quarks by a factor of ∼ CA/CF ∼ 2.
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Figure 11: The dependence on the factorization (µF ) and renormalization (µR = µ) scale of the
prompt-photon cross section dσ/dET in pN collisions at ET = 10 GeV and

√
S = 31.6 GeV.

The short-dashed, long-dashed and solid lines are respectively the results at LO, NLO and after
NLO+NLL resummation.

the uncertainty (∼ ±10%) coming from the parton (gluon) densities is larger than at the
Tevatron [7].

Similar qualitative results are obtained [76] when NLL resummation is applied to prompt-
photon production at fixed-target experiments. The scale dependence of the theoretical
calculation is highly reduced and the resummed NLL contributions lead to large corrections
at high xT = 2ET /

√
S (and smaller corrections at lower xT ). Of course, the impact of

soft-gluon resummation is quantitatively more sizeable in prompt-photon production than
in top-quark production, because xT can be as large as 0.6, the hard scale ET is much
smaller than mt (thus, αS(ET ) > αS(mt)) and the gluon channel is always important. The
scale dependence of the theoretical cross section for the E706 kinematics is shown in Fig. 11.
Fixing µR = µF = µ and varying µ in the range ET /2 < µ < 2ET with ET = 10 GeV, the
cross section varies by a factor of ∼ 6 at LO, by a factor of ∼ 4 at NLO and by a factor of
∼ 1.3 after NLL resummation. The highly reduced scale dependence of the NLO+NLL cross
section is also visible in Fig. 12, which, in particular, shows that when ET = 10 GeV and
Ebeam = 530 GeV the central value (i.e. with µ = ET ) of the NLO cross section increases by
a factor of ∼ 2.5 after NLL resummation. As expected, the size of these effects is reduced
by increasing

√
S at fixed ET (see Fig. 12) or by decreasing ET at fixed

√
S (see Fig. 8).

The comparison with the E706 data shown in Fig. 13 suggests that the NLO+NLL
calculation can help to better understand prompt-photon production at large xT . Note,
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Figure 12: The prompt-photon cross section dσ/dET in pN collisions at ET = 10 GeV as a
function of the energy Ebeam of the proton beam. The solid lines represent the NLO results for
different choices (µ = ET /2 and µ = 2ET ) of the renormalization/factorization scale µ = µR =
µF , normalized to the result with µ = ET . The dashed lines represent the NLO+NLL results for
different choices of µ (µ = ET /2, ET and 2ET ), normalized to the NLO result with µ = ET .
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Figure 13: E706 prompt-photon data compared with theoretical calculations, which use the
parton densities of the set CTEQ4 and GRV photon fragmentation functions. The solid and
dashed lines correspond to the NLO+NLL and pure NLO calculations, respectively.

however, that this comparison has to be regarded as preliminary in several respects [76]. In
particular, the parton densities used in Fig. 13 are those extracted from NLO fits. Owing
to the soft-gluon enhancement at large xT , refitting the parton densities may lead to a
smaller fg at large x and, consequently (because of the momentum sum rule), a larger fg

at intermediate x. As a result, this procedure could somehow increase the theoretical cross
section also at smaller values of xT .

Soft-gluon resummation at NLL accuracy is now available for all the processes (namely,
DIS, DY and prompt-photon production) that are typically used to perform global fits to
parton densities. A detailed extraction/evolution of parton densities by consistently using
NLL resummed calculations is thus nowadays feasible.

6 Other topics

The activity of the QCD Working Group at this Workshop has also been devoted to other
topics, such as automatic computation of matrix elements and LO cross sections for multipar-
ticle processes at high-energy colliders, definition and properties of jets algorithms, definition
of isolated photons and related NLO calculations. Corresponding contributions are included
in these Proceedings.

Other studies performed during this Workshop have a large overlap with the activity
of the related Workshops at FERMILAB and CERN and can be found in those Proceed-
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Partons for the LHC

R.D. Ball 12 and J. Huston

Abstract

We discuss some of the experimental, theoretical and methodological issues in the
determination of parton distributions with meaningful error estimates, and their impact
on physical cross sections to be measured at the Tevatron and LHC.

1 Introduction

The calculation of production cross sections at the Tevatron and LHC, for both interesting
physics processes and their backgrounds, relies upon a knowledge of the distribution of
the momentum fraction x of the partons in a proton at the relevant scale. These parton
distribution functions (pdfs) are at present determined by global fits to data from deep
inelastic scattering (DIS), Drell-Yan (DY), and jet and direct photon production at current
energy ranges. Two groups, CTEQ and MRS, provide semi-regular updates to their best-fit
parton distributions when new data and/or theoretical developments become available. The
newest pdfs, in most cases, currently provide the single most accurate overall description of
the world’s data, and should be utlilized in preference to older pdf sets. The most recent
sets from the two groups are CTEQ5 [1] and MRST [2].

In this contribution we will discuss the data sets used in the fits, the way in which the
fits are performed in practice (in particular, issues such as the parametrization of initial dis-
tributions, the solution of the evolution equations, and scheme dependence), and the main
uncertainties in the fitted pdfs due to uncertain or incomplete experimental data. In par-
ticular, we will concentrate on the difficulties involved in determining the gluon distribution
through direct photons or jets. We then move on to discuss more general issues which may
affect future pdf determinations: the inclusion of correlated systematics and the difficulties
involved in combining these for different experiments, purely theoretical uncertainties aris-
ing from the limitations of NLO perturbative QCD, and finally, methodological uncertainties
such as the dependence on the form of the parametrization and the assumption of Gaussian
error propagation. We conclude with a summary of the progress that might be made before
the LHC turns on, and the role of LHC data in determining pdfs.

12Royal Society University Research Fellow.
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2 Processes Involved in Global Analysis Fits

Lepton-lepton, lepton-hadron and hadron-hadron interactions probe complementary aspects
of perturbative QCD (pQCD). Lepton-lepton processes provide clean measurements of αs(Q

2)
and of the fragmentation functions of partons into hadrons. Measurements of deep-inelastic
scattering (DIS) structure functions (F2, F3) in lepton-hadron scattering and of lepton pair
production cross sections in hadron-hadron collisions are the main source of information on
the quark distributions qa(x, Q) inside hadrons. Scaling violations in deep inelastic processes
give some information about the gluon distribution g(x, Q). Furthermore the gluon distri-
bution function enters directly (i.e. at leading order) in hadron-hadron scattering processes
with direct photon and jet final states. Modern global parton distribution fits are carried
out to next-to-leading (NLO) order which allows αs(Q

2), qa(x, Q) and g(x, Q) to all mix
and contribute in the theoretical formulae for all processes. Nevertheless, the broad picture
described above still holds to some degree in global pdf analyses.

In pQCD, the gluon distribution is always accompanied by a factor of αs, in both the
hard scattering cross sections and in the evolution equations for parton distributions. Thus,
determination of αs and the gluon distribution is, in general, a strongly coupled problem.
One can determine αs separately from e+e− or determine αs and g(x, Q) jointly in a global
pdf analysis. In the latter case, though, the coupling of αs and the gluon distribution may
not lead to a unique solution for either (see for example the discussion in the CTEQ4 paper
where good fits were obtained to a global analysis data set, including the inclusive jet data,
for a wide range of αs values [3].)

Currently, the world average value of αs(MZ) is 0.119 ± 0.004 [4]. This is in agreement
with the average value from LEP, while the DIS experiments prefer a slightly smaller value
(of the order of 0.116−0.118)). Since global pdf analyses are dominated by the high statistics
DIS data, they would tend to favor the values of αs closer to the lower DIS values. The
more logical approach is to adopt the world average value of αs(MZ) and concentrate on the
determination of the pdfs. This is what both CTEQ and MRS currently do. 13

The data from DIS, DY, direct photon and jet processes utilized in pdf fits cover a wide
range in x and Q ≡

√
Q2. The kinematic ‘map’ in the (x, Q) plane of the data points

used in a recent parton distribution function analyses is shown in Figure 1. The HERA
data (H1+ZEUS) are predominantly at low x, while the fixed target DIS and DY data are
at higher x. There is considerable overlap, however, with the degree of overlap increasing
with time as the statistics of the HERA experiments increases. DGLAP-based NLO pQCD
provides an accurate description of the data (and of the evolution of the parton distributions)
over the entire kinematic range shown. At very low x and Q2, DGLAP evolution is believed
to be no longer applicable due to unresummed small x logarithms. Similarly at very large x
there are significant contributions from unresummed soft logarithms (logarithms of 1 − x).
However, no evidence for such corrections is seen in the current range of data; thus all global
analyses use conventional DGLAP evolution of pdfs.

13One can either quote a value of αs(MZ) or the value of ΛMS . In the latter case, however, the number

of flavors has to be clearly specified, since the value of αs (and not ΛMS) has to be continuous across flavor
thresholds.
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Figure 1: The kinematic map in the (x, Q) plane of data points used in the CTEQ5 analysis.

There is a remarkable consistency between the data in the pdf fits and the NLO QCD
theory fit to them. Over 1300 data points are shown in Figure 1 and the χ2/d.o.f. for the
fit of theory to data is on the order of one.

Parton distributions determined at a given x and Q2 propagate down to lower x values
at higher Q2 values. The accuracy of the extrapolation to higher Q2 depends both on the
accuracy of the original measurement and any uncertainty on αs(Q

2). For the structure
function F2, the typical measurement uncertainty at medium to large x is on the order of
±3%. At large x, the DGLAP equation for F2 can be approximated as ∂F2

∂ log Q2 = αs(Q
2)P qq⊗

F2. There is an extrapolation uncertainty of around ±5% in F2 from low to high Q2 (105

GeV 2) from the uncertainty in αs. Evolved distributions are also susceptible to uncertainties
from an anomalously large contribution to F2 near x values of 1. Such a contribution may
not be evident in fixed target measurements at low x and low Q2, but may influence higher
Q2 measurements [5].

For comparison, the kinematics appropriate for the production of a state of mass M and
rapidity y at the LHC is shown in Figure 2 [6]. For example, to produce a state of mass 100
GeV and rapidity 2 requires partons with x values between 0.05 and 0.001 at a Q2 value of 104

GeV 2. Also shown in the figure is another view of the kinematic coverage of the fixed target
and HERA experiments used in pdf fits. It can be seen that parton distributions determined
from these experiments are sufficient to predict most LHC cross-sections of interest, provided
that DGLAP evolution at small and large x is sufficiently reliable.
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3 Evolution, Schemes and Parametrizations

3.1 Evolution Codes

In order to fit the initial pdfs to experimental data they need to be evolved up to the correct
scale by solving the DGLAP equations either to LO or NLO. The evolution can be carried
out in either moment space or configuration space: both MRS and CTEQ use configuration
space codes. Improvements have been made in the CTEQ and MRST evolution programs
so that both now agree with the ‘DESY standard’ evolution prescription [7]. The CTEQ
and MRST packages should be able to carry out the evolution using NLO DGLAP to an
accuracy of a few percent over the LHC kinematic range, except perhaps at very large and
very small x. Note that the theoretical predictions for the W and Z total cross sections
at the LHC may have uncertainties of less than 5%[8]. This puts a great demand for the
pdf evolution to have accuracies of better than a few percent, since any error on a pdf gets
doubled in the cross section calculation. Mellin space codes might be the answer here.

A global pdf analysis carried out at next-to-leading order needs to be performed in a
specific renormalization and factorization scheme. The evolution kernels are in a specific
scheme and to maintain consistency, any hard scattering cross section calculations used for
the input processes or utilizing the resulting pdfs need to also have been implemented in
that same renormalization scheme. Almost universally, the MS scheme is used: pdfs are
also available in the DIS scheme, a fixed flavor scheme (as in ref.[9]) and several schemes
that differ in their specific treatment of the charm quark mass [10, 11].

It is also possible to use only leading-order matrix element calculations in the global fits
which results in leading-order parton distribution functions. Such pdfs are preferred when
leading order matrix element calculations (such as Monte Carlo programs like HERWIG [12]
and PYTHIA [13]) are used. The differences between LO and NLO pdfs, though, are formally
NLO; thus, the additional error introduced by using a NLO pdf with HERWIG rather than a
LO pdf, for example, should not be significant, in principle, and NLO pdfs can be used when
no LO alternatives are available. The accuracy of current DIS/DY data is such that the χ2

values for LO fits are noticeably worse than those from the NLO fits: the data are sensitive
to the differences between LO and NLO partonic cross-sections and evolution kernels.

3.2 Parametrization of Initial Distributions

All current global analyses use a generic form for the parametrization of both the quark and
gluon distributions at some reference value Q0:

f(x, Q0) = a0x
a1(1 − x)a2P (x; a3, ...). (1)

The reference value Q0 is usually chosen in the range of 1 − 2 GeV. The parameter a1 is
associated with small-x behaviour while a2 is associated with large-x valence counting rules.
In some pdf fits, agluon

1 has been tied to aseaquark
1 ; in more recent fits like CTEQ4, CTEQ5 and

MRST, the two small x exponents are allowed to vary independently. The current statistical
power of the low x and Q2 DIS data from HERA warrants this separation.
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The first two factors, in general, are not sufficient to describe either quark or gluon
distributions. The term P (x; a3, ...) is a suitably chosen smooth function, depending on one
or more parameters, that adds more flexibility to the pdf parametrization. In general, both
the number of free parameters and the functional form can have an influence on the global
fit. For example, the MRS group traditionally uses PMRS(x; a3, a4) = 1 + a3

√
x + a4x. The

CTEQ3 pdf used PCTEQ3 = 1 + a3x while CTEQ2, CTEQ4 and CTEQ5 all use the more
general form PCTEQ2,4,5 = 1 + a3x

a4 . The flexibility in the latter form, for example, makes
possible the larger gluon at high x observed in the CTEQ4HJ pdf.

Although the pdfs determined from global analyses should, in principle, be universal, in
practice they could depend on the choice of data sets, and in particular on the choice of Qcut

values that specify the minimum hard physical scale (Q, pT , ..) required for data points to
be included in the fit.

x

0

0.2

0.4

0.6

0.8

1

1.2

x
 f

(x
,Q

)

10-4 10-3 10-2 10-1 .2 .3 .4 .5 .6 .7

Q = 5 GeV

.8

Gluon / 15
dbar
ubar
s
c
uv
dv
(dbar-ubar) * 5

Figure 3: The parton distributions from the CTEQ5 set plotted at a Q value of 5 GeV.

The parton distributions from the recent CTEQ pdf release are plotted in Figure 3 at
a Q value of 5 GeV . The gluon distribution is largest at small x values while the valence
quark distributions dominate at higher x.

3.3 Evolution in time and Q2

As discussed in the introduction, the MRS and CTEQ groups provide semi-regular updates
to their parton distributions as new data and/or theory becomes available. The latest
parton distributions are the most accurate and should be used in preference to previous
pdfs. However, in some cases calculations using older pdfs are necessary: for example, until
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Figure 4: The up sea quark and gluon parton distributions from the CTEQ1-4 sets plotted at
a Q2 value of 5 GeV2.

recently 14 none of the more recent pdfs were implemented in PYTHIA, and most comparisons
in the ATLAS TDR have been made with the CTEQ2L pdf (the default pdf in PYTHIA

version 5.7).
A comparison of the CTEQ1M [14], CTEQ2M [15], CTEQ3M [16] and CTEQ4M [3]

parton distributions (in particular the up sea quark and gluon distributions) are shown in
Figure 4, at a Q2 value of 5 GeV2. The CTEQ2-4 up quark sea distributions are substantially
steeper than that of CTEQ1, reflecting the influence of the HERA data. A similar effect is
seen with the gluon distribution. There is little change in the valence distributions.

The up sea quark and gluon distributions are shown in Figure 5 at a larger Q2 value of
104 GeV2. Evolution has evened out many of the differences observed at lower Q2 values. A
Q2 value of 104 GeV2 corresponds to a mass scale at the LHC of about 100 GeV.

The effects of evolution are examined in more detail in Figure 6 where the up sea quark
and gluon distributions are plotted at Q2 values of 2, 10, 50, 104 and 106 GeV2. There are
two interesting features that can be noted. Most of the evolution takes place at low Q2 and
there is little evolution for x values in the vicinity of 0.1. In contrast, at large x value the
distributions decrease by an order of magnitude from the lowest to the highest Q2 value,
while at small x they increase by an order of magnitude.

14In the most recent version of PYTHIA (6.1), the CTEQ5 pdf’s are available.
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4 Estimating Uncertainties

In addition to having the best estimates for the values of the pdfs in a given kinematic
range, it is also important to understand the allowed range of variation of the pdfs, i.e.
their uncertainties. The crudest method of estimating parton distribution uncertainties is
to compare different published parton distributions. This is unreliable since most published
sets of parton distributions (for example from CTEQ and MRS) adopt similar assumptions
and the differences between the sets do not fully explore the full range uncertainties that
actually exist. Here and in the next section we concentrate on estimating the uncertainties
due to to the limitations of available data sets.

The sum of the quark distributions Σ(q(x) + q(x)) is, in general, well-determined over
a wide range of x and Q2. As stated above, the quark distributions are predominantly
determined by the DIS and DY data sets which have large statistics, and systematic errors
in the few percent range (±3% for 10−4 < x < 0.75). Thus the sum of the quark distributions
is basically known to a similar accuracy. The individual quark flavors, though, may have
a greater uncertainty than the sum. This can be important, for example, in predicting
distributions that depend on specific quark flavors, like the W asymmetry distribution [17]
and the W rapidity distribution.

Information on the d and u distributions comes, at small x, from HERA and at medium
x from fixed target DY production on H2 and D2 targets. It is now well-established [18, 19]
that the d and u distributions are not the same. The difference in these distributions between
the CTEQ4M and CTEQ5M pdfs is due primarily to the influence of the data from the E866
experiment. It is worth noting that our detailed knowledge of d/u is limited primarily to
the x region (.03-.35) covered by E866.

The strange quark sea is determined from dimuon production in ν DIS (CCFR[20]), with
the strange quark distribution (s+ s) being approximately 1

2
(u+d). The charm and bottom

quark distributions are calculated perturbatively from gluon splitting for given masses of mc

and mb. (See also the previous discussion on schemes.)
Current information on d/u at large x comes from fixed target DY production on H2

and D2 and the lepton asymmetry in W production at the Tevatron. In the CTEQ5 and
MRST fits, the NMC D2/H2 data are used to constrain the large x d quark distribution in
this way. Bodek and Yang have argued that the D2 data need to be corrected for nuclear
binding effects, which would lead to a larger d/u ratio at large x (and thus a larger d quark
distribution as the u quark distribution is well-determined from DIS) [21]. The need for the
nuclear binding corrections is still an open question [22]. The larger d quark distribution
would lead to an increase in the high ET Tevatron jet cross section of about 10%. A similar
excess would be expected for high ET jet production at the LHC.

The parton distribution with the greatest uncertainty is the gluon distribution, simply
because it does not couple directly to an external probe. The LHC is essentially a gluon-
gluon collider and many hadron-collider signatures of physics both within and beyond that
Standard Model involve gluons in the initial state. Thus, it is very important to estimate
the theoretical uncertainty due to the uncertainty in the gluon distribution.

The gluon distribution can be determined indirectly at low x by measuring the scaling
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violations in the quark distributions (∂F2/∂ log Q2), but a direct measurement is necessary
at moderate to high x. Direct photon production has long been regarded as potentially
the most useful source of information on the gluon distribution with fixed target direct
photon data, especially from the experiment WA70 [23], being used in a number of global
analyses. However, as will be discussed in the next section, there are a number of theoretical
complications with the use of direct photon data.

The momentum fraction of the proton carried by quarks is determined very well from
DIS data; at a Q0 value of 1.6 GeV, in the CTEQ4 analysis for example, the momentum
fraction carried by quarks is 58% with an uncertainty of ±2%. Thus, the momentum fraction
carried by gluons is 42% with a similar uncertainty. This constraint is important; if the gluon
distribution increases in one x range, momentum conservation forces it to decrease in another
x range. Thus, if the gluon flux in the x range from 0.01 to 0.3 were to decrease by 20%,
the gluon flux would have to increase by a fairly dramatic amount in the other x ranges to
compensate. For example, if this compensation were to come in the high x region, the gluon
distribution would have to double.

A simple way of estimating the uncertainty in the gluon distribution is to systematically
vary the gluon parameters in a global analysis and then look for incompatibilities with the
data sets that make up the global analysis database. This study has been carried out by
CTEQ using only DIS and Drell-Yan data where the theoretical and experimental systematic
errors are under good control [24]. Except at larger values of x(x > 0.2− 0.3), the variation
in the gluon distributions is less than 15% at low values of Q2, decreasing to less than 10% at
high values: as noted earlier, evolution is the great equalizer for parton distributions. Note
that the DIS and DY datasets used in this analysis do not provide any strong constraints
on the gluon distribution at high values of x. This study used the CTEQ4 value of αs (i.e.
0.116). If αs is varied in the range from 0.113 to 0.122, the gluon distribution varies by 3%
for x < 0.15.

In order to assess the range of predictions for hadronic cross sections, it is more important
to know the uncertainties in the gluon-gluon and gluon-quark luminosity functions at the
appropriate kinematic region (in τ = x1x2 = ŝ/s) rather than the uncertainties in the
parton distributions themselves. Therefore it is useful to define the relevant integrated
parton-parton luminosity functions: for example the gluon-gluon luminosity function can be
defined as:

τ
dL

dτ
=
∫ 1

τ

dx

x
g(x, Q2)g(τ/x, Q2). (2)

This quantity is directly proportional to the cross section for s-channel production of a single
particle and it also gives a good estimate for more complicated production mechanisms. In
Figure 7 is shown the range of allowed gluon-gluon luminosities (normalized to the CTEQ4M
values) for the variations discussed above. Here, Q2 is taken to be τs, which naturally takes
the Q2 dependence of the gluon distribution into account as one changes

√
τ . The top region

is for the LHC and the bottom is for the Tevatron. Above a
√

τ value of 0.1, the allowed
variation grows dramatically; this indicates the need for more information about the gluon
distribution at large x than provided by the DIS and DY data sets used in this analysis.

In analogy with the discussion of gluon-gluon luminosities, one can also study the gluon-
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Figure 7: The ratio of gluon distributions consistent with the DIS and DY data sets to the gluon
distributions from CTEQ4M. The gluon distribution from CTEQ4HJ is also shown for comparison.
In the second figure are shown the corresponding allowable variations in the integrated gluon-gluon
luminosity as a function of

√
τ .

Table 1: The parton-parton luminosity uncertainty as a function of
√

τ .

√
τ range gluon-gluon gluon-quark

< 0.1 ±10% ±10%
0.1 − 0.2 ±20% ±10%
0.2 − 0.3 ±30% ±15%
0.3 − 0.4 ±60% ±20%

quark luminosity (again normalized to the CTEQ4M result). The uncertainties on the
parton-parton luminosities, as a function of

√
τ , are summarized in Table 1. Note that the

region of production of a 100−140 GeV Higgs at the LHC lies in the region where the range
of variation in the gg luminosity is ±10%.

5 Direct Photons and Jets in Global Fits
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5.1 Direct Photons

As mentioned previously in this section and in Reference [25], direct photon production has
long been viewed as an ideal vehicle for measuring the gluon distribution in the proton.
The quark-gluon Compton scattering subprocess (gq → γq) dominates photon production
in all kinematic regions of pp scattering, as well as for low to moderate values of parton
momentum fraction x in pp scattering. As described previously, the gluon distribution is
relatively well constrained at low x(x < 0.1) by DIS and DY data, but less so at higher
x. Consequently, fixed target direct photon data have been incorporated in several modern
global parton distribution function analyses with the hope of providing a major constraint
on the gluon distribution at moderate to high x.

A pattern of systematic deviations of direct photon data from NLO predictions has been
observed [26, 27], however, these being particularly striking for the E706 experiment. The
origin of the deviations is still quite controversial. One possibility that has been suggested
is that the deviations are due to the effects of soft gluon radiation, or kT [28, 29]. This
view, however, is not universally held; see, for example, the discussion in Reference [25] and
in Reference [27]. The kT values needed to describe the data are too large to be viewed as
purely ‘intrinsic’ or non-perturbative in origin. But, as discussed in Reference [25], in the
standard formalism for direct photon production there are no double-logs to be resummed.
This is in contrast to double-arm observables such as Drell-Yan or diphoton production; since
direct photon production is, by definition, a single-arm observable, there is no restriction
of phase space for gluon emission, and thus no double logarithmic enhancement to the pT

distribution. The only enhancement effects that survive arise from the purely ‘intrinsic’ kT

present in the colliding hadrons.
Nonetheless, there is generally a substantial amount of kT that results from the emission

of soft gluons in hard scattering processes. Direct evidence of this kT has long been evident in
Drell-Yan, diphoton and heavy quark measurements. The values of < kT >/parton for these
processes vary from 1 GeV at fixed target energies to 3 − 4 GeV at the Tevatron Collider.
The growth is approximately logarithmic with center of mass energy. (The value expected
at the LHC for relatively low mass states (30 − 40 GeV) is in the range of 6.5 − 7.0 GeV.)

Perturbative QCD corrections are insufficient to explain the size of the observed kT and
fully resummed calculations are required to explain Drell-Yan, W/Z and diphoton distribu-
tions [30]. These resummed calculations qualitatively describe the growth of the < kT >
with center-of-mass energy. Currently there is no rigorous kT -type resummation calculation
available for single photon production, for the reasons cited above. In addition, this calcula-
tion is quite challenging in that the final state parton takes part in soft gluon emission and in
color exchange with initial state partons, in contrast with the Drell-Yan and diphoton cases.
Also, the calculation is complicated by the fact that several overlapping power-suppressed
corrections can contribute and, at high x, threshold effects are important.

Nevertheless, there has been recent theoretical progress in single photon resummation [31,
32, 33, 34]. In particular, in Reference [34], a technique has been presented for simultaneously
treating recoil and threshold corrections in single photon inclusive cross sections, working
within the formalism of collinear factorization. In the preliminary results, substantial en-
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hancements have been observed, at moderate pT and x, from higher order perturbative and
power-law non-perturbative corrections. This approach is still quite new and the efficacy of
the formalism still has to be evaluated.

There is an intuitive picture that describes the effects of this soft gluon radiation, both
perturbative and non-perturbative, on the direct photon cross section. The presence of soft
gluon radiation, or kT , can give a ‘kick’ in the photon direction. Due to the steeply falling
cross sections, the kT kick can lead to the promotion of photons from lower pT to higher values
of pT . The more steeply falling the cross section, the larger the resulting enhancement. Using
this intuitive picture, the effects of soft gluon radiation can be approximated by a convolution
of the NLO cross section with a Gaussian kT smearing function. The value of < kT >
to be used for each kinematic regime should be taken directly from relevant experimental
observables, given the lack of a rigorous formalism, rather than from a theoretical prediction.
The behaviour of the kT smearing correction is quite different for the Tevatron collider and for
fixed target experiments. For the Tevatron, there are two points to note: (1) the agreement
with the data is improved if the kT correction is taken into account and (2) the kT smearing
effects fall off roughly as 1/p2

T [29]. The latter behaviour is the expectation for such a power-
suppressed type of effect and is the behaviour expected at the LHC, where the effects of the
kT smearing should not be important beyond pT values of 30 GeV 15.

The kT correction obtained for E706 at a center-of- mass energy of 31.6 GeV is shown
in Figure 8. The value of < kT > of 1.2 GeV was obtained from measurements of several
kinematic observables in the experiment [29]. The kT smearing effect is much larger here
then observed at the collider and does not have the 1/p2

T falloff. Also shown are the kT

corrrections using values of < kT > of 1.0 and 1.4 GeV (a reasonable estimate of the range
of experimental uncertainty in the < kT > determination). In addition, the kT correction
for the E706 data used in the recent MRST pdfs is shown. The MRST kT correction,
utilizing a different model, is larger leading to a smaller gluon distribution in the relevant
x range. (Both the CTEQ4 and MRST pdfs, with their respective kT corrections, lead to
good agreement with the E706 direct photon cross sections.) The differences between the kT

correction from Reference [29] and that from the MRST pdfs can be taken as an indication
of the uncertainty in the value of this correction. Good agreement with the E706 direct
photon and cross section at

√
s = 31.6 GeV is observed when the nominal kT correction

of 1.2 GeV is used; however, the allowed range of variation of 〈kT 〉 (1.0 − 1.4 GeV) makes
quantitative comparisons, and thus an extraction of the gluon distribution, difficult 16. Since
the high pT E706 data agrees well with CTEQ4M, it would thus disfavor the CTEQ4HJ pdf.
As stated before, however, a definitive conclusion must await a more rigorous theoretical
treatment.

Other related fixed target processes, such as π0 production, in the same pT range as the

15Similar kT smearing effects should be present in all hard scattering cross sections, for example jet
production at the Tevatron. The size of the experimental and theoretical systematic errors in the low ET

region make such a confirmation difficult.
16NLO QCD predictions for fixed-target direct photon production (as is also true for other fixed target

processes) also contain a non-negligible renormalization and factorization scale dependence, as discussed in
Reference [25]
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In addition, the kT correction for E706 used in the recent MRST fit is indicated.

measured direct photon cross section, may perhaps shed some light on the puzzle. It has
been noted [35] that essentially all of the fixed target π0 cross sections disagree with NLO
predictions, by essentially a constant factor. Thus, there may be a common problem causing
the deviations, such as uncertainties in the high z quark and gluon fragmentation functions
and possible sizeable higher order corrections. In addition, the importance of the high z
fragmentation region implies the need for threshold resummation techniques to be applied,
in processes with non-trivial color flow.

It is worthwhile pointing out, though, that the same kT model used for for single photon
production was shown to also provide an adequate description of the experimental πo cross
sections [29, 36]. As in the case of direct photon production, the controversy regarding the
theory/data discrepancies is still open. The π0 cross sections may form a crucial role in the
ultimate understanding for a number of reasons: if kT are important for photon production,
they should also have a measureable impact on the π0 cross sections as well. In addition,
π0’s form the primary experimental background to direct photon production.

Finally, it is not clear if any theoretical treatment for photon production is capable of
describing all of the current fixed target direct photon data. There are discrepancies between
the different experiments which may imply experimental difficulties, which are in addition
to any of the theoretical problems discussed above.
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5.2 Influence of Jets

An important process that is sensitive to the gluon distribution is jet production in hadron-
hadron collisions. Processes responsible for jet production include gluon-gluon, gluon-quark
and quark-quark(or anti-quark) scattering. Precise data on jet production at the Fermilab
Tevatron are now available over a wide range of transverse energy, and the theoretical un-
certainties in most of this range are well-understood. Thus, it is to be expected that jet
production can provide a good constraint on the gluon distribution.

The jet data that has been utilized in global pdf fits has been from the CDF and D0
collaborations 17. The data cover a wide kinematic range (ET values from 15 to 450 GeV
corresponding to an x range of 0.02 to 0.5). The CDF jet data from Run IA were utilized
in the CTEQ4HJ pdf fit [37]. Here, a large emphasis was given to the high ET data points
which show a deviation from NLO QCD predictions with “conventional” pdfs. Given the lack
of constraints on the high x gluon distribution discussed in Section VI, the extra emphasis
on the high ET region was enough to cause a significant increase in the gluon distribution;
for example, the gluon distribution at an x value of 0.5 (Q = 100 GeV) increases by a factor
of two. Since the dominant jet subprocess in this region is qq scattering the increase in the
gluon distribution of a factor of two causes only a 20% increase in the jet cross section. This
is sufficient to pass through the bottom of the CDF high ET jet error bars. The preliminary
jet cross sections from Run 1B (90 pb−1) from both the CDF and D0 experiments were used
in the CTEQ4M fits, but with statistical errors only and only for ET in the range 50 − 200
GeV. The points with ET lower than 50 GeV have substantial systematic errors on both the
theoretical and experimental sides while the points with ET higher than 200 GeV contain
the CDF excess. The inclusion of the jet data serves to considerably constrain the gluon
distribution over the x range of 0.1 to 0.2. The resulting gluon (CTEQ4M) does not decrease
the excess observed by CDF at high ET .

The published D0 jet cross section [38] along with the (soon-to-be published) CDF jet
cross section [39] from Run 1B were used in the recently released CTEQ5 parton distribu-
tions. The fits use the full ET range for the cross sections and use the correlation information
on the systematic errors as contained in the covariance matrices for both experiments. The
two experiments are in agreement with each other except for a slight normalization shift 18;
the two highest ET data points for CDF are above those for D0, but both experiments have
large statistical errors in this region. As can be seen in Figure 9 the NLO QCD predic-
tion with the CTEQ5M pdf is in good agreement with the CDF data. The conclusions are
exactly the same for the D0 jet data. The CTEQ5M gluon is very similar to CTEQ4M,
except perhaps at very high x. The CTEQ4HJ pdf has been updated to complement the
new CTEQ5M pdf. The CTEQ5HJ pdf gives almost as good a global fit as CTEQ5M to the
full set of data on DIS and DY processes, and has the feature that the gluon distribution
is significantly enhanced in the high x region, resulting in improved agreement with the

17The experimental and theoretical errors associated with the UA2 jet cross section make its use in pdf
fits difficult.

18 A shift on the order of 3% is expected since the two experiments use values for the total inelastic cross
section that differ by that amount.
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Figure 9: A comparison of the Run 1B CDF inclusive jet cross section to the CTEQ5 fits. The
bottom plot shows the measured cross section multiplied by p 7

T in order to allow a linear display.
The top plot shows the ratio of the measured cross section to that calculated with CTEQ5M, as
well as the ratios of CTEQ5HJ to CTEQ5M.

observed trend of jet data at high ET in both the CDF and D0 experiments.

6 Systematic Uncertainties

There is currently an increasing awareness of the need and possibility of propagating errors
in the data into error estimates on parton distribution functions [41, 42, 43]. Ideally, one
might hope to perform a full error analysis and provide correlated errors for all the parton
distributions determined in a global fit. This goal is difficult to carry out for several reasons.
Firstly, there is no established way of quantifying the theoretical uncertainties for the diverse
physical processes that are used. More pragmatically, only a subset of the experiments
usually involved in global analyses provide correlation information on their data sets in
a way suitable for the analysis. In these circumstances, comparing data from different
experiments becomes very difficult. Furthermore the standard fitting procedure introduces
methodological uncertainties due in particular to the necessity of choosing specific choices
of parametrization. All of these uncertainties are of course all highly correlated. We discuss
each in turn.

6.1 Theoretical Uncertainties

The most important theoretical uncertainty in the determination of parton densities is the
truncation of the resummed perturbation series at NLO. Consistent NNLO determinations
will require NNLO splitting functions: there has recently been some progress in this di-
rection [45], and it is hoped that NNLO calculations might be available before the LHC
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is turned on. Meanwhile there are some ‘approximate NNLO’ calculations [46], which at-
tempt to reconstruct the NNLO splitting functions from their known integer moments and
behaviour at large and small x: these analyses suggest that NNLO corrections might reduce
theoretical uncertainties due to truncation of the perturbative expansion by at least a factor
of two.

One of the most important consequences of the theoretical uncertainty from unknown
NNLO corrections is that it currently limits the accuracy of most of the experimentally more
reliable determinations of αs. This in turn inevitably limits the accuracy of all extrapolations
from low to high Q2: for example one of the largest uncertainties in the prediction of the W
and Z cross-sections is that due to the uncertainty in αs [47].

Uncertainties at low Q2 due to higher twist may be estimated from phenomenological
fits: recent studies [21, 48] have shown that there are important correlations between em-
pirical higher twist and the value of αs. It has also been shown that the fitted higher twist
contribution drops when estimates of NNLO corrections are included [49]. The empirical
higher twist is qualitatively consistent with renormalon estimates. Taken together, these
observations suggest that it is difficult to disentangle genuine higher twist from higher order
perturbative corrections: the true higher twist contribution may be much smaller than is
suggested by the fits.

The correct treatment of heavy quarks close to threshold was developed some time
ago [10]; more recently it was proven that this procedure works to all orders in pertur-
bation theory [50]. This treatment is now included in some of the CTEQ fits [1, 51]; a
closely related but not identical procedure is used by MRS [2]. A simpler version of ACOT,
which nonetheless accurately reproduces its essential features, has also been developed [52].

An accurate treatment of heavy quark production, and indeed W and Higgs production,
requires the resummation of threshold logarithms. Recently it has been suggested that
resummation of soft gluons may solve some of the problems with prompt photons [31, 32,
33, 34]. A fully consistent treatment will require the inclusion of soft gluon resummations in
parton determinations, but as yet this has not been attempted. Renormalon studies suggest
that such resummations may substantially improve the reliability of perturbation theory at
large x. Again there will be strong correlations with higher twist. It would be particularly
interesting to see the effect of such resummations on the predictions for the parton-parton
luminosities eq.2 in the region relevant for Higgs production at the LHC.

The resummation of high energy (small x) logarithms is more problematic. Present data
suggest that their effect on inclusive cross sections must be very small, at least at HERA and
the Tevatron if not at the LHC. Furthermore, conventional theoretical approaches [53, 54]
based on summations of LLx and NLLx [55] corrections have been shown to break down: the
NLLx corrections are overwhelmingly large and negative [56]. Various suggestions for the
resummation of these large corrections have been put forward [57, 58, 59, 60]. Hopefully a
detailed phenomenological analysis based on one or other of these procedures will eventually
provide a reliable estimate of the error due to uncertainties in small x evolution when using
parton distributions measured at HERA to predict those to be used at the LHC.
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6.2 Combining Different Experiments

On the experimental side, one of the major problems with combining results from different
experiments lies in the degree of ‘rigour’ in the interpretation of the experimental errors.
Experimental results may be conveniently expressed as probabilities P (data|theory), i.e.
the probabilities of obtaining the given set of data given a certain theoretical prediction
[44]. Often these probabilities are expressed in terms of predictions and (Gaussian) errors:
for a given experiment, P (d|t) = exp(−1

2
χ2(d|t)), where d are the data, t the theoretical

predictions and
χ2(d|t) =

∑

data

(d − t)Σ−1(d − t) (3)

where Σ is the matrix of correlated errors. Maximizing the probability, and thus obtaining
the most likely ‘prediction’, then corresponds to minimizing the χ2. It should be emphasized
that it is not necessary to present experimental results in this way, and in particular some
systematics may be completely non-Gaussian; however if the experiment is to be useful it
must always provide a (clear) estimate of P (d|t), otherwise the error analysis is at best
incomplete and at worst useless.

In the present situation, the predictions will be constrained functionals of the input
pdfs (the constraints being the result of perturbative evolution and cross-sections). If the
errors have been estimated correctly, and the theory which constrains the predictions is
sufficiently accurate, then there should be pdfs for which the χ2 per degree of freedom is
of order unity. Unfortunately for many important datasets this is not the case, and thus if
one were to insist on the rigour of the statistical method, then many important experiments
would not be included in the analysis [42, 71]. Such a strict criterion is probably unrealistic:
rather the emphasis should be placed on using the maximal experimental constraints from
experimental data [41]. In this case the standard statistical techniques may not apply, but
must be supplemented by physical considerations, taking into account experimental and
theoretical limitations [43].

As an example of how this works in practice, we consider a recent CTEQ error analysis
of the W -production cross-section [42, 43]. This uses the standard CTEQ5 analysis [1] as
the starting point: there are fifteen experimental data sets, with a total of ∼ 1300 data
points, and experimental errors are generally treated by ignoring correlations and combining
statistical and systematic errors in quadrature (so Σ in eq.(3) is taken to be diagonal, with
each diagonal entry set to σ2

stat + σ2
syst of the corresponding data point). The initial pdfs

are parameterised by 18 parameters ai, i = 1, . . . , 18: each theoretical prediction is then a
function of these parameters. The ‘best-fit’ distribution (CTEQ5M1 in this case) is then
given by the set of parameters a which minimise

∑
expts

∑
data χ2(d|t[f(a)]), where t[f(a)]

are the theoretical predictions for each data point given the pdf f(a) for the fifteen base
experimental data sets.

A natural way to find the limits of a physical observable which depends on the pdfs, call
it O[f(a)], such as the W -production cross-section σW at

√
s = 1.8TeV, is then to study the

dependence of the total χ2 on O. An efficient way of doing this is to use Lagrange’s method
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Figure 10: χ2 of the base experimental data sets vs. the W production cross-section at the
Tevatron and LHC.

of undetermined multipliers: one minimizes

F (λ) =
∑

expts

∑

data

χ2(d|t[f(a)]) + λO[f(a)] (4)

for fixed λ, and then varies λ in order to map out the χ2 as a function of O.
Figs. 10a,b show the χ2 for the fifteen base experimental data sets as a function of σW

at the Tevatron and LHC energies respectively [42]. Two curves with points corresponding
to specific global fits are included in each plot19: one obtained with all experimental nor-
malizations fixed; the other with these included as fitting parameters (with the appropriate
experimental errors). We see that the χ2’s for the best fits corresponding to various values
of the W cross-section are close to being parabolic, as expected. Indicated on the plots are
3% and 5% ranges for σW . The two curves for the Tevatron case are farther apart than
for LHC, reflecting the fact that the W-production cross-section is more sensitive to the
quark/anti-quark distributions and these are tightly constrained by existing DIS data.

The important question is: how large an increase in χ2 should be taken to define the likely
range of uncertainty in O? The elementary statistical theorem that ∆χ2 = 1 corresponds
to one standard deviation of the measured quantity O relies on assuming that the errors
are gaussian, uncorrelated, and with their magnitudes correctly estimated. Because these
conditions do not hold here, this theorem cannot be naively applied quantitatively: rather
one must examine in detail how well the fits along the parabolas shown in Fig.10 compare
with the individual precision experiments included in the global analysis, in order to arrive
at reasonable quantitative estimates on the uncertainty range for the W cross-section. In the
meantime, based on past (admittedly subjective) experience with global fits, it seems that
a χ2 difference of 40− 50 points represents a ‘reasonable’ estimate of current uncertainty of
parton distributions. This implies that the uncertainty of σW is about 3% at the Tevatron,
and 5% at the LHC.

19The third line in Figs. 10a refers to an alternative technique [42] based on the assumption of Gaussian
errors in the parameters ai.
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6.3 Correlated Experimental Systematics

There is now an increasing awareness of the necessity and possibility of carrying out a careful
treatment of correlated systematic errors when attempting to determine errors on pdfs. For
example a systematic study of the uncertainties in the parton distribution in the small x
region has been made recently by experimentalists at H1 and ZEUS [62, 63]. These studies
include a proper treatment of correlated systematic errors, and some attempt is made to
quantify parametrization uncertainties. Similar studies of the errors in polarized parton
densities have been made by the SMC [64]. Besides showing that careful estimates of parton
uncertainties are useful and necessary, these studies also show that it is possible to include
correlated systematics and combine data sets from different (albeit similar) experiments
in a meaningful way. However they also show that doing something similar for a global
parton determination would be very difficult and extremely tedious, unless new techniques
are developed.

The importance of correlations in experimental systematic errors has been underlined by
a recent reanalysis [65] of the F2 BCDMS data. A more careful treatment of the correla-
tions between data taken at different beam energies, and the correlations between the fitted
parton distributions and higher twist, results in a significant increase in the value of αs(M

2
Z)

extracted from the data: Alekhin quotes a value of 0.118 ± 0.002. This is consistent with
the current world average and the value 0.119±0.002 recently extracted from the reanalysed
CCFR data [66] (though after a more careful treatment of correlated higher twist [67] this
rises to 0.122 ± 0.005).

In this context it should be noted that in the usual global analyses, in which correlations
between systematic errors are ignored, and higher twist effects are not included, neither the
BCDMS or the CCFR F2 data show a minimum in their χ2 as αs is varied [2, 12], despite
the fact that when treated separately each is capable of yielding an excellent determination
of αs. Only the minima in the H1 and ZEUS datasets are strong enough to survive this
treatment: this may be helped by the fact that empirical higher twists are very small at
small x [68]. It will be interesting to repeat the preliminary determination [69] using the
95-97 HERA datasets when these finally become available.

6.4 Methodological Issues

While the issues addressed in the previous three sections are no doubt all important, there
are also some methodological issues which need to be considered if we are to achieve our aim
of a reliable determination of the errors in a global determination of parton distributions.
In particular, we need a technique which can give parton distribution functions and their
errors, such that:

(i) there is no inbuilt methodological bias (for example dependence on a particular
parametrization of the input distributions)

(ii) it is easy to propagate the effects of correlated systematic errors in the data to
correlated uncertainties in the parton distributions

(iii) it is easy to add new data sets or estimate theoretical errors or test models of new
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physics without redoing the whole of the analysis.
All of these criteria can be met if we ‘quantise’ our parton distributions: instead of trying

to determine a single ‘best fit’ set of parameterised parton distributions with an associated
error matrix, we construct an ensemble of sets of partons, distributed according to how well
they fit the data [42, 70, 71, 73, 74]. The expected result for a parton dependent observable,
call it O[f ], would then be given by an ensemble average:

〈O[f ]〉 = Z−1
∫

[Df ]O[f ] J [f ] s[f ]
∏

expts

P (d|t[f ]), (5)

where
∫
[Df ] means functional integration over all possible input distributions f (subject to

basic constraints such as sum rules and positivity) and Z = 〈1〉 is a normalization factor. The
measure of integration is given essentially by the probability distributions P (d|t[f ]) for each
of the experiments used as input. These probabilities are, as explained above, the essential
input of the experimental data used in the fit: they support distributions which fit the data
well, and suppress the contribution of distributions which fit badly. If the errors on the data
were assumed Gaussian, these probabilities would come in the form of a χ2, as in eq.(3),
though the technique does not depend on such an assumption, and non Gaussian errors
could also be incorporated. There is also a Jacobian factor J [f ], which turns the integration
measure from an integration over theoretical predictions t[f ] to one over the pdfs themselves,
and enforces the theoretical constraint that the theoretical predictions are related through
pQCD. It is also necessary to introduce a ‘smoothness’ factor s[f ] into the measure, to
enforce the natural theoretical prejudice that the initial pdfs should be smooth functions of
x, without wiggles or jumps: a suitable form for such a factor would be exp−1

2
ε
∑

x(∂xf)2,
where ε is a small parameter which quantifies the extent of this prejudice. Final results
should be independent of the form of this term, and in particular the parameter ε, provided
that it is varied in a suitable range.

The way in which this procedure works should now be clear, since it is similar to the
quantum mechanics (or more precisely statistical mechanics) of a particle in a (highly non-
local) potential [70]: the parton distributions may be thought of as quantum fields, with, in
the case of Gaussian experimental errors, the action

S[f ] = 1
2

∑

expts

∑

data

(d − t[f ])Σ−1(d − t[f ]) + 1
2
ε
∑

x

(∂xf)2. (6)

The best fit parton distribution is then the solution of the classical equations of motion (since
it minimises the action), while the error bands are given by the ‘quantum’ fluctuations around
the classical field. Since the determination of the classical field is itself nontrivial, the system
is best solved numerically: we discretise the field by introducing a parametrization with a
finite number of parameters ai, i = 1, . . . , N , so that

∫
[Df ] J [f ] → ∏

i dai J(ai), rather as we
would for a lattice field theory. Here the best discretization would not necessarily be a naive
discretization in xBj with spline interpolation: rather it might involve expansion of each pdf
in sets of orthogonal polynomials, or other sets of (orthogonal) functions, for example eq.(1)
and its obvious generalizations. The integration over the parameters a would then be done by
Monte Carlo, using an algorithm such as Metropolis or HMC [61] to generate an ensemble
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of configurations distributed according to the measure of integration, and thus according
to its likelihood given the input datasets. Finding each such configuration will involve a
similar computational effort to that of finding a best fit. Finally, we would like to increase
the number of parameters N (taking the ‘continuum limit’) until we are sufficiently close
to a truly parametrization independent ensemble, at which stage we can readily compute
expectation values of observables and their associated errors as averages over the ensemble
of pdfs.

This procedure has several advantages:
(i) it is intrinsically parametrization independent as the number of parameters increases,

because of the universality of the continuum limit. Flat directions are no longer the problem
that they are in a best fit procedure: the total number of parameters is now limited only by
computational resources. Indeed the flat directions are now interesting, since they give the
most important uncertainties in the parton distribution functions.

(ii) the propagation of correlated systematics is automatically taken care of by the pro-
cedure. The only limitation is the reliability of the probabilities P (d|t) produced by ex-
perimentalists. This should give added impetus to the determination of meaningful (and
thus comparable) estimates of systematic errors by different experimental collaborations,
and their presentation in such a way that they can be readily input into such an analysis.
Preliminary explorations of the technique [42] indicate that the errors in the pdf parameters
are not only highly correlated, but also in many cases significantly non-Gaussian, even when
the errors in the data are assumed to be Gaussian.

(iii) Data from new experiments can be added using the old configurations, since dif-
ferent experiments are (in principle!) statistically independent, so Stot[f ] =

∑
expts Sexp[f ].

Similarly we could estimate theoretical errors due, for example, to NLO truncation, by using
the standard configurations reweighted by varying renormalization and factorization scales.
Similarly, we could test the effect of resummations by reweighting the configurations gener-
ated using standard NLO evolution, or indeed test models for new physics by reweighting
the configurations generated using the Standard Model [71].

The main problems to be faced in actually implementing the procedure are computa-
tional: we need a fast evolution code, and high performance computing. The advantages of
parallelization should be obvious. In fact the computational requirements are very similar
to those of the lattice gauge theorists: calculating the ‘action’ is more difficult, but the
‘continuum limit’ should be reached much more quickly.

7 From here to the LHC and Beyond

7.1 Progress Before the LHC Turns on

Perturbative QCD has been extremely successful in describing data in DIS, DY and jet
production, as well as describing the evolution of parton distributions over a wide range of
x and Q2. From the point of view of pdf determination, the primary problem lies in the
calculation of the direct photon cross sections which could serve as a primary probe of the
gluon distribution at high x. However, a rigorous theoretical treatment of soft gluon effects

55



(perhaps requiring both kT and Sudakov resummation) will be required before the data can
be used with confidence in pdf fits. On the experimental side, it will also be necessary to
resolve the inconsistency between the WA70 and E706 data.

D0 has recently presented a new result for the measurement of the inclusive jet cross
section as a function of the jet rapidity (up to values of three) [72]. Such a measurement
probes a greater kinematic range than the central inclusive jet cross sections. In addition, the
differential dijet data from the Tevatron explore a wider kinematic range than the inclusive
jet cross section. Both CDF and D0 have dijet cross section measurements from Run I
which may also serve probe the high x gluon distribution, in regions where new physics is
not expected but where any parton distribution shifts should be observable. The ability to
perform such cross-checks is essential.

CDF and D0 will accumulate on the order of 2-4 fb−1 of data in Run II (from 2000-2003),
a factor of 20-40 greater than the current sample. This sample should allow for more detailed
information on parton distributions to be extracted from direct photon and DY data, as well
as from jet production. Run III (2003-2007) offers a data sample potentially as large as 30
fb−1.

H1 and ZEUS will continue the analysis of the data taken with positrons in 1991-97.
HERA switched to electron running in 1998 and plans to deliver approximately 60 In 2000,
the HERA machine will be upgraded for high luminosity running, with yearly rates of 150
integrated luminosity of about 1 fb−1 by 2005. This will allow for an error of a few percent
on the structure function F2 for Q2 scales up to 104 GeV 2. The gluon density, derived from
scaling violations of F2, should be known to an accuracy of less than 3% in the kinematic
range 10−4 < x < 10−1.

It is also hoped that over the next five years the Monte Carlo outlined in the previous sec-
tion will begin to bear fruit, perhaps to the point where they can make a serious contribution
to global pdf error analysis.

7.2 Physics cross sections at the LHC and the role of LHC data

in pdf determination

ATLAS measurements of DY (including W and Z), direct photon, jet and top production will
be extremely useful in determining pdfs relevant for the LHC. The data can be input to the
global fitting programs, where it will serve to confirm/constrain the pdfs in the LHC range.
Again, DY production will provide information on the quark (and anti-quark) distributions
while direct photon, jet and top production will provide, in addition, information on the
gluon distribution.

Other processes might also prove useful. For example diphoton production might be
useful for determining the gluon distribution, and this in turn would lead to an improved
knowledge of the relevant parton pdfs and parton-parton luminosity functions for the produc-
tion of the Higgs (which is largely due to gg scattering for low to moderate Higgs’ masses).

Another possibility that has been suggested is to directly determine parton-parton lumi-
nosities (and not the parton distributions per se) by measuring well-known processes such
as W/Z production [40]. This technique would not only determine the product of parton
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distributions in the relevant kinematic range but would also eliminate the difficult measure-
ment of the proton-proton luminosity. It may be more pragmatic, though, to continue to
separate out the measurements of parton pdfs (through global analyses which may contain
LHC data) and of the proton-proton luminosity. The measurement of the latter quantity
can be pegged to well-known cross sections, such as that of the W/Z, as has been suggested
for the Tevatron.

8 Conclusions

The determination of parton distributions and uncertainties is an important ingredient of our
preparations for physics at the LHC. The global fitting techniques used for the past fifteen
years may soon be superseded by more sophisticated methods. Developing and exploiting
these techniques will be a great challenge to theorists and experimentalists alike.
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Generalized factorization and resummation

C. Balázs, J.C. Collins, D.E. Soper

Abstract

In this section we summarize the formalism which extends the usual hadronic fac-
torization theorem to the low transverse momentum region for the inclusive production
of colorless final states, while resumming logarithms with the ratio of the invariant mass
and transverse momentum. Among the various recent applications the calculation of
the Z0 and Higgs boson transverse momentum distributions are highlighted.

1 The Collins-Soper-Sterman formalism

The standard factorization formula fails near kinematic boundaries. We discuss the case
of low transverse momentum in Z0 production, etc; this is an important case because the
cross section peaks there. The failure of the factorization formula is symptomized by large
corrections involving a factor of ln2 Q/QT for each power of αs.

Although the solutions to the problem are all commonly referred to as “resummations”,
there are in fact two very different approaches. One is resummation in its strict sense: One
performs a selective and approximation summation of the largest parts of the perturbative
series for the hard scattering in the standard factorization formalism.

The second approach is that of Collins, Soper and Sterman (CSS) [1, 2, 3]. These authors
observed that the conventional factorization formalism is in fact wrong at low transverse
momentum and they derive a correct factorization for this region. In an intermediate region
of transverse momentum, the standard factorization with resummation is applicable with
somewhat reduced accuracy, and there is an overlap between the two approaches, which we
will discuss later.

In any case, it is essential to improve on the standard fixed-order factorization formalism,
and the reward is an improved method that

• includes large, logarithmic QCD corrections up to all orders in the strong coupling,

• improves the renormalization scale dependence of the prediction,

• enables prediction of certain quantities reliably, which cannot be done in a fixed order
calculation,

• provides an independent, analytic check for parton shower Monte Carlo’s.
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1.1 kT -dependent parton densities

CSS realized that the failure of the standard factorization when QT ≪ Q occurs because it
neglects the transverse motion of the incoming partons in the hard scattering. (Here Q can
be the invariant mass of a colorless particle, or set of particles, created in a hard partonic
collision, and QT is the related transverse momentum.) The approximation of neglecting
parton transverse momentum is only valid when the cross section is integrated over a large
range of QT . But if, for example, QT is of order 1 GeV, then we are outside of the domain
in which the factorization is applicable.

A fully satisfactory approach must use a factorization theorem that is valid for any QT

that is small compared to Q. CSS’s theorem gives the cross section as a convolution of
transverse momentum distributions

dσ

d4Q
∝
∫

d2kTP (x1, kT )P (x2, QT − kT ), (1)

where P is a partonic density distribution that is a function of both longitudinal (x) and
transverse (kT ) momenta. The partonic recoil against soft gluons as well as the intrinsic
partonic transverse momentum are included in P .

Such a treatment completely formalizes the intuitive notion that partons must have trans-
verse momentum and that this transverse momentum gives rise to transverse momentum of
the Drell-Yan pair. There is then no need to convolute a calculated cross section with “in-
trinsic transverse momentum” for the quarks; this manoeuvre is only necessary as an ad hoc
correction to a formalism that is incomplete.

In QCD, complications arise from soft-gluon effects, because these effects do not cancel,
in contrast to the case of the cross section integrated over QT . A consequence, proved by
CSS, is a particular form of the evolution equations for the kT -dependent parton densities.
These equations are not the normal DGLAP equations1. The kernel of the evolution contains
a perturbatively calculable part and non-perturbative part. The non-perturbative part can
be summarized by saying that there is a fixed amount of gluon radiation per unit rapidity,
so that the transverse momentum distribution of the partons broadens in a characteristic
way with energy. The non-perturbative part of this energy-dependent radiation is fitted by
the g2 term of Eq.(10) below.

This feature may be the dominant reason why transverse momentum distributions are
so broad at high energies, as in Z0 production: the transverse momentum of the Z0 has
a component due to the recoil against non-perturbative glue emitted into many units of
rapidity.

The CSS formalism clearly entails a phenomenological fitting of the non-perturbative part
of the kT -dependent parton densities and the evolution kernel. In principle, this can be done
at fairly low energy, and then the evolution equations predict the results for higher energies
with no further adjustable parameters. The more conventional resummation formalism is
compatible with the CSS formalism, but it is not as complete.

1 Although all the physics associated with the DGLAP equations is present.
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Figure 1: Transverse momentum distribution of electron-positron pairs from decays of (mostly)
Z0 bosons, produced at the Tevatron in

√
S = 1.8 GeV center of mass proton–anti-proton

collisions. The data are CDF preliminary [4], and the curve is calculated by the ResBos Monte
Carlo event generator [5, 6].
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Because the CSS formalism is designed to treat correctly the QT ≪ Q region, it also
provides an appropriate resummation of the large logarithms, ln(Q/QT ) in the standard
factorization formula.

We can gauge how important these logarithms are in practice by examining the cross
section for Z production at the Tevatron. The bulk of the cross section is in the low QT

region, and, as can be seen from Fig. 1, there is a peak at around QT = 2.7 GeV, which
is much smaller than the invariant mass Q = mZ = 91.187 GeV. This implies that for the
bulk of the events ln(Q/QT ) is large enough that αs(mZ) ln2(Q/QT ) > 1. Since we have a
double logarithm for each radiated gluon, higher orders in the perturbative series are not
suppressed.

1.2 From fixed order to resummed

In this section we show how the results of the standard factorization theorem are related to
a resummation in terms of leading logarithms, etc.

When the Z0 is produced in a hadron-hadron collision its transverse momentum is bal-
anced by some hadronic activity which stems from partons emitted by the initial state
partons. (In the first order in the strong coupling a Z0 and a gluon is produced.) The QT

distribution given by the usual factorization in the low QT region is written as

lim
QT→0

dσ

dQ2
T

=
∞∑

n=1

2n−1∑

m=0

αn
s

nvm

Q2
T

lnm

(
Q2

Q2
T

)
+ O

(
1

QT

)
, (2)

where the coefficients nvm are perturbatively calculable apart from some factors of par-
ton densities. When the two scales Q and QT are very different, the logarithmic terms
lnm(Q2/Q2

T ) are large, and for QT ≪ Q the perturbative series is dominated by these terms.
For QT ≪ Q truncation of the perturbative series, i.e. any fixed order calculation, gives an
answer which neglects these important all order logarithmic contributions. At the lowest
order, O(α0

s), the Z0 boson is produced alone, that is with a QT distribution of δ(QT ). The
singularity at QT = 0 prevails at any fixed order in αs, as Eq. (2) shows.

One way of reorganizing the perturbation series is to make the expansion one in terms
of αs ln2(Q/QT ) instead of αs itself. In this simplified picture, calculating fixed order QCD
corrections means calculating the perturbative series

lim
QT→0

dσ

dQ2
T

=

Q−2
T

{
αs(1v

′
1L + 1v

′
0) + α2

s(2v
′
3L

3 + 2v
′
2L

2) + α3
s(3v

′
5L

5 + 3v
′
4L

4) + ...

+ α2
s(2v

′
1L2 + 2v

′
0L

0) + α3
s(3v

′
3L

3 + 3v
′
2L

2) + ...

+ ... ... } ,

column by column. In the leading logarithm approach, on the other hand, we calculate the
above series line by line [7]. While in the fixed order (column by column) calculation the
convergence for low QT is spoiled by the higher order uncalculated logs (L = ln(Q/QT )), in
the resummed (line by line) calculation convergence is preserved in each “order” (by each
line), and higher order corrections are systematically included.
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1.3 The CSS formula

The improved factorization theorem of CSS together with their evolution equation for the
kT dependent parton distributions, leads [3] to a useful formula2 for the cross section. For
Z0 production it can be written as

dσ(h1h2 → Z0X)

dQ2 dQ2
T dy

=
∑

j

σ0,jWj̄(Q, QT , x1, x2) + Y (Q, QT , x1, x2), (3)

where the “resummed” part, W (Q, QT , x1, x2), is defined as

Wj̄(Q, QT , x1, x2) = (4)

1

(2π)2

∫
d2b ei ~QT ·

~b Cj/h1
(Q, b,x1, µ)e−S(Q,b∗)C̄/h2

(Q, b, x2, µ)

for a given partonic initial state with flavor j.3 The Fourier integral is introduced because
transverse momentum conservation is explicit in the impact parameter, b, space [8].

All the dangerous logarithms are included in the perturbative Sudakov exponent

S(Q, b∗) =
∫ Q2

C2
0
/b2

∗

dµ2

µ2

[
A (αs(µ)) ln

(
Q2

µ2

)
+ B (αs(µ))

]
. (5)

Here C0 is an arbitrary parameter which cuts off the perturbative low QT region.4 To
prevent perturbative calculations from being done in region where perturbation theory is
inapplicable, the “impact parameter” b in the Sudakov exponent was replaced by

b∗ =
b√

1 + (b/bmax)2
. (6)

The errors caused by this replacement are of the same form as the non-perturbative contri-
butions to be discussed below, and are therefore correctly treated by being absorbed into
the non-perturbative part of the formula.

The A and B functions are free of large logarithms and can be reliably calculated per-
turbatively for a given process as

A (αs(µ̄)) =
∞∑

n=1

(
αs(µ̄)

π

)n

A(n), B (αs(µ̄)) =
∞∑

n=1

(
αs(µ̄)

π

)n

B(n). (7)

2 While solving the RGE, an integro-differential equation, specific choices of integration constants were
made (c.f. Ref. [3]): C1 = C3 = 2e−γE ≡ C0 and C2 = C4 = 1, to optimize logarithmic contributions. This
is similar to the µ = Q choice in case of the ultraviolet renormalization, to make terms like ln(µ/Q) vanish.

3The lowest order partonic total cross section is σ0,j = π2g2((1− 4Qjs
2
w)2 − 1)/(48Q2c2

w), where g is the
weak coupling constant, s2

w (c2
w) is the sine (cosine) of the weak mixing angle squared, and Qj is the charge

of the quark flavor j.
4In practice C0 = 2e−γE is used, which is related to the values of the integration constants of the RGE

for the kT dependent PDF’s.
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The distributions

Cj/h(Q, b, x, µ) =
∑

a

∫ 1

x

dξ

ξ
Cja

(
b∗,

x

ξ
, µ

)
fa/h(ξ, µ)Fa/h(b, x) e−r(b) ln Q (8)

depend on virtual and real emission contributions for a given process, via the Wilson coeffi-
cients Cja. Just as the A and B functions the Wilson coefficients are expanded in terms of
the strong coupling αs

Cij (b∗, z, µ) =
∞∑

n=0

(
αs(µ)

π

)n

C
(n)
ij (z, b∗) . (9)

Since the Sudakov exponent integrates to unity, the Cij function sets the normalization

of the resummed distribution. In particular, if coefficients up to C
(n)
ij are included in the

calculation then the resummed rate will equal the rate calculated in fixed order at O(αn
s )

[5]. The function fa/h(x, µ) is the usual renormalized momentum fraction (x) distribution of
parton a in hadron h at the energy scale µ. Observe that the impact parameter dependence
of the perturbative coefficient functions is cut off by the use of b∗ instead of b.

Included in Eq. (8) are two non-perturbative factors, Fa/h(b, x) and e−r(b) ln Q. These
implement the parts of the CSS factorization and evolution equation that cannot be imple-
mented as a resummation of the standard factorization theorem. They also compensate for
the errors in the resummation at large b. The overall effect is that (8) define kT -dependent
parton densities. The F factor can be interpreted as allowing for intrinsic transverse momen-
tum, and the e−r(b) lnQ factor allows for the recoil against soft gluon radiation. The ln Q in
the exponent of the soft-gluon factor comes from the solution of the CSS evolution equation
and can be interpreted by saying that soft gluons are emitted uniformly in rapidity.

The perturbative part of the formula uses b∗ instead of b, as defined by Eq. (6). The
parameter bmax provides an infra-red cutoff on the perturbative part of the formula. In
practice the empirically optimal value, bmax = 1/2 GeV−1, is used. This arbitrary cutoff of
the b integration is compensated by the parameterization of the non-perturbative part of the
formula, which is

WNP
ij (Q, b, x1, x2) = Fi/h1

(Q, b, x1)Fj/h2
(Q, b, x2)e

−r(b) lnQ (10)

= exp

[
−g1b

2 − g2b
2 ln

(
Q

2Q0

)
− g1g3b ln (100x1x2)

]
,

where Q0 is chosen to be the initial scale of the parton evolution5 and the gi parameters
have to be determined using experimental data.6

1.4 Matching

The resummed term, defined by Eq. (4), was derived in the context of a generalized fac-
torization, under the assumption that QT ≪ Q. This assumption will break down within

5For recent CTEQ PDF’s Q0 = 1.6 GeV.
6The ln

(
Q2/Q2

0

)
term is introduced to match the logarithmic term of the Sudakov exponent and its

coefficient is expected to be process independent, depending only on the initial partonic state.
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and beyond the intermediate QT
<
∼ Q region. In the high QT region (where QT

>
∼ Q) the

conventional perturbative factorization formalism is reliable. To obtain sufficiently accurate
results for all QT , it is necessary to combine the formalisms.

The Y term in Eq. (3) was introduced by CSS [2] to correct the behavior of the resummed
piece in the intermediate and high QT regions.7 It is defined as the difference of the cross
section calculated from the standard factorization formula at a fixed order n of perturbation
theory and the QT ≪ Q asymptote of this cross section:

Y (Q, QT , x1, x2) =

(
dσ

dQ2 dQ2
T dy

)

n

−
(

dσ

dQ2 dQ2
Tdy

)

n,QT≪Q

. (11)

Thus, the full CSS formula can be written as

dσ

dQ2 dQ2
T dy

=

(
dσ

dQ2 dQ2
T dy

)

res

+

(
dσ

dQ2 dQ2
T dy

)

n

−
(

dσ

dQ2 dQ2
T dy

)

n,QT≪Q

. (12)

This method of matching the resummed and fixed order pieces is valid because the low
QT asymptote used in Eq. (11) is the same as the large QT asymptote of the resummed term
W . At low QT the asymptotic part dominates the QT distribution (the logs are large), and
the last two terms cancel in Eq.(12), while the resummed term is significant near QT = 0. At
high QT the logs are small, and the expansion of the resummed term cancels the QT singular
terms up to higher orders in αs.

8 In this situation the first and third terms cancel and CSS
formula reduces to the fixed order perturbative result. After matching the resummed and
fixed order cross sections in such a “smooth” manner, it is expected that the normalization
of the CSS cross section reproduces the fixed order total rate, since when expanded and
integrated over QT it deviates from the fixed order result only in small higher order terms
in αs [5].

Unfortunately the above argument does not completely work in practice. The problem
arises because at large QT the W term in Eq. (3) is an extrapolation of the cross section from
small QT . So it has a 1/Q2

T behavior, modified by logarithms. This falls less steeply than
the true cross section, which is subject to kinematic limits. The errors in the CSS formula
at large QT are indeed suppressed by a power of αs. But the coefficient of this power is the
1/Q2

T part of the formula, and so the error can be easily larger than the true cross section.
A symptom of the problem is that the cross section calculated from Eq. (3) is typically
negative at large enough QT .

One possible remedy [9] is to abandon the CSS formalism. But we regard this as un-
desirable, because it also abandons the important physical result of CSS that goes beyond
mere resummation: their proper treatment of non-perturbative transverse momentum.

A second, commonly used remedy, is to utilize the fact that in the high QT region the
fixed order result is a good description of the distribution. So when calculating the QT

distribution one can simply switch from the CSS to the fixed order distribution whenever
they cross for high QT ’s. Since the mismatch between the resummed and the asymptotic

7The exact definition of the Y piece for Z0 production can be found in Refs. [3, 5].
8The cancellation is higher order than the order at which the singular pieces were calculated.
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Figure 2: Transverse momentum distributions calculated using the CSS (solid and dashed) and
the usual factorization (dot-dashed and dotted) formalisms. The CSS calculation is not switched
over to the usual formalism to show the typical “kink” which occurs at a switching point. The
solid and dot-dashed curves are calculated at O(α2

s), while the dashed and dotted curves are
at O(αs), illustrating the improvement of the high QT behavior of the CSS formula with the
perturbative order.
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Figure 3: Same as Fig. 1, except shown for the full range of transverse momentum QT . Switching
from the CSS to the usual factorization formalism in the 60 <

∼ QT
<
∼ 70 GeV region (c.f. [5]),

results in a smooth QT distribution which agrees well with the experiment in the full QT range.
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terms in Eq.(12) decreases as the perturbative order of the calculation (n) increases, it is
expected that the crossing point shifts toward QT = Q, and the slope of the resummed and
fixed order curves approaches each other as n increases (cf. Ref. [5]). Indeed, calculations
at O(α2

s) blend closer to mZ , and smoother than at O(αs), as shown in Fig. 2.
When this prescription for the switching is followed at the fully differential, dσ/dQT dQdy,

level the result is a smooth and differentiable QT distribution, after the invariant mass and
rapidity is integrated out. This is illustrated in Fig. 27. It was shown in Ref. [5] that the
integral of the QT distribution calculated using this prescription recovers the fixed order
total rate within an error which is the size of the higher orders, as it is expected.

1.5 Improved matching

Since the calculations of W and Y are done using truncations of perturbation theory, the
switching between calculational methods introduces an artificial discontinuity in the slope
of the cross section. This practical problem arises in the matching because of a mismatch
of the orders of perturbation theory at which W and Y are calculated. From the point of
view of a standard factorization calculation, W contains a selective summation of arbitrarily
high orders of perturbation theory. The possibility of getting such a resummation relies
on performing certain approximations that are only valid at small QT . The difficulty of
performing complete higher-order calculation means that Y can only be calculated at fixed
order.

At large transverse momentum, |W | is much larger than the actual cross section, and so
the cross section Eq. (12) is obtained by the cancellation of two almost equal terms. This is
clearly a recipe for bad numerical work.

Examination of the lowest-order calculation of Y , for the qq̄ annihilation term [2] shows
some of the sources of the problems:

Y =
C

Q2
T

∫
dξ1

ξ1

dξ2

ξ2
fq(ξ1)fq̄(ξ2)

{
(Q2 − t̂)2 + (Q2 − û)2

ŝ
δ(ŝ + t̂ + û − Q2)

− 2δ(1 − x1/ξ1)δ(1 − x2/ξ2)
[
ln(Q2/Q2

T ) − 3

2

]
(13)

−δ(1 − x1/ξ1)

[
1 + x2

2/ξ
2
2

1 − x2/ξ2

]

+

−
[
1 + x2

1/ξ
2
1

1 − x1/ξ1

]

+

δ(1 − x2/ξ2)

}
.

Here x1 and x2 are the longitudinal momentum fractions of the Drell-Yan pair. The first
term contains the usual perturbative calculation of the differential cross section, and the
other 3 terms give the negative of its low QT asymptote. The intrinsic rate of fall off of the
cross section with QT is given by the explicit 1/Q2

T factor which is present in the parton
cross section. But an extra fall off is caused by the fact that the parton densities are probed
at larger fractional momenta when QT is increased.

Some symptoms of the problems can already be seen. One is that the first subtraction
term, on the second line of Eq. (13), changes sign at large QT : the extrapolation of a positive
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cross section becomes negative. The second is the plus distribution in the third line; if the
parton distributions are steeply falling, the plus distributions give a misleading size for the
integrand. This last effect really indicates that there is an additional scale in the process, so
that the relevant scales are:

• The transverse momentum QT of the Drell-Yan pair.

• The invariant mass Q of the pair.

• The increase ∆Q of Q that is necessary to make the typical parton densities in the
factorization formula decrease by a factor 2.

We believe the overall approach of a subtraction method is correct: W correctly represents
the physics at low QT , and we do not wish to give up a method that uses the intuitive notion
of kT -dependent parton densities. We therefore cannot expect to obtain a perfect estimate of
the large QT cross section from W alone. The idea of adding a correction term Y is a good
way of combining the information in standard fixed order calculations with the resummed
calculations.

But improvements in its implementation are needed. We suggest the following strategies
that could be tried, individually or even in combination:

• Multiply W by an ad hoc factor F (QT /M). Correspondingly the formula for the
subtraction term in Y will also have the same factor. The parameter M is in principle
arbitrary, and it should be chosen so that the fall off in the modified W term mimics
that of the actual cross section. The cut-off function obeys F (0) = 1, so that the small
QT behavior is unchanged, and the function should be zero for large QT .

• Change the argument of W from QT to some other function of QT . One possible choice
would be Q′T = QT /(1 − QT /M), where M is again a parameter to be chosen. One
would replace W by zero if QT > M . The effect of the variable change is to leave W
unaltered at small QT and to give a more rapid fall off at large QT . Again one would
make an identical redefinition in the subtraction term in Y .

• Redefine the + distributions such as those in Eq. (13), by:

∫ 1

0
dzf(z)

[
1

z

]

+,z0

=
∫ 1

0
dz

1

z
[f(z) − f(0)θ(z0 − z)] . (14)

(The usual definition has z0 = 1.)

In each case we have a generalized renormalization-group invariance of the exact cross section
under changes of the parameter M or z0. But approximations obtained by truncation of a
perturbation series are invariant only up to a term of order the first uncalculated correction.
The aim is to choose the parameters on physical grounds to be such as to keep these higher
order terms small, to eliminate their reason(s) for being large.

72



1.6 Applications

Beyond Z0 production, in its present form, the CSS formalism can be applied in hadron-
hadron collisions whenever the final state is colorless. The phenomenological significance of
this ”transverse momentum resummation” ranges from Drell-Yan pair production, through
lepton pair production via W± and Z0 bosons [5], di-gauge boson (e.g. photon or Z0 boson
pair) production [10, 11], to Higgs production [12, 13, 14]. In recent years it was tested in
hadronic processes taking place at fixed target (e.g. in DY photon and diphoton production)
[15] and collider energies (e.g. in DY, W±, Z0, and diphoton production). It was applied
for different hadronic initial states in pion–nucleon, proton–nucleon, and proton–anti-proton
collisions. It was also modified and tested for DIS processes [16]. Finally, since was first
devised for the calculation of the energy correlation of jets in e+e− collisions [1], it can be
used in jet production at lepton colliders. Such a wide variety of applicability, and good
agreement with existing experimental results for different processes, colliders, center of mass
energies, and initial states gives us a confidence in the resummed predictions for the LHC.

2 Higgs production

At the LHC the SM Higgs boson will be mainly produced through the gluon fusion subprocess
via a top quark loop: gg (top quark loop) → HX [17]. The Higgs boson can be detected
in its H → γγ decay mode, if its mass is in the 100-150 GeV range [18]. If the Higgs mass
is higher than about 130 GeV then its H → Z0Z0∗ decay mode is the cleanest and most
significant [18]. To distinguish these signals from the substantial QCD background, besides
the sharp peak in the invariant mass distribution, the most straightforward measurable to
use is the transverse momentum. According to earlier studies, a statistical significance on
the order of 5-10 can be reached for the inclusive H → γγ signal, actual values depending
on luminosity and background estimates. Once their transverse momentum distribution is
reliably predicted, the difference in the QT of the signal and background can be utilized to
devise kinematic cuts to enhance the statistical significance of the signal. After the discovery,
when determining the properties of the Higgs boson, besides the total cross section and the
invariant mass distribution, the simplest and most fundamental measurable to use is the
transverse momentum. For a recently proposed new detection mode, H → γγjet, in Ref. [19]
it was also found that in order to optimize the significance it is necessary to impose a 30
GeV cut on the transverse momentum of the jet, or equivalently (at NLO precision), on the
QT of the photon pair. With this cut in place extraction of the signal in the Higgs plus jet
mode requires the precise knowledge of both the signal and background distributions in the
mid- to high-QT region.

To reliably predict the QT distribution of Higgs bosons at the LHC, especially in the
low to mid QT region where the bulk of the rate is, the effects of the multiple soft–gluon
emission have to be included. In practice, performing soft gluon resummation within the
CSS formalism is equivalent to the determination of the A(n), B(n), and C(n) coefficients
and the Y part at some order in αs. One way to calculate the coefficients is to expand
the resummed part in terms of the strong coupling (expanding the exponent an the Wilson
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coefficients), and compare the expansion with a fixed order calculation. Luckily, because
of its significance, there was much work done on fixed order QCD corrections to Higgs
production in the gg → HX channel. These fixed order QCD corrections are known to
substantially increase the rate: by about 70 to 100 percent, depending on the Higgs mass,
at O(α3

s)[20, 21], and by an additional 50 to 70 percent at O(α4
s) [22]. It is expected that

the calculation of even higher order corrections is important to reliably predict the cross
section. In Ref. [23] it was shown that multiple soft–gluon emission dominates the higher
order corrections.

2.1 Soft gluon resummation for the gg → HX channel

Resummed calculations, taking into account the soft–gluon effect, attempted to estimate the
size of the non-calculated higher order corrections [23], as well as provide a reliable shape of
the Higgs transverse momentum distribution [12, 13]. Our present approach surpasses these
by calculating the QT distribution while including O(α4

s) terms in the Sudakov exponent,
using the state of the art matching to the latest fixed order distributions, using a QCD im-
proved gluon-Higgs effective coupling [24], and using an improved non-perturbative function.
We utilize the approximation that the object which couples the gluons to the Higgs (the top
quark in the SM), is much heavier than the Higgs itself. This approximation is not essential
to our calculation and can be released by the calculation of the further Wilson coefficients
keeping the relevant masses. The heavy quark approximation in the SM was shown to be
reliable within 5 percent for mH < 2mt [22, 20, 25], and still reasonable even in the range
of mH

>
∼ 2mt [23]. It has also been shown that the approximation remains valid for the QT

distribution in the large QT region, provided that mH < mt and QT < mt [26]. In this work
we assume that the approximation is valid in the whole QT region. Unlike the authors of
Ref. [23] we do not assume that the QCD corrections to the gg → HX cross section can be
factorized into a multiplicative term in the heavy quark limit in all orders of αs. We can
release this approximation because the CSS formalism, by definition, systematically incor-
porates higher order fixed order corrections via the definition of the Sudakov exponent and
the Wilson coefficients as perturbative expansions [5, 6].

Multiple soft–gluon emission affects the gg → HX cross section when the transverse
momentum of the Higgs is low, while for high transverse momenta the hard gluon radiation
is dominant. Thus, using the CSS formalism we resum large logs of the type ln(Q/QT ) in
the low QT region, and we match the resummed result to the fixed order calculation which
is valid for high QT [5]. We also include the qg and qq̄ subprocesses which, depending on
the Higgs mass, together constitute 0 to 10 percent of the total rate [20].

The resummed differential cross section of the Higgs boson production in hadronic colli-
sions is written as

dσ(h1h2 → H0X)

dQ2 dy dQ2
T

= σ0
Q2

S
πδ(Q2 − m2

H)

×
{

1

(2π)2

∫
d2b ei ~QT ·

~bW̃gg(b∗, Q, x1, x2, C1,2,3)
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× W̃NP
gg (b, Q, x1, x2) + Y (QT , Q, x1, x2, C4)

}
. (15)

The kinematic variables Q, y, and QT are the invariant mass, rapidity, and transverse mo-
mentum of the Higgs boson in the laboratory frame. The parton momentum fractions are
defined as x1 = eyQ/

√
S, and x2 = e−yQ/

√
S, with

√
S being the center–of–mass (CM)

energy of the hadrons h1 and h2. The lowest order cross section, with the QCD corrected
effective coupling of the Higgs boson to gluons is

σ0 = κφ(Q)

√
2GFα2

s(Q
2)

576π
, (16)

where GF is the Fermi constant and κφ is defined in Ref. [23]. The renormalization group

invariant kernel of the Fourier integral W̃gg and the regular terms Y (QT , Q, x1, x2, C4) (to-
gether with the variables b∗ and C1 to C4) are defined in Ref. [13]. In addition to Ref. [13]
we use the process independent coefficient

A(2) = CA

[(
67

36
− π2

12

)
NC − 5

18
Nf

]
, (17)

in the expansion of the A function (NC = 3 the number of colors and Nf = 5 the number of
active quark flavors).

2.2 Some numerical results

The resummation formula is coded in the ResBos Monte Carlo event generator [5, 6], which
uses the following electroweak input parameters [27]: GF = 1.16639 × 10−5 GeV−2, mZ =
91.187 GeV, mW = 80.36 GeV. The NLO expressions for the running electromagnetic and
strong couplings α(µ) and αS(µ) are used, as well as the NLO parton distribution function set
CTEQ4M (defined in the modified minimal subtraction, MS, scheme). The renormalization
and factorization scales are set equal to the Higgs invariant mass. In the choice of the non-
perturbative parameters we follow Ref. [28]. Since we are not concerned with the decays of
Higgs bosons in this work, we do not impose any kinematic cuts.

Fig. 4 displays production cross sections at the LHC, calculated in the SM as the function
of the Higgs mass. Our O(α3

s) curve agrees well with the result in Ref. [23]. The ratio of
the fixed order O(α3

s) (dashed) and the lowest order O(α2
s) (dotted) curves varies between

2.35 and 2.00. We note that less than 2 percent of the O(α3
s) corrections come from the qg

and qq̄ initial states for Higgs masses below 200 GeV. The resummed curve is slightly (5
to 6 percent) higher than the O(α3

s) one, as expected based on the findings that the CSS
formalism preserves the fixed order rate within the error of the matching (which is expected
to be higher order) [5]. The resummed rate is close to the O(α3

s), because we used the O(α3
s)

fixed order results to derive the Wilson coefficients which are utilized in our calculation. In
Ref. [22] the O(α4

s) corrections were utilized to show that in the high QT region the O(α4
s)

to O(α3
s) K-factor is nearly constant and is about 1.5 (for CTEQ4M parton distributions).

Based on this finding we also plot the O(α3
s) curve rescaled by 1.5, to illustrate the size of
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Figure 4: SM Higgs boson production cross sections at the LHC via top quark loop as the
function of the Higgs mass, with QCD corrections calculated by soft–gluon resummation (solid),
at fixed order O(α3

s) (dashed), and without QCD corrections at O(α2
s) (dotted). The O(α3

s)
curve is scaled by 1.5 (dash-dotted, c.f. Ref. [22]) to estimate the O(α4

s) result.
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Figure 5: Higgs boson transverse momentum distributions at the LHC, illustrating the effect of
various contributions of the CSS formalism. Among the pair of curves the ones which peak lower
are calculated by using A(1,2) and the others by A(1). Additionally, the solid curves include B(1)

and C(1), the dashed ones C(1), and the dotted ones B(1). The dot-dashed curves only include A
coefficients. The lower portion of the figure shows the same curves normalized to the area under
the lower peaking solid curve, to compare the changes in the shape.
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the O(α4
s) corrections and to establish the normalization of our resummed calculation among

the fixed order results.
Fig. 5 illustrates the effect of the various contributions of the CSS formalism on the Higgs

boson transverse momentum distribution. The lower peaking curves, drawn by the same type
line, contain the coefficients A(1,2). The others lack the A(2) coefficient. Comparison of pairs
of curves shows that the log multiplied by the A(2) coefficient increases the rate by about
10% around the peak, and decreases it in the mid-QT region. The figure also shows that
exclusion of the B(1) term leads to about 40% decrease around the peak, and an increase
away from it. Finally, the exclusion of the C(1) coefficient decreases the overall rate by about
a factor of 2, coupled with some shape change similar to the B(1) case.

Fig. 6 displays transverse momentum distributions of Higgs bosons produced at the
LHC. The QT distribution is calculated under several different assumptions for the non-
perturbative sector of the CSS formalism, in order to span the range of scatter of these
different predictions. In Fig. 6a the (solid) curve using the result of the latest 3-parameter
fit for the non-perturbative function [28] is shown. (The actual values of the parameters
used are: g1 = 0.15 GeV2, g2 = (CF/CA) ∗ 0.48 GeV2, and g3 = −0.58 GeV−1.) Also shown
the (dashed) curve using the result of the latest 3-parameter fit of Ref. [28]. (The values
were used are: g1 = 0.24 GeV2, and g2 = (CF/CA) ∗ 0.34 GeV2.) We plotted the (dotted)
curve using the previous 3-parameter fit of Ref. [29], as well. In the lower portion of the
figure we show the ratios of the different curves to the solid curve. From this we conclude
that the three different parameterizations differ by about 5 percent, at most, in the relevant
QT region. At QT = 10 GeV, in the region of the peak of the distribution, the difference is
about 2 percent.

In Fig. 6b the solid curve is the same as in Fig. 6a. In this figure results using g2 =
(CF/CA) ∗ 0.33 GeV2, and g2 = (CF/CA) ∗ 0.69 GeV2 values are plotted (dashed). These
g2 values are 3 σ deviations from the central value g2 = (CF/CA) ∗ 0.48 GeV2 of the new
3-parameter fit. Also shown a curve with g2 = 0.48 GeV2, where the assumption that the
non-perturbative parameter g2 scales by CA/CF for the gluonic initial state was not utilized.
The lower portion of the figure shows that the ratios of the various curves to the solid curve
do not deviate from 1 significantly except in the very low QT (< 5 GeV) region.
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A Comparison of the Predictions from Monte Carlo
Programs and Transverse Momentum Resummation

C. Balázs, J. Huston, I. Puljak

Abstract

Monte Carlo event generators are being increasingly relied upon for predictions of
experimental observables at colliders. In this section, the parton shower formalism for
Monte Carlos is compared to that of analytic resummation calculations. Predictions
for the transverse momentum distribution of Z0 bosons, photon pairs, and the Higgs
boson are compared for the Tevatron and the LHC. 1

1 Introduction

Parton shower Monte Carlo programs such as PYTHIA[2], HERWIG[3] and ISAJET[4] are com-
monly used by experimentalists, both as a way of comparing experimental data to theoretical
predictions, and also as a means of simulating experimental signatures in kinematic regimes
for which there is not yet experimental data (such as the LHC). The final output of the
Monte Carlo programs consists of the 4-vectors of a set of final state hadrons; this output
can either be compared to reconstructed experimental quantities or, when coupled with a
simulation of a detector response, can be directly compared to raw data taken by the ex-
periment, and/or passed through the same reconstruction procedures as the raw data. In
this way, the parton shower programs can be more useful to experimentalists than analytic
calculations. Indeed, almost all of the physics plots in the ATLAS physics TDR [5] involve
comparisons to PYTHIA (version 5.7).

For many physical quantities, the predictions from parton shower Monte Carlo programs
should be nearly as precise as those from analytic theoretical calculations. This is expected,
among others, for calculations which resum logs with the transverse momentum of partons
initiating the hard scattering. In the recent literature, most calculations of this kind are
either based on or originate from the formalism developed by J. Collins, D. Soper, and G.
Sterman (CSS) 2, which we choose as the analytic ‘benchmark’ of this section. In this case,
both the Monte Carlo and analytic calculations should accurately describe the effects of the
emission of multiple soft gluons from the incoming partons, an all orders problem in QCD.
The initial state soft gluon emission can affect the kinematics of the final state partons. This

1A more complete treatment of this subject can be found in Ref. [1].
2See, for example, the discussion in the previous section.
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may have an impact on the signatures of physics processes at both the trigger and analysis
levels and thus it is important to understand the reliability of such predictions. The best
method for testing the reliability is the direct comparison of the predictions to experimental
data. If no experimental data is available for certain predictions, then some understanding
of the reliability may be gained from the comparison of the predictions from the two different
methods.

2 Parton Showering and Resummation

For technical reasons, the initial state parton shower proceeds by a backwards evolution,
starting at the large (negative) Q2 scale of the hard scatter and then considering emissions
at lower and lower (negative) virtualities, corresponding to earlier points on the cascade
(and earlier points in time), until a scale corresponding to the factorization scale is reached.
The transverse momentum of the initial state is built up from the whole series of splittings
(and boosts). The showering process is independent of the hard scattering process being
considered (as long as one does not introduce any matrix element corrections), and depends
only on the initial state partons and the hard scale of the process.

In the case of parton showering, the leading order collinear singularities factorize for cross
sections in the collinear limit

lim
pg→pb

|Mn+1|2 = g2
s(pb.pg)

−1Pg←a(z)|Mn|2, (1)

where Mn+1 is the invariant amplitude for the process producing n partons and a gluon, gs is
the strong coupling constant, pb and pg are the 4-momenta of the daughters of the n’th parton
a (i.e. a splits into b and g, and when they are collinear then pb.pg → 0). Finally Pg←a(z)
is the DGLAP splitting kernel belonging to the a → g splitting. The leading order collinear
singularities can be factorized into a Sudakov form factor: S = 1 − P (no emission) =
exp(− ∫ dp2/p2

∫
dzP (z)). The distribution 1−S can be used to generate the Q2 for the first

emission and hence for the whole cascade. The formalism can be extended to soft singularities
as well by using angular ordering. In this approach, the choice of the hard scattering is based
on the use of evolved parton distributions, which means that the inclusive effects of initial-
state radiation are already included. What remains is therefore to construct the exclusive
showers.

Parton showering resums primarily the leading logs, which are universal, i.e. process
independent, and depend only on the given initial state. In this lies one of the strengths of
Monte Carlos, since parton showering can be incorporated into a wide variety of physical
processes. An analytic calculation, in comparison, can resum all logs. For example, the CSS
formalism sums all of the logarithms with Q2/p2

T in their arguments, where (for Higgs boson
production) Q is the four momentum of the Higgs and pT is its transverse momentum. As
discussed in the previous section on resummation, all of the ‘dangerous logs’ are included in
the Sudakov exponent, which can be written in the impact parameter (b) space as:

S(p, b) =
∫ Q2

1/b2

dµ2

µ2

[
A (αs(µ)) ln

(
Q2

µ2

)
+B (αs(µ))

]
,
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with the A and B functions being free of large logs and perturbatively calculable:

A (αs(µ̄)) =
∞∑

n=1

(
αs(µ̄)

π

)n

A(n), B (αs(µ̄)) =
∞∑

n=1

(
αs(µ̄)

π

)n

B(n).

These functions contain an infinite number of coefficients, with the A(n) coefficients be-
ing universal while the B(n) are process dependent. In practice, the number of towers of
logarithms included in the Sudakov exponent depends on the level to which a fixed order
calculation was performed for a given process. For example, if only a next-to-leading order
calculation is available, only the coefficients A(1) and B(1) can be included. If a NNLO calcu-
lation is available, then A(2) and B(2) can be extracted and incorporated into a resummation
calculation, and so on. This is the case, for example, for Z0 boson production. So far, only
the A(1), A(2) and B(1) coefficients are known for Higgs production but the calculation of
B(2) is in progress. [6] If we try to interpret parton showering in the same language, which is
admittedly risky, then we can say that the Monte Carlo Sudakov exponent always contains
a term analogous to A(1). It was shown in Reference [7] that a suitable modification of
the Altarelli-Parisi splitting function, or equivalently the strong coupling constant αs, also
effectively approximates the A(2) coefficient. 3

In contrast with the shower Monte Carlos, analytic resummation calculations integrate
over the kinematics of the soft gluon emision, with the result that they are limited in their
predictive power for inclusive final states. While the Monte Carlo maintains an exact treat-
ment of the branching kinematics, in the original CSS formalism no kinematic penalty is
paid for the emission of the soft gluons, although an approximate treatment of this can
be incorporated into its numerical implementations, like ResBos [8]. Neither the parton
showering process nor the analytic resummation translate smoothly into kinematic configu-
rations where one hard parton is emitted (at large pT ). In the Monte Carlo matrix element
corrections, and in the analytic resummation calculation matching is necessary. This match-
ing is standard procedure for resummation calculations and matrix element corrections are
becoming increasingly common in Monte Carlos [9, 10].

With the appropriate input from higher order cross sections, a resummation calculation
has the corresponding higher order normalization and scale dependence. The normalization
and scale dependence for the Monte Carlo, though, remains that of a leading order calcu-
lation. The parton showering process redistributes the event particles in phase space, but
does not change the total cross section (for example, for the production of a Higgs boson). 4

In particular, one quantity which should be well-described by both calculations is the
transverse momentum (pT ) of the final state electroweak boson in a subprocess such as
qq → WX, ZX or gg → HX, where most of the pT is provided by initial state parton
showering. The parton showering supplies the same sort of transverse kick as the soft gluon
radiation in a resummation calculation. Indeed, very similar Sudakov form factors appear
in both approaches, with the caveats about the A(n) and B(n) terms mentioned previously.

3This is rigorously true only for the high x or
√

τ region.
4Technically, one could add the branching for q → q+Higgs in the shower, which would have the capability

of increasing somewhat the Higgs cross section; however, the main contribution to the higher order K-factor
comes from the virtual corrections and the ‘Higgs Bremsstrahlung’ contribution is neglible.
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This correspondence between the Sudakov form factors in resummation and Monte Carlo
approaches may seem trivial, but there are many subtleties between the two approaches
relating to both the arguments of the Sudakov factors as well as the impact of subleading
logs [11].

At a point in its evolution corresponding to (typically) the virtuality of a few GeV2, the
parton shower is cut off and the effects of gluon emission at softer scales must be parame-
terized and inserted by hand. This is similar to the (somewhat arbitrary) division between
perturbative and non-perturbative regions in a resummation calculation. The parameteriza-
tion is typically done with a Gaussian formalism similar to that used for the non-perturbative
kT in a resummation program. In general, the value for the non-perturbative 〈kT 〉 needed in
a Monte Carlo program will depend on the particular kinematics being investigated. In the
case of the resummation calculation the non-perturbative physics is determined from fits to
fixed target data and then automatically evolved to the kinematic regime of interest.

A value for the average non-perturbative kT of greater than 1 GeV does not imply that
there is an anomalous intrinsic kT associated with the parton size; rather this amount of
〈kT 〉 needs to be supplied to provide what is missing in the truncated parton shower. If the
shower is cut off at a higher virtuality, more of the ‘non-perturbative’ kT will be needed.

3 Z0 Boson Production at the Tevatron

The 4-vector of a Z0 boson, and thus its transverse momentum, can be measured with great
precision in the e+e− decay mode. Resolution effects are relatively minor and are easily cor-
rected. Thus, the Z0 pT distribution is a great testing ground for both the resummation and
Monte Carlo formalisms for soft gluon emission. The (resolution corrected) pT distribution
for Z0 bosons (in the low pT region) for the CDF experiment5 is shown in Figure 1, compared
to both the resummed prediction from ResBos, and to two predictions from PYTHIA (version
6.125). One PYTHIA prediction uses the default (rms)6 value of intrinsic kT of 0.44 GeV and
the second a value of 2.15 GeV (per incoming parton). 7 The latter value was found to give
the best agreement for PYTHIA with the data.8. All of the predictions use the CTEQ4M
parton distributions [12]. The shift between the two PYTHIA predictions at low pT is clearly
evident. As might have been expected, the high pT region (above 10 GeV) is unaffected
by the value of the non-perturbative kT . Note that much of the kT ‘given’ to the incoming
partons at their lowest virtuality, Q0, is reduced at the hard scatter due to the number of
gluon branchings preceding the collision. The emitted gluons carry off a sizeable fraction of
the original non-perturbative kT . This point will be investigated in more detail later for the
case of Higgs production.

5We thank Willis Sakumoto for providing the figures for CDF Z0 production
6For a Gaussian distribution, krms

T = 1.13〈kT 〉.
7A previous publication [9] indicated the need for a substantially larger non-perturbative 〈kT 〉, of the

order of 4 GeV for the case of W production at the Tevatron. The data used in the comparison, however,
were not corrected for resolution smearing, a fairly large effect for the case of W → eν production and decay.

8A similar conclusion has been reached for comparisons of the CDF Z0 pT data with HERWIG [13]
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As an exercise, one can transform the resummation formula in order to bring it to a
form where the non-perturbative function acts as a Gaussian type smearing term. Using the
Ladinsky-Yuan parameterization [14] of the non-perturbative function in ResBos leads to an
rms value for the effective kT smearing parameter, for Z0 production at the Tevatron, of 2.5
GeV. This is similar to that needed for PYTHIA and HERWIG to describe the Z0 production
data at the Tevatron.

In Figure 1, the normalization of the resummed prediction has been rescaled upwards by
8.4%. The PYTHIA prediction was rescaled by a factor of 1.3-1.4 (remember that this is only
a leading order comparison) for the shape comparison.

Figure 1: The Z0 pT distribution (at low pT ) from CDF for Run 1 compared to predictions
from ResBos and from PYTHIA. The two PYTHIA predictions use the default (rms) value for the
non-perturbative kT (0.44 GeV) and the value that gives the best agreement with the shape of
the data (2.15 GeV).

As stated previously, the resummed prediction correctly describes the shape of the Z0

pT distribution at low pT , even with the optimal non-perturbative kT , although there is still
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a noticeable difference in shape between the Monte Carlo and the resummed prediction.
It is interesting to note that if the process dependent coefficients (B(1) and B(2)) were not
incorporated into the resummation prediction, the result would be an increase in the height
of the peak and a decrease in the rate between 10 and 20 GeV, leading to a better agreement
with the PYTHIA prediction [15].

Figure 2: The Z0 pT distribution (for the full range of pT ) from CDF for Run 1 compared to
predictions from ResBos (curve) and from PYTHIA (histogram).

The Z0 pT distribution is shown over a wide pT range in Figure 2. The PYTHIA and
ResBos predictions both describe the data well. Note especially the agreement of PYTHIA
with the data at high pT , made possible by explict matrix element corrections (from the
subprocesses qq → Z0g and gq → Z0q) to the Z0 production process.9

9Slightly different techniques are used for the matrix element corrections by PYTHIA [9] and by HERWIG [10].
In PYTHIA, the parton shower probability distribution is applied over the whole phase space and the exact
matrix element corrections are applied only to the branching closest to the hard scatter. In HERWIG, the
corrections are generated separately for the regions of phase space unpopulated by HERWIG (the ‘dead zone’)
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4 Diphoton Production

Most of the experience that we have for comparisons of data to resummation calcula-
tions/Monte Carlos deals with Drell-Yan production, i.e. qq initial states. It is important
then to examine diphoton production at the Tevatron, where a large fraction of the contri-
bution at low mass is due to gg scattering. The prediction for the diphoton kT distribution
at the Tevatron, from PYTHIA (version 6.122), is shown in Figure 3, using the experimen-
tal cuts applied in the CDF analysis [16]. It is interesting to note that about half of the
diphoton cross section at the Tevatron is due to the gg subprocess, and that the diphoton
pT distribution is noticeably broader for the gg subprocess than the qq subprocess.

A comparison of the pT distributions for the two diphoton subprocesses (qq, gg) in PYTHIA

versions 5.7 and 6.1 is shown in Figure 4. There seems to be little difference in the pT

distributions between the two versions for both subprocesses.
In Figure 5 are shown the ResBos predictions for diphoton production at the Tevatron

from qq and gg scattering compared to the PYTHIA predictions (using the same experimental
cuts). The gg subprocess predictions in ResBos agree well with those from PYTHIA while the
qq pT distribution is noticebly broader in ResBos. The latter behavior is due to the presence
of the Y piece in ResBos at moderate pT , and the matching of the qq cross section to the
fixed order qq → γγg at high pT . The corresponding matrix element correction is not in
PYTHIA. It is interesting to note that the PYTHIA and ResBos predictions for gg → γγ agree
in the moderate pT region, even though the ResBos prediction has the Y piece present and
is matched to the matrix element piece gg → γγg at high pT , while there is no such matrix
element correction for PYTHIA. This shows the smallness of the Y piece for the gg subprocess,
which is the same conclusion that was reached in Ref. [17]. One way to understand this is
recalling that the gg parton-parton luminosity falls very steeply with increasing partonic
center of mass energy,

√
ŝ. This falloff tends to suppress the size of the Y piece since the

production of the diphoton pair at higher pT requires larger x1, x2 values. In the default CSS
formalism, there is no such kinematic penalty in the resummed piece since the soft gluon
radiation comes for “free”. (Larger x1 and x2 values are not required.)

A comparison of the CDF diphoton data to NLO [18] and resummed (ResBos) QCD
predictions is shown in Figure 6. Plotted are the diphoton mass, the angle ∆φ between
the two photons and the transverse momentum kT of the diphoton pair. The transverse
momentum distribution, in particular, is sensitive to the effects of the soft gluon radiation
and better agreement can be observed with the ResBos prediction than with the NLO one.
The data shown in this figure is from an integrated luminosity of 87 pb−1. A much more
precise comparison with the effects of soft gluon radiation will be possible with the 2 fb−1

or greater data sample that is expected for both CDF and D0 in Run 2.
The prediction for the diphoton production cross section, as a function of the diphoton

pT and using cuts appropriate to ATLAS and CMS, is shown in Figure 7. Note that, as at
the Tevatron, about half of the cross section is due to gg scattering and the diphoton pT

and the populated region. In the dead zone, the radiation is generated according to a distribution using the
first order matrix element calculation, while the algorithm for the already populated region applies matrix
element corrections whenever a branching is capable of being ‘the hardest so far’.
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Figure 3: A comparison of the PYTHIA predictions for diphoton production at the Tevatron for
the two different subprocesses, qq and gg. The same cuts are applied to PYTHIA as in the CDF
diphoton analysis.
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Figure 5: A comparison of the PYTHIA and ResBos predictions for diphoton production at the
Tevatron for the two different subprocesses, qq and gg. The same cuts are applied to PYTHIA

and ResBos as in the CDF diphoton analysis.
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Figure 6: A comparison of the NLO and ResBos predictions for diphoton production at the
Tevatron for the diphoton mass, the angle ∆φ and the transverse momentum of the photon pair
KT .
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distribution from gg scattering is noticeably broader than that from qq production.
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Figure 7: A comparison of the PYTHIA predictions for diphoton production at the LHC for the
two different subprocesses, qq and gg. Similar cuts are applied to the diphoton kinematics as
those used by ATLAS and CMS.

In Figure 8 is shown a comparison of the diphoton pT distribution for two different ver-
sions of PYTHIA, for the two different subprocesses. Note that the pT distribution in PYTHIA

version 5.7 is somewhat broader than that in version 6.122 for the case of gg scattering. The
effective diphoton mass range being considered here is lower than the 150 GeV Higgs mass
that will be considered in the next section. As will be seen, the differences in soft gluon
emission between the two versions of PYTHIA are larger in that case.

In Figure 9 are shown the ResBos predictions for diphoton production at the LHC from
qq and gg scattering compared to the PYTHIA predictions (using the same experimental cuts).
Again, the gg subprocess predictions in ResBos agree well with those from while the qq pT

distribution is noticebly broader in ResBos, for the reasons cited previously.
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Figure 9: A comparison of the PYTHIA and ResBos predictions for diphoton production at
the LHC for the two different subprocesses, qq and gg. Similar cuts are applied to PYTHIA and
ResBos as in the ATLAS and CMS diphoton analyses.
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5 Higgs Boson Production

A comparison of the Higgs pT distribution at the LHC, for a Higgs mass of 150 GeV, is
shown in Figure 10, for ResBos and the two recent versions of PYTHIA. As before, PYTHIA
has been rescaled to agree with the normalization of ResBos to allow for a better shape
comparison. Note that the peak of the resummed distribution has moved to pT ≈ 11 GeV
(compared to about 3 GeV for Z0 production at the Tevatron). This is partially due to the
larger mass (150 GeV compared to 90 GeV), but is primarily because of the larger color
factors associated with initial state gluons (CA = 3) rather than quarks (CF = 4/3), and
also because of the larger phase space for initial state gluon emission at the LHC.
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Figure 10: A comparison of predictions for the Higgs pT distribution at the LHC from ResBos and
from two recent versions of PYTHIA. The ResBos and PYTHIA predictions have been normalized
to the same area.

The newer version of PYTHIA agrees well with ResBos at low to moderate pT , but falls
below the resummed prediction at high pT . This is easily understood: ResBos switches to the
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NLO Higgs + jet matrix element at high pT while the default PYTHIA can generate the Higgs
pT distribution only by initial state gluon radiation, using as maximum virtuality the Higgs
mass squared. High pT Higgs production is another example where a 2 → 1 Monte Carlo
calculation with parton showering can not completely reproduce the exact matrix element
calculation, without the use of matrix element corrections. The high pT region is better
reproduced if the maximum virtuality Q2

max is set equal to the squared partonic center of
mass energy, s, rather than m2

H . This is equivalent to applying the parton shower to all of
phase space. However, this has the consequence of depleting the low pT region as ‘too much’
showering causes events to migrate out of the peak. The appropriate scale to use in PYTHIA

(or any Monte Carlo) depends on the pT range to be probed. If matrix element information
is used to constrain the behavior, the correct high pT cross section can be obtained while
still using the lower scale for showering. The incorporation of matrix element corrections to
Higgs production (involving the processes gq → qH ,qq → gH , gg → gH) is the next logical
project for the Monte Carlo experts, in order to accurately describe the high pT region.

A comparison of the two versions of PYTHIA and of ResBos is also shown in Figure 11
for the case of Higgs production (at a Higgs mass of 100 GeV) at the Tevatron with center-
of-mass energy of 2.0 TeV. The same qualititative features are observed as at the LHC: the
newer version of PYTHIA agrees better with ResBos in describing the low pT shape, and there
is a falloff at high pT unless the larger virtuality is used for the for the parton showers.
The default (rms) value of the non-perturbative kT (0.44 GeV) was used for the PYTHIA

predictions for Higgs production.
The older version of PYTHIA produces too many Higgs events at moderate pT (in compar-

ison to ResBos) at both the Tevatron and the LHC. Two changes have been implemented
in the newer version. The first change is that a cut is placed on the combination of z and
Q2 values in a branching: û = Q2 − ŝ(1 − z) < 0, where ŝ refers to the subsystem of the
hard scattering plus the shower partons considered to that point. The association with û
is relevant if the branching is interpreted in terms of a 2 → 2 hard scattering. The corner
of emissions that do not respect this requirement occurs when the Q2 value of the spacelike
emitting parton is little changed and the z value of the branching is close to unity. This
effect is mainly for the hardest emission (largest Q2). The net result of this requirement is
a substantial reduction in the total amount of gluon radiation [19]. 10 In the second change,
the parameter for the minimum gluon energy emitted in spacelike showers is modified by an
extra factor roughly corresponding to the 1/γ factor for the boost to the hard subprocess
frame [19]. The effect of this change is to increase the amount of gluon radiation. Thus, the
two effects are in opposite directions but with the first effect being dominant.

This difference in the pT distribution between the two versions of PYTHIA could have an
impact on the analysis strategies for Higgs searches at the LHC. For example, for the CMS
detector, the higher pT activity associated with Higgs production in version 5.7 would have
allowed for a more precise determination of the event vertex from which the Higgs (decaying
into two photons) originated. Vertex pointing with the photons is not possible in the CMS

10Such branchings are kinematically allowed, but since matrix element corrections would assume initial
state partons to have Q2 = 0, a non-physical û results (and thus no possibility to impose matrix element
corrections). The correct behavior is beyond the predictive power of leading log Monte Carlos.
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Figure 11: A comparison of predictions for the Higgs pT distribution at the Tevatron from
ResBos and from two recent versions of PYTHIA. The ResBos and PYTHIA predictions have been
normalized to the same area.
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barrel region, and the large number of interactions occuring with high intensity running will
mean a substantial probability that at least one of the interactions will produce jets at low
to moderate ET . This could lead to the wrong vertex being chosen for the Higgs, leading to
a significant degradation in the γγ effective mass resolution. [20] In principle, this problem
could affect the pT distribution for all PYTHIA processes. In practice, it affects only gg initial
states, due to the enhanced probability for branching with such an initial state.

As an exercise, an 80 GeV W and an 80 GeV Higgs were generated at the Tevatron using
PYTHIA5.7 [21]. A comparison of the distribution of values of û and the virtuality Q for the
two processes indicates a greater tendency for the Higgs virtuality to be near the maximum
value and for there to be a larger number of Higgs events with positive û (than W events).

6 Comparison with HERWIG

The variation between versions 5.7 and 6.1 of PYTHIA gives an indication of the uncertainties
due to the types of choices that can be made in Monte Carlos. The requirement that û be
negative for all branchings is a choice rather than an absolute requirement. Perhaps the
better agreement of version 6.1 with ResBos is an indication that the adoption of the û
restrictions was correct. Of course, there may be other changes to PYTHIA which would also
lead to better agreement with ResBos for this variable.

Since there are a variey of choices that can be made in Monte Carlo implementations,
it is instructive to compare the predictions for the pT distribution for Higgs production
from ResBos and PYTHIA with that from HERWIG (version 5.6, also using the CTEQ4M
parton distribution functions). The HERWIG prediction is shown in Figure 12 along with the
PYTHIA and ResBos predictions, all normalized to the ResBos prediction. 11 (In all cases,
the CTEQ4M parton distribution was used.) The predictions from HERWIG and PYTHIA 6.1
are very similar, with the HERWIG prediction matching the ResBos shape somewhat better
at low pT . For reference, the absolutely normalized predictions from ResBos, PYTHIA and
HERWIG for the pT distribution of a 150 GeV Higgs at the LHC are shown in Figure 13.

7 Non-perturbative kT

A question still remains as to the appropriate value of non-perturbative kT to input in the
Monte Carlos to achieve a better agreement in shape, both at the Tevatron and at the LHC.
In Figures 14 and 15 are shown comparisons of ResBos and PYTHIA predictions for the Higgs
pT distribution at the Tevatron and LHC. The PYTHIA prediction (now version 6.1 alone)
is shown with several values of non-perturbative kT . Suprisingly, no difference is observed
between the predictions with the different values of kT , with the peak in PYTHIA always
being somewhat below that of ResBos. This insensitivity can be understood from the plots
at the bottom of the two figures which show the sum of the non-perturbative initial state
kT (kT1+kT2) at Q0 and at the hard scatter scale Q. Most of the kT is radiated away. with

11The normalization factors (ResBos/Monte Carlo) are PYTHIA (both versions)(1.68) and HERWIG (1.84).
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Figure 12: A comparison of predictions for the Higgs pT distribution at the LHC from ResBos,
two recent versions of PYTHIA and HERWIG. The ResBos, PYTHIA and HERWIG predictions have
been normalized to the same area.
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Figure 13: A comparison of predictions for the Higgs pT distribution at the LHC from ResBos
and from two recent versions of PYTHIA. The ResBos and PYTHIA predictions have their absolute
normalizations.
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this effect being larger (as expected) at the LHC. The large gluon radiation probability from
a gluon-gluon initial state (and the greater phase space available at the LHC) lead to a
stronger degradation of the non-perturbative kT than was observed with Z0 production at
the Tevatron.
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Figure 14: (top) A comparison of the PYTHIA predictions for the pT distribution of a 100 GeV
Higgs at the Tevatron using the default (rms) non-perturbative kT (0.44 GeV) and a larger value
(4 GeV), at the initial scale Q0 and at the hard scatter scale. Also shown is the ResBos prediction
(bottom) The vector sum of the intrinsic kT (kT1+kT2) for the two initial state partons at the
initial scale Q0 and at the hard scattering scale for the two values of intrinsic kT .

For completeness, a comparison of PYTHIA and ResBos is shown in Figure 16 for Z0 boson
production at the LHC. There are two points that are somewhat surprising. There is still
a very strong sensitivity to the value of the non-perturbative kT used in the smearing, and
the best agreement with ResBos is obtained with the default value (0.44 GeV), in contrast
to the 2 GeV needed at the Tevatron. Note again the agreement of PYTHIA with ResBos at
the highest values of Z0 pT due to the explicit matrix element corrections applied.
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Figure 15: (top) A comparison of the PYTHIA predictions for the pT distribution of a 150 GeV
Higgs at the LHC using the default (rms) non- perturbative kT (0.44 GeV) and a larger value (4
GeV), at the initial scale Q0 and at the hard scatter scale. Also shown is the ResBos prediction.
(bottom) The vector sum of the intrinsic kT (kT1+kT2) for the two initial state partons at the
initial scale Q0 and at the hard scattering scale for the two values of intrinsic kT .
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Figure 16: A comparison of the predictions for the pT distribution for Z0 production at the
LHC from PYTHIA and ResBos, where several values of kT have been used to make the PYTHIA

predictions.
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The sum of the incoming parton kT distributions, both at the scale Q0 and at the hard
scattering scale, are shown in Figure 17 for several different starting (rms) values of primor-
dial kT (per parton). There is substantially less radiation for a qq initial state than for a gg
initial state (as in the case of the Higgs), leading to a noticeable dependence of the Z0 pT

distribution on the primordial kT distribution.
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Figure 17: A comparison of the total initial state kT (kT1 +kT2) distributions for Z0 production
at the LHC from PYTHIA, both at the initial scale Q0 and at the hard scattering scale, for several
(rms) values of the initial state kT . The mean and rms numbers refer to the values at the hard
scattering scale.

8 Conclusions

An understanding of the signature for Higgs boson production at either the Tevatron or
LHC depends upon the understanding of the details of soft gluon emission from the initial
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state partons. This soft gluon emission can be modelled either in a Monte Carlo or in a kT

resummation program, with various choices possible in both implementations. A comparison
of the two approaches is useful to understand the strengths and weaknesses of each. The
data from the Tevatron that either exists now, or will exist in Run 2, will be extremely useful
to test both approaches.
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Automatic Computation of LHC Processes

E. Boos, V. Ilyin, K. Kato, A. Pukhov, A. Semenov, A. Skatchkova

Automatic computation is a new approach to HEP computing. The first such systems,
GRACE [1], FeynArt/FeynCalc [2] and CompHEP [3], were reported at the 1st Interna-
tional Workshop AIHENP held on March, 1990 in Lyon-Villeurbanne (France). Under this
terminology, automatic computation system (ACS), we assume, as a distinguishing feature,
the generation of the computing code for a specific collision process with the aid of another
code.

ACS’s are now used widely by phenomenologists for the calculation of many collision pro-
cesses. For example, the GRACE and CompHEP systems were used in the LEP2 Workshop
[4], and for evaluation of processes at TeV linear colliders [5]. With ACS one can calculate
all collision processes within a given physical model, where by physical model we mean the
set of Feynman rules. Recent developments with the LanHEP package [11] have opened a
possibility to derive Feynman rules in the form of the ACS intrinsic physical model in a
fully automatic way, starting from the Lagrangian. Now, not only the Standard Model but
a number of its extensions, like SUSY models, are implemented in ACS. A general review of
this new approach is given in these Proceedings by K.Kato together with discussion of main
directions of the ACS development. Here, we discuss in more detail specifics of the ACS
applications in LHC phenomenology, and in particular to the evaluation of QCD processes.

To close this preview we list below the main ACS options in order to provide an idea for
users of what is available:

i) selection of physical model (Lagrangian) and hard subprocess,

ii) Feynman diagram generation,

iii) generation of the code for matrix element,

iv) convolution with parton distributions,

v) generation of kinematics (phase space parameterization) with regularization of kine-
matical peaks,

vi) integration over the phase space (evaluation of cross section),

vii) generation of events at partonic level, including the interface to hadronization tools.
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1 The problem of multiparticle final states: why auto-

matic computations?

We start from the problem of the accurate evaluation of hard subprocesses in the case of
multiparticle final states.

When physicists simulate HEP processes with such generators as PYTHIA [6], ISAJET
[7] or HERWIG [8] they use a data base of hard subprocesses implemented in these packages.
It means that a) matrix elements are stored as formulas, and b) a knowledge about the
behaviour of matrix elements as phase space integrands are coded in the form of modelling
functions in order to get a fast generation of the partonic events. One can note that these
data bases include a rather simple variety of subprocesses, mainly of the 2 → 2 type.

If one tries to include a hard subprocesses with 3, 4 and more particles in the final state,
large problems appear. Indeed, the size of matrix elements increases very fast. For example,
in the 2 → 4 case, the size of the code for evaluation of helicity amplitudes for one subprocess
is at the 100’s of Kbyte level. However, the main problem lies elsewhere; it is impossible
to construct an analytical formula for matching peaks and other structures of the rather
singular behaviour of matrix elements. In the 2 → 3 case, phase space has 4 dimensions
plus two for convolution with the PDF’s; in the 2 → 4 case 7+2 dimensions are present,
and so on. As a result, the set of kinematical singularities has, as a rule, a very complicated
positioning in the multidimensional phase space. This particular problem was not solved
accurately, e.g., when the Zbb final state was implemented in PYTHIA 5.7.

Let us discuss further this somewhat delicate point. It is necessary to integrate the
squared matrix element over the phase space in order to obtain the cross section. Precise
information about the behaviour of the integrand then is necessary for further event gen-
eration. This information can be obtained at the step of the phase space integration. The
problem is that the integrand, as a rule, has a singular behaviour with sharp kinemati-
cal peaks connected with different denominators (propagators) of Feynman diagrams. This
problem is caused, in particular, by the circumstance that one has to take into account
nonzero masses of particles in many important cases, especially if accurate calculations are
needed. The masses of elementary particles can have extremely small values, e.g. the masses
of the 1st generation quarks (few MeV), and can also be zero (for the photon and gluon).
At the same time, other parameters are of the order of a hundred GeV, e.g. masses of W
and Z bosons and t-quark. Moreover the collision energy can also have a very large value,
e.g. 14000 GeV for LHC processes, and some other important variables, like the transverse
energy of jets, are at the hundred GeV scale or even greater. This huge scale interval for
different parameters causes serious computational problems which result in the appearance
of sharp peaks for the integrand. So, at the step of phase space parameterization, one has
to include a regularization of the integration measure in order to smooth the singularities of
the integrand.

LHC phenomenology requires the computation of a wide spectrum of hard subprocesses
with 3,4 and even more particles (partons) in the final state. This is a common need for all of
the physics working groups: QCD, EW, Higgs, SUSY etc. These requirements are especially
common for new physics searches. Furthermore, a major challenge results from background
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analyses, where QCD subprocesses play a major role with, in many cases, multiparton fi-
nal states. As a rule, for each LHC discovery reaction, one should calculate several QCD
processes giving both irreducible and reducible backgrounds. The parton-shower generation
of multiparticle final states is usually utilized in this situation. However, this can be too
crude an approximation for many important studies leading to sometimes grossly unreliable
predictions.

We emphasize that ACS can give the possibility to compute accurately a variety of LHC
processes (and in particular QCD processes) with 3, 4 and more bodies in the final partonic
state. Indeed, the first problem (the size of the matrix element computing code and the
difficulty to obtain the exact matrix elements) is solved in ACS by the automatic generation
of the corresponding code. This step is fast and pain-free from the viewpoint of the user. The
second problem (the accurate integration over the multidimensional phase space) is solved
in ACS by the generation of kinematics where the necessary regularizations are included.
For example, in CompHEP the user has to list a set of singular propagators using the menu
system. After that, the code for kinematics (with regularizations) is generated automatically.
In GRACE, a library of kinematics (with regularizations) is used and the user has to make the
necessary choices. Thus, the high art (mathematics and programming), needed to elaborate
the sharp peaks, is enclosed in a form hidden from the user, giving him a possibility to
compute complicated processes.

At the step of integration over the phase space, ACS uses adaptive Monte Carlo inte-
grators (VEGAS [12] in CompHEP, and BASES [13] in GRACE). To match the complete
set of singularities, the multichannel MC approach [10] is utilized. As a result, the phase
space grid is created with an accurate mapping of the singular behaviour of the matrix ele-
ment. This complex body of information (let us call it MEgrid) has a rather large size that
rapidly increases with the number of phase space dimensions. One can consider MEgrid
as a multidimensional analog of the modelling function used in PYTHIA and other similar
packages for the effective generation of partonic events. Of course, this information can not
be expressed in analytical form. It is necessary to point out also that the convolution with
parton distributions should be made at the same stage as the integration over the phase
space. Indeed, the contributions of different subspaces (in particular different kinematical
peaks) can depend largely on the partonic collison energy, ŝ, resulting from the information
stored in MEgrid.

ACS can be considered as a tool for the automatic generation of the data base of hard
subprocesses for physical generators like PYTHIA, ISAJET and HERWIG. However, it is
difficult to imagine that the data base created can be implemented in the code of these
generators. This is due, first of all, to the size of the generated codes. Thus, we propose a
two stage approach. At the first stage, ACS is used resulting in a cross section and MEgrid for
the subprocess under evaluation. This can be stored in a special LHC data base. This data
base can be used for the effective generation of partonic events. In GRACE, it is available
with the SPRING [13] generator, and in CompHEP by a relatively straightforward procedure
and an effective generator is under construction). The output is a partonic event flow that
can be used as an input for physical generators like PYTHIA, ISAJET and HERWIG; this
is second stage of the full simulations. At this stage partons (quarks and gluons) should be
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hadronized and unstable particles decayed. We note that in PYTHIA there exists a rather
flexible interface for such a two stage approach, the option for inclusion of external processes
through the routine PYUPEV.

This is a general view on the way in which ACS (GRACE and CompHEP in particular)
can be used for the simulation of LHC processes. Below we discuss some specific features of
this technology with special attention to QCD aspects.

2 General Considerations about GRACE and Com-

pHEP

With CompHEP and GRACE the user can evaluate hard subprocesses at the tree level, i.e.
Feynman diagrams are generated without loops. This corresponds to the basic request for
LHC phenomenology. However, it is well known that QCD next-to-leading corrections are
large, as a rule, for LHC processes. In many cases these corections can be accounted for in
the form of so-called K-factors and one can include them easily in tree level calculations.
Nevertheless, in many important cases an explicit evaluation of higher order corrections is
necessary. At this moment it is not clear how to automate calculations of LHC processes at
NLO level. The problem is connected, in particular, with the circumstance that different re-
summations of large logarithms should be included in order to get reliable NLO predictions.
The interface between resummation techniques and event generators is under intensive dis-
cussion now, and at the present Workshop also. We note in this respect, that the GRACE
package includes the code for the generation and evaluation of one-loop diagrams.

The user interface should provide the possibility to calculate complicated processes for
users not experienced in programming. CompHEP has a (graphical) menu driven system
where the user proceeds through all steps of the calculation without any programming. In
GRACE, the user needs to write a few simple interface routines.

The information on the GRACE system and its products can be found at
http://www-sc.kek.jp/minami/

The code of CompHEP is free for users and one can take it from the following Web page
http://theory.npi.msu.su/comphep

where the user’s manual is available in PS format (see also hep-ph/9908288). The CompHEP
package, adapted for LHC processes (see next section) is installed on the SUN platform

/afs/cern.ch/cms/physics/COMPHEP/v33-SUN
and on the PC/Linux platform

/afs/cern.ch/cms/physics/COMPHEP/v33-Linux
The interface between CompHEP and PYTHIA has beencreated with the corresponding

code available from the address:
/afs/cern.ch/cms/physics/comp-pyth

where one can find a short description in the file README. With this interface, the partonic
event flow for any processes calculated with CompHEP can be sent to PYTHIA to generate
physical events.
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3 QCD aspects in automatic computations

In this section we discuss the treatment of QCD effects in the case of automatic computations,
and consider CompHEP options as an example. As has been discussed above, CompHEP
calculates only at tree level, and so at leading order (LO). Thus, the main problems concern-
ing an accurate accounting of QCD effects are outside the discussion. Nevertheless, some
important QCD dependencies can not be avoided even at tree level and the corresponding
options are available for users. These aspects are: a) parton distributions, b) QCD scale,
and c) running strong coupling constant.

Parton distributions.
In CompHEP the specification of initial states in the collision process under evaluation

can include the convolution with structure function. So, in the case of hadron collisions, the
cross section is evaluated as an integral

σ(s) =
∫ 1

0
dx1dx2fi(x1, Q)fj(x2, Q)σ̂ij(x1x2s)

where fi are the corresponding parton distributions, σ̂ is the partonic cross section and Q is
the QCD scale.

In CompHEP v.33, installed at CERN (see address above), parton distributions from
two pdf families are implemented, MRS and CTEQ, and in particular the following versions:
1) MRS(A’) and MRS(G) [14], 2) CTEQ4l and CTEQ4m [15]. Note that CTEQ4l is a LO
parametrization, while in all others the evolution of parton distributions is realized in the
next-to-leading (NLO) approximation.

In addition, a special interface is available to include a user’s defined parton distribution.
By this way one can implement the most recent parametrizations (at this moment CTEQ5
and MSRT). See the CompHEP user’s manual for the corresponding procedure (section
3.6.2).

Choice of QCD scale.
The factorization theorem states that parton distributions depend not only on the Bjorken

variable x but also on some parameter Q which characterizes the energy (or momentum)
scale at which the QCD effects give the main contribution to the hard subprocess. This
parameter is set by the user for each specific QCD process. It is possible to set a fixed scale
or a running scale. In the later case, Q2 can be a squared linear combination of any set of
initial and outgoing particles momenta, for example, (p1−p3)

2, (p1−p3−p4)
2, (p3 +p4)

2 and
so on (initial and outgoing momenta enter with opposite signs). The corresponding settings
are made through the option QCD SCALE of the numerical menu.

Running αs.
It is the nature of strong interactions that there is no absolute normalization of the cor-

responding coupling constant. This is in contrast to the value 1/137 for the electromagnetic
constant known with high accuracy from classical electrodynamical experiments. Instead,
we have a function for αs rather than a constant. Even in the leading order approximation,
αLO

s = 6π/[(33 − 2nf) log Q/Λ(nf )], where Q is the QCD scale of the hard subprocess under
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the evaluation with Λ the so-called QCD fundamental parameter. Then, nf is the number of
parton flavours with masses lower than Q. The nf dependence in QCD parameter Λ matches
the quark mass threshold effects.

In the version of CompHEP installed at CERN, the running αs is realized in LO, NLO
and NNLO. All of the corresponding formulas are based on the choice of Λ(6) (see Review of
Particle Physics [16] p.81. The user can find the corresponding switch in the option QCD
SCALE in the numerical menu.

Therefore, to evaluate QCD processes with CompHEP, one has, first of all, to fix the
normalization of αs. The popular normalization point is the mass of Z boson, Q = MZ .
By changing the parameter Λ(6), the user should set the strong coupling at the appropriate
value, say αs(MZ) = 0.118. Then, the user has to choose the order for the running αs (LO,
NLO or NLO). Finally, the user has to define the QCD scale Q, which will be used both for
the evaluation of αs at this scale and in the parton distributions.

Thus, the complete LO calculations of LHC processes are available, with the matrix
element, parton distributions and running strong coupling constant calculated in the low-
est order of the perturbation theory. This is a self-consistent starting point in the phe-
nomenological analysis; when/where higher order corrections are available, all elements of
the calculation can be calculated at the higher order and then compared to the leading order
result.

However, it is also common for phenomenologists use a mixed approach, with the matrix
element evaluated at LO but the parton distributions and running αs taken in NLO approx-
imation. Surely, only a part of the NLO corrections is accounted for in this case. We note
that this option is also available for users in CompHEP calculations.

4 Partonic Subprocesses

When hadronic collision processes are evaluated, especially in the case of a large number
of final state particles, one serious problem is the large number of contributing partonic
subprocesses. This occurs because of the quark and gluon content of the initial hadrons
and CKM quark mixing. For example, at LHC energies, 180 subprocesses contribute to the
W +2jets and 292 subprocesses to the W +3jets production (taking into account only quarks
of the first two generations ). During this workshop a new method has been proposed to avoid
a multiplication of channels due to the mixture of quark states [17]. The method leads to a
simple modification of the rules for the evaluation of the cross sections and distributions. It
is based on the unitary rotation of down quarks, thus providing the transportation of mixing
matrix elements from vertices of Feynman diagrams to the parton distribution functions. As
a result, one can calculate cross sections with a significantly smaller number of subprocesses
contributing. For the examples mentioned above, one needs to evaluate (with the new rules)
only 21 and 33 subprocesses, respectively, in order to compute the cross sections for the
W +2jets and W +3jets processes. The matrix elements of the subprocesses are calculated
without quark mixing, but with a modified PDF convolution which now depends on the quark
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mixing angle and the topologies of the gauge invariant classes of diagrams contributing to
the subprocesses. The method proposed has been incorporated into the CompHEP program
and checked with many examples.

5 PEVLIB - library of LHC processes

Now the library of CompHEP based event generators for LHC processes has been started at
the address:

/afs/cern.ch/cms/physics/PEVLIB
The following QCD processes are stored already in this library: Zbb̄, Wbb̄, tt̄bb̄ and some

others. In the corresponding directories (with the names literally corresponding to the final
states) unweighted events are stored (see the files README in these directories for details
about evaluation of the corresponding samples of events).

Together with the CompHEP-PYTHIA interface code (see discussion above) these event
files can be used for full LHC simulations with the help of PYTHIA package and detector
simulation software in the standard way.

Let us discuss the process Zbb̄ in order to supply more details. In the directory
/afs/cern.ch/cms/physics/PEVLIB/Z b b

the file pevZbb includes about 200000 unweighted events with the final state Zbb̄. Each
event includes the Lorentz momenta of all particles in the initial and final states. In the
present version of this library, there is no information about the color flow in the event. Thus,
only the Independent Fragmentation Model can be used for the hadronization. Of course, the
user can use the Lund model; for this one has to define the corresponding color flows by hand
in the routine PYUPEV. The same remark is valid also for FSR (final state radiation), what
is switched off by default in CompHEP-PYTHIA interface. In the same time ISR (initial
state radiation) is switched on automatically.

Note that the user can generate more events than stored in the library. In the corre-
sponding subdirectories (indicated in the file README) the generators are stored in the
form of the executable code (at this moment for SUN platform only). These generators
are the corresponding CompHEP codes for the process with the proper set of kinematical
regularizations.

The library PEVLIB is under construction now. New processes will be added. The
structure and user’s interface will be developed.

6 Acknowledgements

The work of V.I., A.P., A.S, E.B. and A.S. was partially supported by the CERN-INTAS
grant 377 and RFBR-DFG grant 99-02-04011.

References

114



[1] New Computing Techniques in Physics Research, ed. D.Perret-Gallix and W.Wojcik,
Ed. CNRS, Paris, 1990, p.555.

T.Tanaka, T.Kaneko and Y.Shimizu, Comp. Phys. Commun. 64, 149 (1991).

T.Ishikawa et al., GRACE manual, KEK Report 92-19, 1993.

[2] New Computing Techniques in Physics Research, ed. D.Perret-Gallix and W.Wojcik,
Ed. CNRS, Paris, 1990, p.565.

[3] New Computing Techniques in Physics Research, ed. D.Perret-Gallix and W.Wojcik,
Ed. CNRS, Paris, 1990, p.573.

P.A.Baikov et al., In: Proc.of X Workshop on High Energy Physics and Quantum
Field Theory (QFTHEP-95), ed.by B.Levtchenko and V.Savrin, Moscow, 1996, p.101,
hep-ph/9701412.

E.E.Boos, M.N.Dubinin, V.A.Ilyin, A.E.Pukhov and V.I.Savrin, hep-ph/9503280.

A.E.Pukhov et al., CompHEP user’s manual, v.3.3. Preprint INP MSU 98-41/542, 1998,
hep-ph/9908288.

[4] ”Physics at LEP2”, ed. by G.Altarelli, T.Sjöstrand and F.Zwirner, CERN report 96-01,
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Monte Carlo Event Generators at NLO

J. Collins

Abstract

I am concerned here with QCD calculations for processes with a hard scattering
— production of heavy particles, jets, etc. The most accurate calculations are by the
“analytic” methods. But the most useful calculations for direct comparison with data
are done by Monte-Carlo event generators, and these are limited in accuracy. In par-
ticular, there is as yet no known method of systematically improving the Monte-Carlo
calculations by incorporating the non-logarithmic parts of higher order perturbative
corrections. This creates limitations on the analysis of future data. Therefore I sum-
marize some ideas for remedying the situation.

Factorization for inclusive processes

• Normal proofs of factorization are for inclusive cross sections.

• To get the simplifications in the factorization formula, as compared with the exact
cross section, one makes suitable approximations.

• The approximation is to the hard scattering part H of a cross section, as in:

H

Figure 1:

which is a graph for the DIS cross section. The kinematics of the external lines of H
are changed to massless on-shell partons with zero transverse momentum. Also the
internal (light parton) lines of H are made massless.

• The approximation is correct to the leading power of m2/Q2, where m is a typical
hadronic scale and Q is the scale of the hard scattering (e.g., Q2 is the virtuality of
the virtual photon in DIS).
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• Subtractions are applied to the hard scattering to cancel double counting. A high-
order graph for the hard scattering has subtractions that correspond to smaller hard
subgraphs (and hence smaller regions of momentum space).

• The exact form of the subtractions corresponds to the approximations made for the
smaller regions.

Monte-Carlo event generators at NLO (and beyond) Current event generators es-
sentially use the leading order for the hard-scattering coupled to an algorithm that approxi-
mates the exclusive structure of the low virtuality parts of graphs for the cross section. The
algorithm is in an improved leading logarithm approximation.

With the exception of the recent paper by Friberg and Sjöstrand [1], previous attempts,
e.g., [2], at incorporating NLO corrections have tended to implement them by a reweighting
of the events generated by showering from the LO matrix elements. Normal NLO “analytic”
calculations for the hard-scattering coefficients for inclusive scattering are not usable as they
stand in a Monte-Carlo event generator, because they involve singular distributions.

Here I summarize some ideas [3] to remedy this situation. I have applied them to one
specific case in DIS in Ref. [4], but I think they can be generalized:

• Separate groups of events are generated with LO and NLO hard scattering coefficients.

• To obtain the NLO coefficients, the same general ideas are used as in inclusive hard
scattering.

• The methods are applied both to the hard scattering itself and to the showering kernels.

• However, because we are now working with exclusive processes, the form of the approxi-
mations is different. The approximated graphs must satisfy the following requirements:

– Exact 4-momentum conservation must be obeyed for each subprocess (hard scat-
tering or one stage of the showering). I.e., pµ

i = pµ
f , where pµ

i and pµ
f are the total

initial and final momenta the the subprocess.

– The approximation may change the momenta of the internal lines but it must
preserve the momenta of the external lines. This avoids the problem with having
singular distributions.

• A cut-off is applied, for otherwise the approximated graphs give ultra-violet divergences
when integrated to large transverse momentum. The kinematics associated with exact
momentum conservation do provide a cutoff, but such a cutoff tends to violate factor-
ization of the momentum-space integrals. So a separate artificial cutoff is better, and
probably makes for a better implementation of the algorithm.

• Conventionally, in a Monte-Carlo a sharp cutoff is used. But a smooth cut-off will
probably be better for numerical work. It will also make it easier to get positive cross
sections.
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Figure 2: Born graph for DIS

• The dependence on the cutoff is a generalized renormalization-group transformation,
and the exact cross section is independent of the form of the cutoff.

• Separate explicit soft factors are needed, as in the factorization theorem for the qT

distribution for the Drell-Yan process; unlike the case of an inclusive cross section the
cancellation of the soft region is not complete. This issue is not treated in Refs. [4, 3],
but will need further work, which is in progress.

Example of application to DIS [4] The parton model graph of Fig. 2 is combined with
showering to give a LO cross section that can be summarized as

σLO = Born graph × initial-state showering × final-state showering. (1)

The NLO cross section is obtained from subtracted one-loop graphs, and the hard-
scattering coefficient is of the form

l − × Jacobian × cutoff function. (2)

The first term is an unsubtracted NLO graph. The subtraction corresponds to the approx-
imation made in LO. Above the horizontal line, the following replacement for the internal
momentum lµ is made:

l → massless on-shell, zero transverse momentum (3)

→ Lorentz-transformed momentum with correct final state. (4)

The first step is the standard approximation. The second step is needed to obtain the cor-
rect kinematics with conservation of 4-momentum. It is somewhat non-trivial to implement
consistently since the subtraction term is needed when it is far from the collinear region. The
bulk of my work in Refs. [4, 3] is about constructing a definite correct and consistent imple-
mentation. Correctness here means that the subtraction term is the order αs approximation
to the showering in the LO Monte Carlo algorithm.
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Differences between conventional “analytic” method and Monte-Carlo method
These differences can be illustrated by the following mathematical example. Warning: In a
number of respects this example is over-simplified. For example, it does not take account of
the parton densities. As explained in Ref. [4], the parton densities in the Monte Carlo are
not in the usual MS scheme. However, they are related to them by definite formulae.

Let the unapproximated unsubtracted integrand at NLO be

dσ̂

d2kT

=
Q2

(Q2 + k2
T + m2)(k2

T + m2)
. (5)

The conventional approach obtains the hard-scattering coefficient by setting the mass m to
zero. The integral is then infinite, and a subtraction is inserted which consists of a delta
function at kT = 0 with an infinite coefficient. The result is a + distribution, which has a
finite integral:

dσ̂

d2kT
=

Q2

Q2 + k2
T

(
1

k2
T

)

+

=
Q2

(Q2 + k2
T ) k2

T

− Cδ(2)(kT ), (6)

where C is an infinite constant, defined with the aid, for example, of dimensional regular-
ization.

In my new approach the subtracted integrand is

dσ̂

d2kT
=

Q2

(Q2 + k2
T ) k2

T

− f(kT/µ)J(kT )

k2
T

, (7)

where f(kT/µ) is the previously mentioned cutoff function, which is unity for small kT and
zero for large kT . As usual µ is the factorization scale. The factor J(kT ) symbolizes the
Jacobian that is necessary in the transformation from the variables appropriate for generation
of events and the variables for the measured particles.
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NLO and NNLO Calculations

V. Del Duca and G. Heinrich

1 The NLO and NNLO program

QCD calculations of multijet rates beyond the leading order (LO) in the strong coupling
constant αs are usually quite involved. Nowadays we know (see Section 1.2) how to perform
in general calculations of the next-to-leading order (NLO) corrections to multijet rates, and
almost every process of interest has been computed to that accuracy. Instead, the calculation
of the next-to-next-to-leading order (NNLO) corrections is still at an organizational stage
and represents a main challenge. Why should we perform calculations which are technically
so complicated ?

The general motivation is that the calculation of the NLO corrections allows us to es-
timate reliably a given production rate, while the NNLO corrections allow us to estimate
the theoretical uncertainty on the production rate. This is achieved by reducing the depen-
dence of the cross section on the renormalization scale, µR, and for processes with strongly-
interacting incoming particles the dependence on the factorization scale, µF , as well.

An example is the determination of αs from event shape variables in e+e− → 3 jets [1].
Although the NLO contributions to e+e− → 3 jets have been computed for some time
now [2, 3], the NNLO contributions have yet to be obtained. A calculation of these NNLO
contributions would be needed to further reduce the theoretical uncertainty in the determi-
nation of αs.

We present in Section 1.1 an additional motivation for performing QCD calculations at
NNLO, which is specific to the LHC program, and we outline in Section 1.2 how QCD
calculations at NLO are implemented and in Section 1.3 how QCD calculations at NNLO
could be performed.

1.1 Higgs production

The main goal of the LHC physics program is the investigation of the mechanism of the
electroweak symmetry breaking, and namely the search and detection of the Higgs boson. If
the Higgs boson is light (100 GeV ≤ mH ≤ 140 GeV), the rare decay channel in two pho-
tons, H→ γγ, provides the best signature [4, 5, 6, 7]. Since the signal-to-background ratio
is quite low (∼ 7%), the analysis of this channel promises to be demanding. Our theoretical
understanding of signal and background is still preliminary: the NLO QCD corrections to
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the signal are known to be quite large (O(100%)) [8]. Also the QCD background pp → γγ,
given at LO by the parton subprocess qq̄ → γγ, is known to NLO [9], with the full NLO
fragmentation contributions having just been evaluated [10]. However, pp → γγ receives
a sizeble contribution from NNLO corrections because of the large gluon luminosity of the
subprocess gg → γγ appearing first at NNLO [11]. Thus in order to have a reliable theoret-
ical estimate both the signal and the background need to be determined at least to NNLO
accuracy.

In order to improve the signal-to-background ratio, Higgs production in association with
a high transverse energy (ET ) jet, p p → H jet → γγ jet, has been considered [12]. This
production rate offers the advantage of being more flexible in choosing suitable acceptance
cuts to curb the background. p p → H jet is known to LO exactly [13], while the NLO
corrections [14] have been computed in the infinite top-mass limit. The NLO corrections
to the signal are large. However, it is believed that the background, p p → γγ jet, can
be more reliably calculated because LO production is dominated by the parton subprocess
q g → q γγ, which benefits from the large gluon luminosity, while the subprocess gg →
gγγ, which is believed to dominate the NNLO contribution, yields a comparatively smaller
contribution [11, 15]. Thus, even though the signal, p p → H jet, likely needs be computed
at NNLO accuracy, it should suffice to evaluate the background, p p → γγ jet, at NLO. The
NLO corrections to the background, though, have yet to be computed, with the appropriate
QCD amplitudes having just been evaluated [16].

1.2 NLO algorithms and one-loop amplitudes

In recent years it has become clear how to construct general-purpose algorithms for the
calculation of multijet rates at NLO accuracy. The crucial point is to organise the can-
cellation of the infrared (i.e. collinear and soft) singularities of the QCD amplitudes in a
universal, i.e. process-independent, way. The universal terms in a NLO calculation are
given by the tree-level splitting [17] and eikonal [18, 19] functions, and by the universal
structure of the poles of the one-loop amplitudes [20, 21, 22]. The universal NLO terms and
the process-dependent amplitudes are combined into effective matrix elements, which are
devoid of singularities. The various NLO algorithms (phase-space slicing [20, 23], subtrac-
tion method [21, 24], dipole formalism [25] and subtraction-improved slicing [26]) provide
different methods to construct the effective matrix elements. These can be integrated, an-
alytically or otherwise numerically, in four dimensions. The integration can be performed
with arbitrary experimental acceptance cuts.

Then the remaining work to be performed to calculate a production rate at NLO is
to compute the appropriate tree and one-loop amplitudes. To compute n-jet production
at NLO, two sets of amplitudes are required: a) n-particle production amplitudes at tree
level and one loop; b) (n + 1)-particle production amplitudes at tree level. If the one-loop
amplitudes are regularised through dimensional regularization (DR) by evaluating them in
d = 4−2ǫ dimensions, it suffices at NLO to compute them to O(ǫ0). As an example, in Fig. 1
we show the squared matrix elements which are required to calculate the NLO corrections
to e+e− → 3 jets.
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a) b)

Figure 1: Squared matrix elements which contribute the NLO corrections to e+e− → 3 jets. The
dashed line represents a massive vector boson, γ∗, W, Z. a) interference term between one-loop
and tree amplitudes. The final-state partons are a qq̄ pair and a gluon. b) square of a tree
amplitude. The final-state partons are a qq̄ pair and two gluons, or two qq̄ pairs. In figure b) one
of the partons is unresolved.

Efficient methods based on the color decomposition [27, 28, 29, 30] of an amplitude in
color-ordered subamplitudes, which are then projected onto the helicity states of the ex-
ternal partons, have largely enhanced the ability of computing tree [31] and one-loop [32]
amplitudes. Accordingly, tree amplitudes with up to seven massless partons [31, 33] and
with a vector boson and up to five massless partons [34] have been computed analytically.
In addition, efficient techniques to evaluate numerically tree multi-parton amplitudes have
been introduced [35, 36], and have been used to compute tree amplitudes with up to eleven
massless partons [36]. The calculation of one-loop amplitudes can be reduced to the cal-
culation of one-loop n-point scalar integrals [37, 38]. The reduction method [37] allowed
the computation of one-loop amplitudes with four massless partons [39] and with a vector
boson and three massless partons [40]. However, one-loop scalar integrals present infrared
divergences, induced by the massless external legs. For one-loop multi-parton amplitudes,
the infrared divergences hinder the reduction methods of ref. [37, 38]. This problem has been
overcome in ref. [41]. Accordingly, one-loop amplitudes with five massless partons [42, 43]
and with a vector boson and four massless partons [44] have been computed analytically.
The reduction procedure of ref. [41] has been generalised in ref. [45], where it has been shown
that any one-loop n-point scalar integral, with n > 4, can be reduced to box scalar integrals,
and that in the reduction of n-point tensor integrals, all higher dimensional (d > 4 − 2ǫ)
n-point integrals with n > 4 drop out. The calculation of one-loop multi-parton amplitudes
thus can be pushed a step further in the near future.

1.3 NNLO calculations

Eventually, a procedure similar to the one followed at NLO will permit the construction
of general-purpose algorithms at NNLO accuracy. It is mandatory then to fully investi-
gate the infrared structure of the phase space at NNLO. The universal pieces needed to
organise the cancellation of the infrared singularities are given by the tree-level double-
splitting [46, 47, 29], double-eikonal [19, 48] and splitting-eikonal [46, 48] functions, by the
one-loop splitting [49, 50] and eikonal [49] functions, and by the universal structure of the
poles of the two-loop amplitudes [51]. These universal pieces have yet to be assembled
together, to show the cancellation of the infrared divergences at NNLO.
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a)

c)

b)

d)

Figure 2: Squared matrix elements which contribute the NNLO corrections to e+e− → 3 jets.
The dashed line represents a massive vector boson, γ∗, W, Z. a) interference term between
two-loop and tree amplitudes, and b) square of a one-loop amplitude. In figures a) and b) the
final-state partons are a qq̄ pair and a gluon. c) interference term between one-loop and tree
amplitudes. The final-state partons are a qq̄ pair and two gluons or two qq̄ pairs. One of the
partons is unresolved. d) square of a tree amplitude. The final-state partons are a qq̄ pair and
three gluons, or two qq̄ pairs and a gluon. Two of the partons are unresolved.

Then to compute n-jet production at NNLO, three sets of amplitudes are required: a)
n-particle production amplitudes at tree level, one loop and two loops; b) (n + 1)-particle
production amplitudes at tree level and one loop; c) (n + 2)-particle production amplitudes
at tree level. In Fig. 2 we show the squared matrix elements which are required to calculate
the NNLO corrections to e+e− → 3 jets. In DR at NNLO, the two-loop amplitudes need be
computed to O(ǫ0), while the one-loop amplitudes must be evaluated to O(ǫ2) [49, 52]. The
main challenge is the calculation of the two-loop amplitudes. At present, the only amplitude
known at two loops is the one for V ↔ qq̄ [53], with V a massive vector boson, which
depends only on one kinematic variable. It has been used to evaluate the NNLO corrections
to Drell-Yan production [54] and to deeply inelastic scattering (DIS) [55]. No two-loop
computations exist for configurations involving more than one kinematic variable, except
in the case of maximal supersymmetry [56]. One of the main obstacles for configurations
involving two kinematic variables is the analytic computation of the two-loop four-point
functions with massless external legs, where significant progress has just been achieved.
These consist of planar double-box integrals [57], non-planar double-box integrals [58], single-
box integrals with a bubble insertion on one of the propagators [59] and single-box integrals
with a vertex correction [60]. The two-loop four-point functions with massless external
legs are needed for the computation of two-loop amplitudes in parton-parton scattering.
Finally, the topical processes considered above, i.e. e+e− → 3 jets and p p → H jet sport
configurations involving three kinematic variables and require the analytic computation of
two-loop four-point functions with a massive external leg. The two-loop four-point functions
of this kind with up to five different denominators have been derived recently [61], while
those with six and seven different propagators are still missing. Another obstacle is the
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color decomposition of two-loop amplitudes, which is not known yet. Substantial progress is
expected in the next future on all the issues outlined above, which should make the present
note soon outdated.

Finally, we mention that in the factorization of collinear singularities [62] for strongly-
interacting incoming particles, the evolution of the parton distribution functions (pdf ’s) in
the jet cross section should be determined to an accuracy matching the one of the parton
cross section. For hadroproduction of jets computed at NLO, one needs the NLO, or two-
loop, evolution of the pdf ’s [63, 64, 65]. Accordingly for hadroproduction at NNLO the
evolution of the pdf ’s should be computed to NNLO, or three-loop, accuracy. Except for
the lowest five (four) even-integer moments of the three-loop non-singlet (singlet) splitting
functions [66], no calculation of the NNLO evolution of the pdf ’s exists yet. However, NNLO
analysis based on the finite set of known moments have been performed for xF3 [67, 68] and
F2 (non-singlet [69] and singlet [70]). Furthermore, in ref. [71] a quantitative assessment
of the importance of the yet unknown higher-order terms has been performed, with the
conclusion that they should be numerically significant only for Bjorken-scaling x < 10−2.

The computation of the evolution of the pdf ’s at NNLO accuracy is a main challenge
in QCD. The NLO computation was performed with two different methods, one using the
operator product expansion (OPE) in a covariant gauge [63], the other using the light-cone
axial (LCA) gauge with principal value prescription [64]. However, the prescription used in
ref. [64] has certain shortcomings. Accordingly, the calculation has been repeated in the LCA
gauge using a generally correct prescription [72], which makes it amenable to extensions
beyond NLO. On the other hand, using the OPE method, there had been a problem with
operator mixing in the singlet sector, which has been fixed[65] only recently, and the result
finally coincides with the one obtained in the LCA gauge in ref. [64]. Thus the calculation of
the pdf evolution at NLO accuracy is fully under control. Recent proposals for a calculation
beyond NLO include extensions of the OPE technique, which have been used to recompute
the NNLO corrections to DIS [73], and a computation of the pdf evolution by combining the
universal gauge-invariant collinear pieces [74]. For the two-loop pdf evolution, e.g., they are
the collinear pieces mentioned at the beginning of this section.
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Jet Algorithms

S. Catani and D. Zeppenfeld

1 Jet algorithms

Jet algorithms have the task to assign streams of hadrons in hard scattering processes to
a jet, who’s energy, mass and momentum can then be related to a collection of partons in
a perturbative QCD calculation. Although, at the experimental level, jets can be defined
by using rather general and intuitive procedures, if we would like to compute jet cross
sections and properties by using QCD perturbation theory, the definition of jets should fulfil
stronger constraints to guarantee its perturbative safety. Perturbative safety means that the
definition has to be infrared safe (jet properties cannot depend on the presence of arbitrarily
soft partons), collinear safe (jet properties cannot change by replacing a parton with a set
of collinear partons carrying the same total momentum) and collinearly factorizable (jet
properties should be insensitive to partons radiated collinearly to the beam direction). If
the jet definition is not perturbative safe, we cannot perform calculations order-by-order in
perturbation theory because they are affected by uncancelled infrared divergences. Of course,
in the full QCD theory (i.e. beyond perturbation theory) the perturbative divergences are
regularized by small physical cutoffs related to hadron masses and the finite experimental
resolution (size of calorimeter cells, energy thresholds, etc.). The physical cutoffs are always
present, independently of the jet definition. However, in the case of a perturbative safe
definition, their effects are suppressed by some inverse power of the jet transverse energy
ET , and thus they can be made small by sufficiently increasing ET . This power suppression
is not at work in perturbative unsafe jet definitions, where the effects of the small physical
cutoffs can amount to large corrections (of order unity) to the perturbative results. Thus,
perturbative safe definitions are preferred.

Jet algorithms start from a list of “particles” which we would like to freely associate
with calorimeter cells or hadrons at the experimental level, and with partons in a QCD
calculation. Each particle i carries a 4-momentum pµ

i , which we take to be massless. The
task is to select a set of particles which are emitted close to each other in angle and combine
their momenta to form the momentum of a jet. The selection process is called the “jet
algorithm”, the momentum addition rule is called the “recombination scheme”.

Let us start with a discussion of recombination schemes. In a hadron collider environment
the arbitrary boost of the hard scattering system along the beam axis needs to be taken into
account in the definition of angles to ensure collinear factorizability. This is achieved by using
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transverse momentum, pT =
√

p2
x + p2

y, rapidity y = 1/2 log(E + pz)/(E − pz) and azimuthal

angle φ of the massless particles as the kinematic variables. When adding the massless 4-
vectors of particles we obtain massive objects which only approximately correspond to the
massless partons which we would like to associate with jets at tree level.

One popular choice, the Snowmass convention [1], leaves the question of jet mass open,
by only defining total transverse energy, rapidity and azimuthal angle of a set of parton
momenta, as the ET weighted sums of the individual particle variables. For the original
massless particles ET i = pT i and ηi = yi. The corresponding recombined variables for a
cluster of particles are then given by the total transverse energy

ET =
∑

i

ET i , (1.1)

the cluster pseudorapidity

η =
∑

i

ET i

ET
ηi , (1.2)

and the azimuthal angle of the cluster

φ =
∑

i

ET i

ET
φi . (1.3)

Note that the designation of η as pseudorapidity is purely conventional. It corresponds to
neither the pseudorapidity nor the rapidity of the massive cluster and is approximately equal
to either only in the limit of small cluster mass (<< ET ). The concomitant loss of Lorenz
invariance is a serious disadvantage of the Snowmass convention. Another serious problem
appears in resummation calculations (see Sect. 2): the kinematic boundary of jet ET shifts
(from

√
ŝ/2 in e.g. dijet kinematics) when including additional final state partons.

Because of these shortcomings we formulate all jet algorithms in the 4-momentum re-
combination scheme (also called E-scheme) in the following, i.e. the kinematic variables of
a cluster of particles is given by direct addition of the 4-momenta of the individual massless
particles:

pµ = (E, px, py, pz) =
∑

i

pµ
i . (1.4)

Since the resulting clusters have a clearly defined mass, we must distinguish transverse energy
ET from transverse momentum pT , and pseudorapidity η from rapidity y. We define

pT =
√

p2
x + p2

y , φ = tan−1 px

py

, y =
1

2
log

E + pz

E − pz

, (1.5)

The rapidity y and azimuthal φ should be used as the legoplot position of the jet when
calculating its separation from other particles or jets. Auxiliary quantities are

θ = cos−1 pz√
p2

x + p2
y + p2

z

, ET = E sin θ , η = − log tan
θ

2
. (1.6)

133



1.1 The kT algorithm

The kT algorithm [2] is a successive recombination algorithm. The idea is to recombine
particles with nearly parallel momenta, beginning with the softest particles in the sample.
This recombination stops once all clusters of particles are separated by a distance larger
than D in the legoplot. The kT algorithm starts from a list of protojets and their momenta,
pµ

i , which in the beginning consists of the list of all particles:

(1) For each protojet i define
di = E2

T i (1.7)

and for each pair of protojets i, j define a distance

dij = min(E2
T i, E

2
Tj)

(yi − yj)
2 + (φi − φj)

2

D2
. (1.8)

(2) Find the smallest of all di and dij and call it dmin.

(3) If dmin is dij then merge protojets i and j to form a new protojet k of momentum

pµ
k = pµ

i + pµ
j (1.9)

(4) If dmin is di then remove protojet i from the protojet list and move it to the list of
completed jets.

(5) Continue with step 1 until the list of protojets is empty.

The algorithm is infrared safe because it renders all soft partons harmless: it either takes
them off the protojet list or it combines them with nearby harder partons. The only effect
of the soft parton then is a shift in the momentum of the recombined cluster. However,
this shift is small, disappearing in the infrared limit, which guarantees infrared safety. Also
for collinear emission the algorithm is safe, because in the limit of zero angle between two
partons, these two will have the smallest dij and will thus be combined early on in the
recombination process, thus restoring the momentum of the almost on-shell parton from
which they originated by splitting. Finally, every original particle is assigned to exactly one
jet, i.e. there are no splitting/merging issues to be resolved for the kT algorithm.

1.2 ILCA: an infrared safe cone algorithm

Cone algorithms are intended to cluster all energy within a given radius, R, around a point
in the legoplot, to form jets. Naively, this procedure is both infrared and collinear safe: the
effect of infrared radiation on the cluster momentum vanishes in the infrared limit, and the
energy measured for the jet is the same whether a single particle is at the core of the cone
or whether there has been collinear splitting. This naive expectation can easily be violated,
however, by the prescription for selecting cones. Two examples illustrate this point [3].
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Assume that cones are constructed around actual energy depositions only. In Fig. 1(a)
two particles are emitted at a distance greater than the cone radius R but smaller than
2R and therefore are assigned to separate cones, which are then identified as two distinct
jets. The only difference in Fig. 1(b) is the emission of a third soft particle (a “soft gluon”)
between the original two particles. Now the additional cone around the soft energy deposition
encompasses all three particles and they will be classified as a single jet. The presence of
a soft particle changes the classification of a hard event: this is an example for an infrared
unsafe algorithm. In perturbation theory, at sufficiently high order, an arbitrary number
of soft gluons will be radiated, hence, cones should be allowed anywhere in phase space to
anticipate this feature of higher order corrections. An arbitrary restriction on allowed cone
positions may lead to an infrared unsafe algorithm.

Figure 1: Example for a situation which can lead to infrared problems in an unsafe cone
algorithm.

Similarly, an infinite number of collinear splittings occurs at higher order in perturbation
theory. A possible collinear problem, resulting from ET ordering of particles, is illustrated
in Fig. 2. The difference between the two situations is that the central (hardest) parton may
split into two almost collinear partons. On the left-hand-side the distance between the lateral
partons is larger than R but the three hard partons all fall within a cone of radius R around
the central parton, which happens to have the largest ET . As a result, all three partons are
recombined to a single jet. Collinear splitting renders the right hand parton to be the one
with the largest ET . Drawing the first cone around the highest ET parton will recombine
it with the two central partons and a separate jet is likely to be assigned to the remaining
fourth parton. A differing jet number which depends on the presence or absence of collinear
splitting must be avoided because the incomplete cancellation of the logarithmic divergences
of real emission and virtual contributions will lead to a collinear unsafe jet algorithm. One
can eliminate such ambiguities by making the selection or ordering of jet definition cones
independent of the ET of individual particles. Also, allowing trial cones anywhere in phase
space would have made the two situations in Fig. 2 more similar: allowing cones centered
between the central and the outside partons from the start would lead to a more similar jet
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Figure 2: Example for a situation which can lead to collinear problems in an unsafe cone
algorithm.

identification in the two cases.
The above considerations lead us to consider a cone algorithm which allows trial cones

to be positioned anywhere in phase space, irrespective of the transverse momentum carried
by individual particles or calorimeter cells. We start by formulating this seed-less algorithm
at the calorimeter level, where the basic entities are calorimeter towers.

(0) Make a list of all calorimeter towers.

(1) Select the next tower on the list as the center of a trial cone of radius R.
Goto (4) if the list of towers is exhausted.

(2) Add the momenta of all towers inside the trial cone and determine the legoplot position
(y, φ) corresponding to this momentum.

(3) If this position is outside the selected tower, discard the trial cone and go to (1).
If (y, φ) is inside the selected tower, add the set of towers inside the trial cone as a new
entry to the list of protojets.

At this stage we have a list of protojets, and we need to split/merge them to make jets.

(4) Select the highest ET protojet remaining on the list. (If the list is exhausted jet
identification for the event is complete.)
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(5) Does the selected protojet share any towers with other protojets?

(5.a) No: Move protojet to list of jets and continue with (4).

(5.b) Yes: Find the highest ET protojet that shares towers with the selected protojet.
(Call this the neighbor protojet.) Decide whether the ET in the shared cells is
greater than a fraction f of the ET in the neighbor protojet.

(5.b.1) No: Split the shared towers.

(5.b.1.a) Allocate shared towers to either the selected or the neighbor protojet
depending on which jet center is closer.

(5.b.1.b) Calculate the new momenta for the modified protojets, i.e. their ET , and
legoplot positions (y, φ). Continue with step (4).

(5.b.2) Yes: Merge the selected and neighbor protojets to form a new protojet.
Add the momenta of both protojets and determine the total ET and and the
legoplot position (y, φ). Continue with step (4).

The procedure that defines the list of protojets is infrared and collinear safe. The additional
steps completely define how to solve the problem of overlapping cones. The critical overlap
fraction f is a free parameter of the algorithm and may be chosen as 50%, similar to the
D0 choice in run I of the Tevatron (CDF uses 75%). The ET -ordering of protojets in this
split/merge step does not introduce collinear problems provided the cone size R is chosen
sufficiently large.

The definition of calorimeter towers, i.e. a discretization of (y, φ) space, would be cumber-
some in a theoretical calculation, and is indeed not necessary. In a perturbative calculation
at fixed order, the maximal number, n, of partons is fixed. The only possible positions of
stable cones are then given by the partitions of the n parton momenta, i.e. there are at most
2n − 1 possible locations of protojets. They are given by the legoplot positions of individual
partons, all pairs of partons, all combinations of three partons etc. In a perturbative calcu-
lation, e.g. via a NLO Monte Carlo program, the protojet selection of the seedless algorithm
(steps (0) to (3) above) can then be replaced as follows:

(0) Make a list of all possible cone centers. These are the legoplot coordinates of all parton
momenta pi, of all pairs of parton momenta pi + pj, of all triplets of parton momenta
pi + pj + pk, etc. For each cone center record which set of partons defines it.

(1) Select the next cone center on the list as the center of a trial cone of radius R.
Goto (4) if the list of cone centers is exhausted.

(2) Add the momenta of all partons inside the trial cone and determine the legoplot posi-
tion (y, φ) corresponding to this momentum.

(3) If this position is different from the trial cone center, i.e. if the cone center record and
the list of partons inside the trial cone disagree, discard the trial cone and go to (1).
If (y, φ) is the trial cone center, add the set of partons inside the trial cone as a new
entry to the list of protojets.
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As before, different protojets may share partons, i.e. they may overlap. The required
split/merge step is then identical to the calorimeter level steps (4) and (5), with towers
replaced by partons as elements of protojets.

In an actual experiment the number of calorimeter towers may be very large (order 6000
for tower sizes of ∆η × ∆φ = 0.1 × 0.1 and an η coverage of ±5 units of pseudorapidity).
The calorimeter level algorithm may then be rather slow computationally. The question
arises whether an acceptable approximation of the seedless algorithm can be constructed,
analogous to the parton level short-cut, by considering only those towers which have energy
depositions above a minimal seed threshold. One would like to replace the list of parton
momenta above by the list of tower momenta with

pT i > ET,seed . (1.10)

Since the algorithm is infrared and collinear safe when ET,seed = 0, it is always possible to
chose the seed threshold ET,seed low enough so that variations of ET,seed lead to negligeable
variations in any observable under consideration.

One would like to include in the determination of jet momenta all towers, of course,
which lie inside the cone of radius R around the protojet axis. This requires an additional
iteration of the cone axis in the parton level algorithm when a seed threshold is imposed.
The steps leading to the definition of protojets can then be modified as follows:

(0) Make a list of all possible cone centers. These are the legoplot coordinates of all
parton/tower momenta pi with pT i > ET,seed, of all pairs of such parton/tower momenta
pi + pj , of all triplets pi + pj + pk, etc.

(1) Select the next cone center on the list as the center of a trial cone of radius R.
Goto (3) if the list of cone centers is exhausted.

(2) Add the momenta of all partons/towers inside the trial cone (also those with pT i <
ET,seed) and determine the legoplot position (y, φ) corresponding to this cone momen-
tum. Use (y, φ) as the new center of the trial cone and iterate this step until the
position is stable. The set of all towers/partons inside the final trial cone constitutes
a new protojet. Continue with step (1).

(3) Eliminate all duplicate protojets, i.e. protojets with an identical set of towers/partons.

With these changes, the resulting algorithm (named Improved Legacy Cone Algorithm or
ILCA) is quite close to those used in run I of the Tevatron. The main change is the inclusion of
midpoints of seeds (the pi + pj pairs) and of centers of larger numbers of seeds as additional
seed locations for trial cones. Including these additional midpoints is absolutely crucial
in perturbative calculations in order to achieve infrared safety (see discussion on Fig. 1).
When dealing with data, these effects are somewhat diminished, because with sufficiently
low seed thresholds ET,seed, a large number of trial cones will be generated from actual soft
energy depositions in the calorimeter. However, because these soft energy depositions will
decide how many jets are reconstructed, one potentially introduces a high sensitivity of jet
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observables to soft hadrons, Monte Carlo modelling of soft particles etc. The inclusion of
the extra midpoints eliminates these soft effects because observables no longer depend on
whether soft emission actually took place.

2 Resummed calculations

The ILCA and kT -algorithm eventually lead to jets whose topology is not extremely different
from that expected on the basis of a naive definition in terms of cones in azimuth-rapidity
space. This is obviously true for the ILCA, where jets can contain particles whose dis-
tance is smaller than 2R and have a shape that differs from a cone-shape only because of
the merging/splitting procedure. In the kT -algorithm, jets have no sharp boundaries, but
opening angles of particles within each jet are, typically, smaller than D and all opening
angles between jets are larger than D. The detailed jet structure is, however, different in the
two algorithms. Although both algorithms are perturbative safe, the differences show up in
higher-order perturbative calculations.

Higher-order perturbative computations and, in particular, resummed calculations can
be necessary in special kinematics configurations that lead to large logarithmically-enhanced
contributions at any fixed order in perturbation theory. Typical examples are calculations
of jet cross sections near the phase-space boundary and of the fine internal structure of
jets (shape variables, subjets, etc.). These quantities can be strongly dependent on the
jet definition. The corresponding perturbative calculations do strongly depend on the jet
definition, because they are the result of the integration of the QCD matrix elements (which
do not depend on jets) over phase-space regions whose boundaries depend on the fine details
of jet kinematics.

As an example of this strong sensitivity, we can consider the one-jet inclusive cross section
as a function of the transverse momentum pT of the jet. If the jet variable pT is defined
by using the 4-momentum recombination scheme (see Eqs. (1.4)–(1.6)), the kinematical
boundary is xT ≤ 1, where xT = 2pT /

√
S. Close to the boundary xT ∼ 1, the perturbative

contributions are enhanced by large logarithmic corrections (αS log2(1 − xT ))n that need to
be resummed to all orders in αS. Techniques to perform this resummation can be developed
(see below). However, if the jet variable pT is defined by using a recombination scheme that
does not conserve the 4-momentum (e.g. the true pT in Eq. (1.5) is replaced by the variable
ET in Eq. (1.1)), the kinematical boundary for xT , although close to xT = 1, is not fixed:
the corresponding large logarithms cannot be resummed because the xT -boundary shifts in
a complicated manner depending on the number of final-state partons in the calculation [4].

The feasibility of resummed calculations depends not only on the recombination scheme
but also on the jet algorithm, as is well known for jets in e+e− annihilation [5]. The jet
definition of the kT -algorithm is inspired by the parton shower picture of jet fragmentation [2].
Thus resummed calculations can be carried out by using the analytic version of the recurrence
techniques used to generate multiparton final states in Monte Carlo parton showers. This is
demonstrated by explicit calculations of subjet multiplicity and rates in hadron collisions [6].
The ILCA has still to be investigated in this respect. The two algorithms differ only slightly
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at highly inclusive level [2]. Thus, in these cases (such as the large-xT behaviour of the one-
jet inclusive cross section), resummed calculations in the ILCA should be feasible as in the
kT -algorithm. Studies of the internal structure of ILCA jets may instead be more difficult
since it depends on the procedure to merge/split overlapping jets.

3 Conclusions

During the Les Houches workshop discussions were centered on the general properties of jet
algorithms, in particular their infrared and collinear safety at the perturbative level. The kT -
algorithm and the seedless cone algorithm described in Section 1.2 fulfil these requirements.
Beyond these theoretical concerns there are many experimental issues which need to be
addressed to obtain a practical algorithm. Among these are ease of energy calibration, effects
of underlying event and overlapping events in a high luminosity hadron collider environment,
high jet reconstruction efficiency, and efficient use of computer resources in reconstructing
jets. These issues have been addressed in a parallel study, during the Run II QCD Workshop
at Fermilab [7]. In particular it has been shown that the ILCA produces small corrections
only, when compared with the jet algorithms used in run I of the Tevatron. We refer the
reader to the Proceedings of the Run II Workshop for a detailed study of these effects.
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A Study of the Underlying Event in Jet and Minimum
Bias Events

J. Huston and V. Tano

Abstract

In order to determine more accurately the energy contribution in a jet cone due to
the underlying event, and in order to understand better the ambient event environment
at both the Tevatron and the LHC, we have studied the energy distribution in a cone
of radius 0.7 in both jet and in minimum bias events. We have compared the results
from CDF data from Run 1b with results from HERWIG passed through the detector
simulation program QFL [1].

1 Introduction

Due to the importance of the inclusive jet cross section as a test of perturbative QCD over
a wide range of Q2 values, it is necessary to carefully consider all systematic effects that
influence its measurement. In addition to the hard interaction that produces the jets in the
final state there is also an underlying event, originating mostly from soft spectator parton
interactions. Because of the softness of the scale, their contribution cannot be perturbatively
calculated. There may also be a contribution due to semi − hard interactions between
spectator partons, which create mini− jets at transverse momenta almost large enough for
perturbative calculations, but much smaller than that of the primary interaction responsible
for the highest ET jets in the event. This process is known as double parton scattering. Both
of the above processes, as well as higher order radiation from the 2→2 hard subprocess [2],
contribute to the underlying event.

The experimental cross sections are most commonly compared to theoretical calculations
at next-to-leading order (NLO) in the coupling constant αs, such as JETRAD [3] or EKS [4].
At NLO, there can be at most 3 partons in the final state, leading to the presence of either
2 or 3 jets, depending on whether the third parton is present in the final state and whether
it ends up being clustered with one of the other two partons. As the jet clustering is based
on a fixed cone algorithm, the contribution due to the underlying event must be subtracted
from the jet cone, in order to compare the results with NLO QCD calculations. As will be
seen below, one of the largest sources of systematic error for the inclusive jet cross section
at low ET is due to the uncertainty on the subtraction of this underlying event.
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The current ‘paradigm’ 1 is that the underlying event in jet events is similar to the
average energy level found in ‘active’ minimum bias events. Thus, this energy level needs to
be determined and subtracted from the energy in a jet cone before the jet data is compared
to NLO theory predictions. CDF assumes an uncertainty of 30% on this underlying event
subtraction which makes it the dominant error at low ET .

The flip side of the above ‘paradigm’ is that the underlying event energy in a jet event
(once the two leading jets have been subtracted) should be the sum of the minimum bias
level contribution and the third parton in the NLO calculation. The preliminary results of
a study in CDF designed to test the accuracy of these assumptions are described in this
section.

In this section, the experimental results will be compared to the HERWIG [5] Monte Carlo
which has the 2 → 2 matrix elements for jet production, parton showering in the initial
and final state, and a model for the underlying event. The ultimate result from HERWIG

consists of the 4-vectors of the final state hadrons. In HERWIG the soft underlying event in
the hadron-hadron collision is assumed to be a soft collision between the two ‘beam clusters’,
which contain the spectators from the incoming hadrons. The model for the simulation of
underlying event uses the pp̄ event generator from the UA5 Collaboration, which is modified
to make use of the HERWIG fragmentation algorithm.

The results from HERWIG can be quoted at the parton level (excluding the soft underlying
event portion), the hadron level and/or comparisons can be made at the detector level after
the Monte Carlo hadrons are passed through the CDF detector simulation program QFL
[6]. For most of the results that we will be reporting, the QFL comparisons will be crucial.

To summarize, the purpose of this analysis is to examine in detail the underlying event
in jet events and to understand whether the amount subtracted from the jet cones is correct
and whether the uncertainty assumed can be reduced. In addition, a test will be made as
to how well HERWIG models the underlying event energy in jet events as well as in minimum
bias events.

2 Underlying Energy at 90
0 in jet events

Events generated with HERWIG were passed through QFL. The HERWIG code was adapted to
produce the same information as found in the data samples. This information includes the
energy, the position and the number of calorimeter towers of the jets in the event, together
with the energy and the number of towers in two cones situated at ±900 in φ and at the
same η as the leading jet. φ and η are respectively the azimuthal and polar angle.

For each jet event, two cones of radius 0.7 at η = ηLeadJet and φ = φLeadJet ± π
2

were
examined. The energy in each cone was determined for two different calorimeter tower
thresholds: 50 and 100 MeV. A cut of 100 MeV on tower energies is typically used for jet
analyses. For most of the comparisons to follow, a 50 MeV cut was used, though, since
we are interested in possible contributions to the tower energies from a number of different
sources. The two cones were used to study the underlying event energy because they are

1Dave Soper claims that this term is vastly overused but we choose to employ it anyway.
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Figure 1: An example of the cones under investigation in the central calorimeter region. The
dotted cones are at η = ηLeadJet and φ = φLeadJet ± π

2
, while dashed cones are at η = −ηLeadJet

and φ = φLeadJet ± π
2
. |η| < 1., 00 < φ < 3600.

supposed to be in a semi-quiet region, far away from the two leading jets, but still in the
central rapidity region. Given the non-uniform response of the CDF detector as a function
of rapidity, the latter criterion is essential. The leading jet was required to be in the central
region, |η| < 0.7, the same as in the inclusive jet analysis. No requirement was made on the
location of the second jet. In Fig 1 the calorimeter central region is shown as ‘unrolled’; η
ranges are between -1 and +1, while φ goes from 00 to 3600. The leading jet cone and the
two cones under study are shown.

The ET distributions inside the two cones provide an idea of the contribution of the
underlying event in the jet cone. For each event the cone which has the maximum energy and
the cone with the minimum energy were labelled. This is useful because NLO perturbative
corrections to the 2 → 2 hard scattering can contribute only to one of these two regions
[8]. The difference between the maximum and the minimum cone provides information on
this contribution, while the minimum cone gives an indication of the amount of underlying
event. The (roughly constant) underlying event contribution should be suppressed in the
difference.

The data were required to have one and only one vertex in order to insure that there is
only one interaction per event. A similar cut was made in the simulation. In Figure 2 the
transverse energy inside the two cones (max and min) is plotted as a function of the ET of
the leading jet. It can be clearly observed that HERWIG and the data have a similar behaviour
for the max and min cone; the min cone stays flat while the max cone increases with the
ET of the leading jet. The increase of the max cone energy with increasing jet ET is easily
understandable. What may be surprising is the flatness of the min cone energy as the lead
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Figure 2: ET inside the max and min cones as a function of the ET of leading jet. Both the
data and HERWIG distributions are plotted.

jet transverse energy increases. Contrary to the pronouncements of some of the politicians
of our day, a rising tide does not raise all boats (or cones), but instead favors the cone in the
highest tax bracket. Of course, the division into a max and min cone partially encourages
this effect through selection. However, the level of flatness is still somewhat surprising.

It is evident that there is an offset between data and the HERWIG+QFL simulation of
about 800 MeV for the max cone and 500 MeV for the min cone. If the tower threshold is
increased from 50 to 100 MeV, the transverse energy decreases by about 180 MeV in the
data (both cones), while in HERWIG the transverse energy decreases by about 70 MeV in the
max cone and 40 MeV in the min cone.

The difference between the transverse energy in the max and in the min cones has a
similar trend in both data and simulation(Figure 3). There is still an offset but the offset
decreases to about 300 MeV. It appears that the max-min distribution starts going down
again at very high ET (perhaps due to kinematic suppression), although the statistics become
poor.

In Figure 4 the ET frequency distributions for data and HERWIG+QFL are compared for
four different jet sub-samples. In this plot, the ET values for max-min are plotted, for both
data and HERWIG+QFL. The number of entries is scaled to easily allow a direct comparison.
The ET distribution of the max-min cone for HERWIG+QFL looks very similar to that of the
data. Here the contribution of the underlying event as minimum bias data is presumably
removed.
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Figure 3: The difference between ET inside the max and min cones as a function of the ET of
the leading jet. Both the data and HERWIG distributions are plotted.
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Figure 4: The frequency distribution for the difference between ET in the max cone and ET in
the min cone. Solid line: data, dashed line: HERWIG. The calorimeter tower energy threshold is
50 MeV.
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Figure 5: The parton-hadron-detector level for ET in the max cone is plotted as a function of
the ET of the leading jet. The underlying event in HERWIG is switched off.

2.1 Parton-Hadron-Detector level

With HERWIG (unlike the data), we have the advantage of being able to examine the energy
distributions not only at the detector level, but also at the hadron and parton levels. The
HERWIG model for the soft underlying event, though, does not show any effect at the parton
level because the energy contribution is calculated directly at the hadron level. In the
following discussion, in order to examine the differences between hadron, detector and parton
level, the underlying event in HERWIG has been switched off.

Figures 5 and 6 show the transverse energy inside the max and min cones at η = ηLeadJet

and φ = φLeadJet ± π
2

as a function of the leading jet transverse energy at the parton, hadron
and detector level. The lead jet is always in the central region. Because of the degradation
due to the detector response, the amount of energy is higher at the hadron level than at the
detector level.

It is also interesting to note that the hadron level energy is larger than the parton level
energy, by the order of several hundred MeV. This is due to hadronization effects of the
partons produced in or near the lead and second jet cones. Most of the hadronization effects
come from resonance production (ρ, A1, A2, ...) and their subsequent decays. The hadroniza-
tion effects from the partons inside the jet cone have previously been termed “splashout”.
It is important to note that this splashout is not currently taken into account in either the
CDF or D0 jet analyses. Both experiments implicitly assume that the hadron and parton
levels produce the same energy in the jet cone. This is especially relevant for low ET jet
production.

In order to evaluate to what level resonance decays influence the energy inside the two
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Figure 6: The hadron-parton-detector level for ET in the min cone is plotted as a function of
the ET of the leading jet. The underlying event in HERWIG is switched off. Note that the ET at
the hadron level is always greater than the ET at the parton level.

cones at 900 from the leading jet, all resonance decays are switched off and the energy in the
cones were examined at both the parton and the hadron level. The difference of ET inside
the min cone (between hadron and parton level) decreases from an average of 300 MeV to
100 MeV, while the difference in the max cone goes from 500 MeV to 100 MeV.

3 Underlying Energy in minimum bias events

The model used in HERWIG to simulate minimum bias events is the same as used for the soft
underlying energy in hard scattering events. Minimum bias events were studied in order to
see if the reason for the offset observed between the data and simulation results from the
HERWIG description of the soft underlying event. The minimum bias events generated with
HERWIG were passed through the detector simulation program QFL and the information on
the energy released in the calorimeter towers stored.

The amount of transverse energy in the calorimeter, in a random cone of radius 0.7
that is required to be in the central region (|η| < 0.7), was determined. The transverse
energy distributions for the two different tower thresholds are summarized in Table 1 where
a comparison with data also can be found.

The offset of about 650 MeV between data and HERWIG is slightly higher than the one
found comparing the min cones in the jet events.
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Table 1: A comparison of data and HERWIG for minimum bias events. The average amount of
transverse energy in a cone of radius 0.7 is shown. Thresholds are in Mev, results are in GeV.

Thresholds DATA HERWIG DATA-HERWIG
50 1.05 .37 .68
100 .92 .35 .57

4 ET summed in the central region (Swiss Cheese)

For these comparisons, the transverse energy in every calorimeter tower in the central region
(|η| < 1) is summed, excluding the towers in a radius 0.7 from the center of the two (or
three) most energetic jets in the event:

Sum of ET =
∑

towers

Etowers
T −

∑

2/3jets

[
∑

towers

E
towersjet

T

]

where E
towersjet

T are all the towers in a radius 0.7 from the center of the jet. We require
ETJet > 5 GeV. This configuration has been labelled ‘Swiss cheese’ 2.

There are an average of between 2 and 2.5 jets in the central rapidity region, with this
average having a slight slope as a function of the lead jet transverse energy. The Swiss
cheese energy in the central region is plotted in Fig 7 at the hadron, parton and detector
level. The approximate minimum bias level for HERWIG and data is shown with a flat line
on the picture. In the simple picture presented earlier, and on which the CDF and D0 jet
analyses are based, the difference between the Swiss cheese energy with two jets subtracted
and the minimum bias level should be proportional to the NLO (third parton) contribution.
The Swiss cheese level with three jets subtracted should have little or no NLO contribution
and can be directly compared to the minimum bias data level. The 3-jet subtracted Swiss
cheese energy is larger than the minimum bias level and there is a small slope as a function
of the lead jet ET (the offset varies from 6-8 GeV over the ET range). This indicates perhaps
that there is more complexity here than in the simple picture. Other possible contributions
to the Swiss cheese energy include hadronization from the jets (“splashout”), double parton
scattering and higher order radiation effects.

As was done for the min and max cone studies, the underlying event in HERWIG can
be switched off and the hadron/detector level in the Swiss Cheese plots compared when
the resonance decay is not allowed. At the hadron level, when the resonance decay is not
allowed, we find about 1.5 GeV energy less then when allowing the resonance decay. This
implies a 600-700 MeV contribution of splashout per jet (again at the detector level) to the
Swiss cheese energy.

The comparison of the Swiss cheese results for the data and HERWIG+QFL is complex
and its interpretation is continuing.

2Or specifically Emmental
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Figure 7: Sum of ET . The two and three most energetic jets in the events are subtracted from
the total transverse energy in the central calorimeter region. Both data and HERWIG results are
shown.

5 Conclusions and where do we go from here

The energy from the underlying event is not perturbatively calculable and must be subtracted
from a jet cone in order for comparisons to be made to NLO calculations. Because of the
ambiguous definition of what constitutes this underlying event, a relatively large uncertainty
has been assigned to the value of this subtraction. In order to study the underlying event,
we have considered two cones in the calorimeter far away from the leading jet and we
examined the energy in the cones, both in the CDF data and with the HERWIG simulation.
We discovered that both the data and HERWIG exhibited a similar behaviour for the max
and the min cone; the min cone stays flat, while the max cone increases as a function of
the leading jet ET . There is an offset, however, of about 500 MeV for the min and of 800
MeV for the max cone between data and HERWIG. If we examine the difference between the
max and min cones, where the underlying event energy contribution should be minimized,
we find very similar distributions for data and HERWIG. In minimum bias, the HERWIG model
predicts a level of energy substantially below the one found in minimum bias data (400 MeV
compared to 1 GeV). Part of this difference is due to the lack of any kind of hard interaction
in the minimum bias model.

With HERWIG we investigated max/min cone distributions at the parton, hadron and
detector level and we found out that the energy inside the cones is higher at the hadron then
at the parton level. This is mainly due to resonance decay.

An improved understanding of the underlying event is desired for a number of reasons:

• The underlying event subtraction is the largest uncertainty for the jet cross section
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at low transverse energy (below 60 GeV). In order to have a good comparison of the
data with theory, a better understanding of the proper level of this subtraction must
be obtained. This uncertainty is especially important for the measurement of the jet
cross section at 630 GeV, since most of the data points are below 60 GeV, and similar
considerations to those at 1800 GeV also apply.

• This analysis probes the interface between perturbative and non-perturbative QCD,
an arena where a great deal of work still needs to be done.

• The authors of the Monte Carlo programs are trying to predict the environments for
physics measurements at the LHC. This can be difficult/uncertain without the proper
understanding of what is happening at the Tevatron.

This analysis will be extended to the jet and minimum bias data taken at 630 GeV
by CDF. It will be especially interesting to observe the level of agreement of the HERWIG

minimum bias predictions with the CDF data, given that the HERWIG model parameters
were determined from the UA5 taken at a similar energy. It may be that there is an increase
in the semi-hard component of minimum bias energy when going from 630 to 1800 GeV.
After the comparisons at 630 and 1800 GeV are complete, extrapolations will made made
to LHC energies for the underlying event in both jet and minimum bias events.
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Isolated Photon Production

S. Frixione and W. Vogelsang

1 Isolated-photon production

1.1 General features of photon production at colliders

When mentioning the photon in the framework of high-energy collider physics, one is imme-
diately led to think – with good reasons – to Higgs searches through the gold-plated channel
H → γγ. However, the production of photons also deserves attention on its own. Firstly, a
detailed understanding of the continuum two-photon production is crucial in order to clearly
disentangle any Higgs signals from the background. Secondly, in hadronic collisions, where
a very large number of strong-interacting particles is produced, photon signals are relatively
clean, since the photon directly couples only to quarks. Therefore, prompt-photon data can
be used to study the underlying parton dynamics, in a complementary way with respect to
analogous studies performed with hadrons or jets. For the same reason, these data represent
a very important tool in the determination of the gluon density in the proton, g(x). Indeed,
in recent years almost all the direct information (that is, not obtained through scaling viola-
tions as predicted by Altarelli-Parisi equations) on the intermediate- and high-x behaviour
of g(x) came from prompt-photon production, pp → γX and pN → γX, in fixed-target
experiments. The main reason for this is that, at leading order, a photon in the final state
is produced in the reactions qg → γq and qq̄ → γg, with the contribution of the former
subprocess being obviously sensitive to the gluon and usually dominant over that of the
latter. It is the ‘point-like’ coupling of the photon to the quark in these subprocesses that is
responsible for a much cleaner signal than, say, for the inclusive production of a π0, which
proceeds necessarily through a fragmentation process.

There is, however, a big flaw in the arguments given above. In fact, photons can also
be produced through a fragmentation process, in which a parton, scattered or produced in
a QCD reaction, fragments into a photon plus a number of hadrons. The problem with the
fragmentation component in the prompt-photon reaction is twofold: first, it introduces in the
cross section a dependence upon non-perturbative fragmentation functions, similar to those
relevant in the case of single-hadron production, which are not calculable in perturbative
QCD and are, at present, very poorly determined by the sparse LEP data available. Sec-
ondly, all QCD partonic reactions contribute to the fragmentation component; thus, when
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addressing the problem of the determination of the gluon density, the advantage of having
a priori only one partonic reaction (qq̄ → γg) competing with the signal (qg → γq) is lost,
even though some of the subprocesses relevant to the fragmentation part at the same time
result from a gluon in the initial state.

The relative contribution of the fragmentation component with respect to the direct
component (where the photon participates in the short-distance, hard-scattering process) is
larger the larger the center-of-mass energy and the smaller the final-state transverse momen-
tum 1: at the LHC, for transverse momenta of the order of few tens of GeV, it can become
dominant. However, here the situation is saved by the so-called ‘isolation’ cut, which is
imposed on the photon signal in experiments. Isolation is an experimental necessity: in a
hadronic environment the study of photons in the final state is complicated by the abundance
of π0’s, eventually decaying into pairs of γ’s. The isolation cut simply serves to improve the
signal-to-noise ratio: if a given neighbourhood of the photon is free of energetic hadron
tracks, the event is kept; it is rejected otherwise. Fortunately, by requiring the photon to
be isolated, one also severely reduces the contribution of the fragmentation part to the cross
section. This is because fragmentation is an essentially collinear process: therefore, photons
resulting from parton fragmentation are usually accompanied by hadrons, and are therefore
bound to be rejected after the imposition of an isolation cut.

Thus, the fragmentation contribution, that threatened to spoil the cleanliness of the
photon signals at colliders, is relatively well under control in the case of isolated-photon
cross sections. There is of course a price to pay for this gain: the isolation condition poses
additional problems in the theoretical computations, which are not present in the case of
fully-inclusive photon cross sections. This topic will be the argument of the next subsection.

1.2 Isolation prescriptions

Consistently with what written above, we write the cross section for the production of an
isolated-photon in hadronic collisions as follows:

dσAB(KA, KB; Kγ) =∫
dx1dx2f

(A)
a (x1, µF )f

(B)
b (x2, µF )dσ̂isol

ab,γ(x1KA, x2KB; Kγ ; µR, µF , µγ)

+
∫

dx1dx2dzf (A)
a (x1, µ

′
F
)f

(B)
b (x2, µ

′
F
)dσ̂isol

ab,c(x1KA, x2KB; Kγ/z; µ′
R
, µ′

F
, µγ)D

(c)
γ (z, µγ),(1.1)

where A and B are the incoming hadrons, with momenta KA and KB respectively, and a sum
over the parton indices a, b and c is understood. In the first term on the RHS of eq. (1.1) (the
direct component) the subtracted partonic cross sections dσ̂isol

ab,γ get contributions from all the
diagrams with a photon leg. On the other hand, the subtracted partonic cross sections dσ̂isol

ab,c

appearing in the second term on the RHS of eq. (1.1) (the fragmentation component), get
contribution from the pure QCD diagrams, with one of the partons eventually fragmenting

1Actually, in the fixed-target pp → γX reaction, one can see the fragmentation component increasing
relatively to the direct one also at very large pTγ , because of the direct cross section dying out very quickly
at such momenta. This effect is of no phenomenological relevance at the LHC.
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in a photon, in a way described by the parton-to-photon fragmentation function D(c)
γ . As the

notation in eq. (1.1) indicates, the isolation condition is embedded into the partonic cross
sections.

It is a well-known fact that, in perturbative QCD beyond leading order, and for all the
isolation prescriptions known at present, with the exception of that of ref. [2], neither the
direct nor the fragmentation components are separately well defined at any fixed order in
perturbation theory: only their sum is physically meaningful. In fact, the direct component
is affected by quark-to-photon collinear divergences, which are subtracted by the bare frag-
mentation function that appears in the unsubtracted fragmentation component. Of course,
this subtraction is arbitrary as far as finite terms are concerned. This is formally expressed
in eq. (1.1) by the presence of the same scale µγ in both the direct and fragmentation
components: a finite piece may be either included in the former or in the latter, without
affecting the physical predictions. The need for introducing a fragmentation contribution is
physically better motivated from the fact that a QCD hard scattering process may produce,
again through a fragmentation process, a ρ meson that has the same quantum numbers as
the photon and can thus convert into a photon, leading to the same signal.

As far as the isolation prescriptions are concerned, here we will restrict to those belonging
to the class that can be denoted as ‘cone isolations’ [1]. In the framework of hadronic
collisions, where the need for invariance under longitudinal boosts suggests not to define
physical quantities in terms of angles, the cone is drawn in the pseudorapidity–azimuthal
angle plane, and corresponds to the set of points

CR =
{
(η, φ) |

√
(η − ηγ)2 + (φ − φγ)2 ≤ R

}
, (1.2)

where ηγ and φγ are the pseudorapidity and azimuthal angle of the photon, respectively,
and R is the aperture (or half-angle) of the cone. After having drawn the cone, one has to
actually impose the isolation condition. We consider here two sub-classes of cone isolation,
whose difference lies mainly in the behaviour of the fragmentation component. Prior to
that, we need to define the total amount of hadronic transverse energy deposited in a cone
of half-angle R as

ET,had(R) =
n∑

i=1

ET iθ(R − Rγi), (1.3)

where
Rγi =

√
(ηi − ηγ)2 + (φi − φγ)2, (1.4)

and the sum runs over all the hadrons in the event (or, alternatively, i can be interpreted
as an index running over the towers of a hadronic calorimeter). For both the isolation
prescriptions we are going to define below, the first step is to draw a cone of fixed half-angle
R0 around the photon axis, as given in eq. (1.2). We will denote this cone as the isolation
cone.

Definition A. The photon is isolated if the total amount of hadronic transverse energy in
the isolation cone fulfils the following condition:

ET,had(R0) ≤ ǫcpTγ , (1.5)
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where ǫc is a small number, and pTγ is the transverse momentum of the photon.

Definition B. The photon is isolated if the following inequality is satisfied:

ET,had(R) ≤ ǫγpTγY(R), (1.6)

for all the cones lying inside the isolation cone, that is for R ≤ R0. The function Y is
arbitrary to a large extent, but must at least have the following property:

lim
R→0

Y(R) = 0, (1.7)

and being different from zero everywhere except for R = 0.

Definition A was proven to lead to an infrared-safe cross section at all orders of perturbation
theory in ref. [3]. The smaller ǫc, the tighter the isolation. Loosely speaking, for vanishing
ǫc the direct component behaves like log ǫc, while the fragmentation component behaves
like ǫc log ǫc. Thus, for ǫc → 0 eq. (1.1) diverges. This is obvious since the limit ǫc → 0
corresponds to a fully-isolated-photon cross section, which cannot be a meaningful quantity,
whether experimentally (because of limited energy resolution) or theoretically (because there
is no possibility for soft particles to be emitted into the cone).

Definition B was proposed and proven to lead to an infrared-safe cross section at all
orders of perturbation theory in ref. [2]. Eq. (1.7) implies that the energy of a parton falling
into the isolation cone CR0

is correlated to its distance (in the η–φ plane) from the photon. In
particular, a parton becoming collinear to the photon is also becoming soft. When a quark is
collinear to the photon, there is a collinear divergence; however, if the quark is also soft, this
divergence is damped by the quark vanishing energy. When a gluon is collinear to the photon,
then either it is emitted from a quark, which is itself collinear to the photon – in which case,
what was said previously applies – or the matrix element is finite. Finally, it is clear that the
isolation condition given above does not destroy the cancellation of soft singularities, since a
gluon with small enough energy can be emitted anywhere inside the isolation cone. The fact
that this prescription is free of final-state QED collinear singularities implies that the direct
part of the cross section is finite. As far as the fragmentation contribution is concerned, in
QCD the fragmentation mechanism is purely collinear. Therefore, by imposing eq. (1.6), one
forces the hadronic remnants collinear to the photon to have zero energy. This is equivalent
to saying that the fragmentation variable z is restricted to the range z = 1. Since the
parton-to-photon fragmentation functions do not contain any δ(1 − z), this means that the
fragmentation contribution to the cross section is zero, because an integration over a zero-
measure set is carried out. Therefore, only the first term on the RHS of eq. (1.1) is different
from zero, and it does not contain any µγ dependence.

We stress again that the function Y can be rather freely defined. Any sufficiently well-
behaved function, fulfilling eq. (1.7), could do the job, the key point being the correlation
between the distance of a parton from the photon and the parton energy, which must be
strong enough to cancel the quark-to-photon collinear singularity. Throughout this paper,
we will use

Y(R) =
(

1 − cos R

1 − cos R0

)n

, n = 1. (1.8)
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We also remark that the traditional cone-isolation prescription, eq. (1.5), can be recovered
from eq. (1.6) by setting Y = 1 and ǫγ = ǫc.

1.3 Isolated photons at the LHC

In this section, we will present results for isolated-photon cross sections in pp collisions at
14 TeV. These results have been obtained with the fully-exclusive NLO code of ref. [4], and
are relevant to the isolation obtained with definition B; the actual parameters used in the
computation are given in eq. (1.8), together with ǫγ = 1. We let R0 = 0.4. We will comment
in the following on the outcome of definition A.

Any sensible perturbative computation should address the issue of the perturbative sta-
bility of its results. A rigorous estimate of the error affecting a cross section at a given order
can be given if the next order result is also available. If this is not the case, it is customary
to study the dependence of the physical observables upon the renormalization (µR) and fac-
torization (µF ) scales. It is important to stress that the resulting spread should not be taken
as the ‘theoretical error’ affecting the cross section; to understand this, it is enough to say
that the range in which µR and µF are varied is arbitrary. Rather, one should compare the
spread obtained at the various perturbative orders; only if the scale dependence decreases
when including higher orders the cross section can be regarded as perturbatively stable and
sensibly compared to data.

Usually, µR and µF are imposed to have the same value, µ, which is eventually varied.
However, this procedure might hide some problems, because of a possible cancellation be-
tween the effects induced by the two scales. It is therefore desirable to vary µR and µF

independently. Here, an additional problem arises at the NLO. The expression of any cross
section in terms of µ (that is, when µR = µF ) is not ambiguous, while it is ambiguous if
µR 6= µF . In fact, when µR 6= µF , the cross section can be written as the sum of a term
corresponding to the contribution relevant to the case µR = µF , plus a term of the kind:

αS(µA)B(αS(µR)) log
µR

µF

, (1.9)

where B has the same power of αS as the LO contribution, say αk
S. The argument of the αS

in front of eq. (1.9), µA, can be chosen either equal to µR or equal to µF , since the difference
between these two choices is of NNLO. Thus, it follows that the dependence upon µR or µF

of a NLO cross section reflects the arbitrariness of the choice made in eq. (1.9), which is
negligible only if the NNLO (αk+2

S ) corrections are much smaller than the NLO ones (αk+1
S ).

This leads to the conclusion that a study of the dependence upon µR or µF only can be
misleading. In other words: B in eq. (1.9) is determined through RG equations in order to
cancel the scale dependence of the cross section up to terms of order αk+2

S . This happens
regardless of the choice made for µA in eq. (1.9). However, here we are not discussing
the cancellation to a given perturbative order of the effects due to scale variations; we
are concerned about the coefficient in front of the O(αk+2

S ) term induced by such variations,
whose size is dependent upon the choice made for µA and therefore, to some extent, arbitrary.
We have to live with this arbitrariness, if we decide to vary µR or µF only. However, we
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MRST99 CTEQ5
1 2 3 4 5 M HJ (δσ/σ)±

NLO, |ηγ | < 2.5 23.78 23.20 24.19 22.07 25.49 25.10 24.61 +0.068
−0.057

LO, |ηγ| < 2.5 10.34 10.07 10.52 9.875 10.78 10.91 10.66 +0.090
−0.072

NLO, |ηγ | < 1.5 14.59 14.23 14.88 13.66 15.53 15.35 15.01 +0.068
−0.056

LO, |ηγ| < 1.5 6.457 6.270 6.583 6.212 6.657 6.771 6.596 +0.091
−0.073

Table 1: Isolated-photon cross sections (nb), with 40 < pTγ < 400 GeV, in two dif-
ferent rapidity ranges, for various parton densities. The scale dependence, evaluated
according to eq. (1.10), is also shown.

can still vary µR and µF independently, but eventually putting together the results in some
sensible way, that reduces the impact of the choice made for µA. In this section, we will
consider the quantities defined as follows:

(
δσ

σ

)

±

= ±




[
σ(µR = µ0, µF = µ0) − σ(µR = a±µ0, µF = µ0)

σ(µR = µ0, µF = µ0) + σ(µR = a±µ0, µF = µ0)

]2

+

[
σ(µR = µ0, µF = µ0) − σ(µR = µ0, µF = a±µ0)

σ(µR = µ0, µF = µ0) + σ(µR = µ0, µF = a±µ0)

]2




1

2

, (1.10)

where a+ and a− = 1/a+ are two numbers of order one, which we will take equal to 1/2 and
2 respectively; the ± sign in front of the RHS of eq. (1.10) is purely conventional. We can
evaluate (δσ/σ)± by using µA = µR or µA = µF in eq. (1.9). The reader can convince himself,
with the help of the definition of the QCD β function, that the difference between these two
choices is of order α4

S in the expansion of the contribution to (δσ/σ)2
± due to eq. (1.9); on the

other hand, this difference is only of order α3
S in each of the two terms under the square root

in the RHS of eq. (1.10). This is exactly what we wanted to achieve: a suitable combination
of the cross sections resulting from independent µR and µF variations is less sensitive to the
choice for µA made in eq. (1.9) with respect to the results obtained by varying µR or µF only.

In table 1 we present the results for the total isolated-photon rates, both at NLO and at
LO. The latter cross sections have been obtained by retaining only the lowest order terms
(O(αemαS)) in the short-distance cross section, and convoluting them with NLO-evolved
parton densities. Also, a two-loop expression for αS has been used. There is of course
a lot of freedom in the definition of a Born-level result. However, we believe that with
this definition one has a better understanding of some issues related to the stability of the
perturbative series. In order to obtain the rates entering table 1, we required the photon
transverse momentum to be in the range 40 < pTγ < 400 GeV, and we considered the rapidity
cuts |ηγ | < 1.5 and |ηγ| < 2.5, in order to simulate a realistic geometrical acceptance of the
LHC detectors. We first consider the scale dependence of our results (last column), evaluated
according to eq. (1.10). We see that the NLO results are clearly more stable than the LO
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ones; this is reassuring, and implies the possibility of a sensible comparison between NLO
predictions and the data. Notice that the size of the radiative corrections (K factor, defined
as the ratio of the NLO result over the LO result) is quite large. From the table, we see that
the cross sections obtained with different parton densities differ by 6% at the most (relative
to the result obtained with MRST99-1 [5], which we take as the default set). MRST99 sets
2 and 3 are meant to give an estimate of the effects due to the current uncertainties affecting
the gluon density, whereas sets 4 and 5 allow to study the sensitivity of our predictions
to the value of αS(MZ) (sets 1, 4 and 5 have ΛMS

5 =220, 164 and 288 MeV respectively).
On the other hand, the difference between MRST99-1 and CTEQ5M [6] results is due to
the inherent difference between these two density sets (CTEQ5M has ΛMS

5 =226 MeV, and
therefore the difference in the values of αS(MZ) plays only a very minor role).

From inspection of table 1, we can conclude that isolated-photon cross section at the
LHC is under control, both in the sense of perturbation theory and of the dependence upon
non-calculable inputs, like αS(MZ) and parton densities. The relatively weak dependence
upon the parton densities, however, is not a good piece of news if one aims at using photon
data to directly access the gluon density. On the other hand, the expected statistics is large
enough to justify attempts of a direct measurement of such a quantity. In the remainder of
this section, we will concentrate on this issue. We will consider

Rx =
dσ0/dx − dσ/dx

dσ0/dx + dσ/dx
, (1.11)

where x is any observable constructed with the kinematical variables of the photon and,
possibly, of the accompanying jets. σ and σ0 are the cross sections obtained with two
different sets of parton densities, the latter of which is always the default one (MRST99-1).
We can imagine a gedanken experiment, where it is possible to change at will the parton
densities; in this way, we can assume the relative statistical errors affecting σ and σ0 to
decrease as 1/

√
N and 1/

√
N0, N and N0 being the corresponding number of events. It is

then straightforward to calculate the statistical error affecting Rx; by imposing Rx to be
larger than its statistical error, one gets

Rx > (Rx)min ≡ 1√
2Lǫσ(x, ∆x)

, (1.12)

where L is the integrated luminosity, ǫ ≤ 1 collects all the experimental efficiencies, and

σ(x, ∆x) =
∫ x+∆x/2

x−∆x/2
dx

dσ

dx
(1.13)

is the total cross section in a range of width ∆x around x.
In fig. 1 we present our predictions for Rx. In the left panel of the figure we have chosen

x = pTγ , while in the right panel we have x = xγj , where

xγj =
pTγ exp(ηγ) + pTj exp(ηj)√

S
. (1.14)
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Figure 1: Dependence of isolated-photon and isolated-photon-plus-jet cross section
upon parton densities, as a function of pTγ and xγj .

In this equation
√

S is the center-of-mass energy of the colliding hadrons, and pT j and ηj

are the transverse momentum and rapidity of the hardest jet recoiling against the photon.
In order to reconstruct the jets, we adopted here a kT -algorithm, namely that proposed
in ref. [7], with D = 1. Notice that xγj exactly coincides at the leading order with the
Bjorken-x of the partons in one of the incoming hadrons; NLO corrections introduce only
minor deviations. For all the density sets considered, the dependence of R upon pTγ is rather
mild. The values in the low-pTγ region could also be inferred from table 1, since the cross
section is dominated by small pTγ’s. Analogously to what happens in the case of total rates,
the sets MRST99-4 and MRST99-5 give rise to extreme results for RpT γ

, since the value of
ΛQCD is quite different from that of the default set. From the figure, it is apparent that, by
studying the transverse momentum spectrum, it will not be easy to distinguish among the
possible shapes of the gluon density. On the other hand, it seems that, as far as the statistics
is concerned, a distinction between any two sets can be performed. Indeed, the symbols in
the figure display the quantity defined in eq. (1.12), for L = 100 fb−1, ∆pTγ = 10 GeV and
ǫ = 1. Of course, the latter value is not realistic. However, a smaller value (leading to a
larger (R)min), can easily be compensated by enlarging ∆pTγ and by the fact that the total
integrated luminosity is expected to be much larger than that adopted in fig. 1.

Turning to the right panel of fig. 1, we can see a much more interesting situation. Actu-
ally, it can be shown that the pattern displayed in the figure is rather faithfully reproduced
by plotting the analogous quantity, where one uses the gluon densities instead of the cross
sections. This does not come as a surprise. First, xγj is in an almost one-to-one corre-
spondence with the x entering the densities. Secondly, photon production is dominated by
the gluon-quark channel, and therefore the cross section has a linear dependence upon g(x),
which can be easily spotted. It does seem, therefore, to be rather advantageous to look at
more exclusive variables, like photon-jet correlations (this is especially true if one considers
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the procedure of unfolding the gluon density from the data: in the case of single-inclusive
variables, the unfolding requires a de-convolution, which is not needed in the case of cor-
relations). Of course, there is a price to pay: the efficiency ǫ will be smaller in the case
of photon-jet correlations, with respect to the case of single-inclusive photon observables,
mainly because of the jet-tagging. However, from the figure it appears that there should be
no problem with statistics, except in the very large xγj region.

Finally, we would like to comment on the fact that, for the case of single-inclusive photon
observables, we also computed the cross section by isolating the photon according to defini-
tion A, using ǫc = 2 GeV/pTγ . The two definitions return a pTγ spectrum almost identical
in shape, with definition B higher by a factor of about 9%. It is only at the smallest pTγ

values that we considered, that definition B returns a slightly steeper spectrum. The fact
that such different definitions produce very similar cross sections may be surprising. This
happens because, prior to applying the isolation condition, partons tend to be radiated close
to the photon; therefore, most of them are rejected when applying the isolation, no matter
of which type. This situation has already been encountered in the production of photons at
much smaller energies. The reader can find a detailed discussion on this point in ref. [8].
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Direct photon pair production at colliders,
an irreducible background to Higgs boson searches at

the LHC

T. Binoth, J.P. Guillet, V.A. Ilyin, E. Pilon and M. Werlen

Abstract

Direct 1 photon pairs with large invariant mass are the so-called irreducible back-
ground in the search for Higgs bosons at the LHC in the channel h → γγ, in the mass
range 80 − 140 GeV/c2. This huge background requires an understanding and quan-
titative evaluation. Photon pair production at the Tevatron offers the opportunity to
already test our understanding of this process. In the same mass range, the produc-
tion of a Higgs boson (hrightarrowγγ) in association with a hard jet at the LHC is
a promising channel, as the corresponding γγ+ jet background may be under better
control.

1 Role and relevance of higher order corrections

Our theoretical understanding of direct photon pair production (as any hard hadronic pro-
cess, cf. [1]) is based on the QCD improved parton model, according to which long and short
distance effects factorize from each other. Short distance subprocesses are safely computed
in perturbative QCD. Long distance effects cannot be completely calculated from QCD at
present, although their scaling violations can be. Instead, they are extracted from experi-
mental data and encoded into non-perturbative quantities, such as the parton distribution
functions in incoming hadrons and, if necessary, inclusive fragmentation functions of partons
into observed outgoing particles, e.g. photons. Yet these quantities are universal, i.e. inde-
pendent of the hard subprocess: schematically they can be measured in one process, then
transported to predict another one.

However, the border between short and long distance scales is arbitrary. The separation
requires the introduction of unphysical parameters; e.g. the factorization scale M2, and
similarly the fragmentation scale M2

f in the case of a fragmentation process. In an ideal
exact calculation, the dependence on these spurious parameters (as well as on the arbitrary
renormalization scale µ2) would cancel between the short and long distance parts. In an
actual expansion in powers of αs truncated at some finite order, this cancellation is only

1“Direct” or “prompt” mean that these photons do not result from the decay of π0 and η.
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partial; it holds up to a term of the lowest uncalculated order. As the order of truncation
increases, theoretical estimates become flatter and flatter over broader and broader ranges
of these spurious scales. The uncertainty induced by this actual dependence restricts the
accuracy and predictive character of QCD calculations. In particular, the result of a lowest
order calculation is plagued by a large monotonic dependence with respect to M2, M2

f and
µ2. It changes by a large factor (two or more) when these scales are varied around the typical
hard scale of the process; such a lowest order estimate is not at all quantitative. This is the
first reason why any tentatively accurate QCD calculation has to be carried out to at least
next-to-leading order (abbreviated below as NLO).

Another important motivation is that higher order corrections to some given process
may reveal new mechanisms, whose rates may be not necessarily negligible compared to
the leading order contribution. The production of photons is a typical example of this
phenomenon, as will be explained below. This amounts to large higher order corrections,
which affect substantially both the magnitude and the shape of the distributions, not due to
poor apparent convergence of the first terms in the perturbative expansion, but for physically
understood reasons.

Finally, finite order calculations may not be accurate enough, as in the case of infrared
sensitive observables, i.e. observables controlled by multiple soft gluon emission 2. Yet, in
some less well-known cases of infrared sensitivity, they may reveal perturbative instabilities or
even divergences plaguing the calculation at any further order inside the physical spectrum
[4]. This is, for example, the case for the transverse momentum distribution of pairs of
isolated photons, as will be discussed below. The calculation of higher order corrections is
therefore the first step towards a deeper understanding of what happens in such cases.

2 Mechanisms of production.

Schematically, three possible mechanisms may produce prompt photon pairs with large in-
variant mass: one (which may be called “two direct”) in which both photons take part
directly in the hard subprocess, another one (“one fragmentation”) in which one of the
photons undergoes the hard subprocess while the other results from the fragmentation of a
hard parton (quark or gluon), itself produced at large tranverse momentum, and yet another
mechanism (“two fragmentation”) in which both photons result from such a fragmentation.
This schematical splitting into these three contributions emerges from a factorization pro-
cedure sketched in what follows. Although this splitting provides a convenient picture, one
must however keep in mind that it is arbitrary; none of these contributions can be measured
separately. Only their sum is physical.

2.1 Direct vs. fragmentation mechanisms

From a topological point of view, a photon produced from fragmentation is with a high prob-
ability accompanied by a jet of hadrons. From a technical point of view, the lowest order of

2See for example [1, 2, 3]
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the “one fragmentation” contribution emerges in the calculation of higher order perturbative
corrections to the “two direct” contribution given by the Born process qq̄ → γγ. Some of
these higher order corrections, such as qg → qγγ, are plagued by final state collinear sin-
gularities associated with the collinear splitting q → qγ. The latter have to be factorized
and absorbed into quark and gluon fragmentation functions to a photon, Dγ/q or g(z, M

2
f )

defined at some fragmentation scale 3 M2
f . Analogously to the so-called anomalous compo-

nent of the photon structure function, a collinear logarithmic enhancement occurs, induced
by the pointlike quark-photon coupling. To all orders in αs, this phenomenon results in
Dγ/q or g(z, M

2
f ) behaving asymptotically 4 as α/αs(M

2
f ). This compensates the one extra

power of αs involved in the short distance subprocess, so that fragmentation contributions
are asymptotically of the same order as the Born term, by power counting in αs. What is
more, given the high gluon density at LHC, the gq (or q̄) initiated process involving one pho-
ton from fragmentation even dominates the inclusive production rate in the range 80 − 140
GeV.

In turn, higher order corrections to “one fragmentation” reveal the “two fragmentation”
mechanism. Similarly, a collinear enhancement associated with each photon fragmentation
compensates two extra powers of αs in the short distance subprocess, so that the power
counting in αs is here also asymptotically the same as for the Born and “one fragmentation”
parts. Higher order corrections to both fragmentation contributions have in principle to be
computed in order to provide a consistent NLO study. This has been done in [6]. The actual
quantitative significance of these contributions is discussed in sect. 4.

2.2 The box contribution

Beyond this, the gluon-gluon fusion contribution gg → γγ, of the “two direct” type, cannot
be neglected. Indeed, although it is an O(α2α2

s) i.e. next-to-next-to-leading order contribu-
tion, the suppression due to higher powers of αs is compensated by the large gluon luminosity
at colliders. This is especially true at LHC in the relevant range for Higgs search, where the
so-called box contribution has the same magnitude as the Born term, roughly 50 to 80 %.

Moreover it is the lowest order of a new mechanism, whose spurious scale dependences are
thus monotonic, and only higher corrections to it would reduce the sensitivity with respect
to spurious scale dependences. Finally, this lowest order is a 2 → 2 process which yields only
back to back photons in the direction transverse to the beam axis; it gives no contribution
to the tail of the transverse momentum distribution of photon pairs. An evaluation of the
distortion of the transverse momentum distribution of photon pairs due to the process of
gluon-gluon fusion requires the computation of at least the next order correction [3]. The
sum “two direct + box” will be refered to as the “direct” contribution.

3and in some given factorization scheme. Here we use the MS scheme, [5].
4i.e. when the fragmentation scale M2

f (chosen of the order of the hard scale of the subprocess) is large

compared to any typical hadronic scale ∼ 1 GeV2.
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3 Isolation

At TeV colliders, the fragmentation contributions are far from negligible. In particular, the
“one fragmentation” component dominates the inclusive production of photon pairs in the
lower range of the invariant mass spectrum; in the range of interest for Higgs search at LHC
it happens to be 2 to 5 times larger than the “two direct” contribution, depending on choice
of scales 5 [6]. A NLO evaluation of the fragmentation contribution is thus necessary to
have a tentatively reliable prediction.

Actually, collider experiments do not measure inclusive photon pairs. Isolation cuts 6 are
imposed experimentally to drastically reduce the gigantic background coming from decays of
π0 and η mesons. Schematically, a candidate-photon is considered isolated if, in some given
cone in azimuthal angle and rapidity about the photon defined by

(φ − φγ)
2 + (y − yγ)

2 ≤ R2, (3.1)

the deposited hadronic transverse energy Ehad
T is smaller than some maximal amount Emax

T ,

Ehad
T ≤ Emax

T (3.2)

R and Emax
T being fixed by the experiments. Such isolation cuts affect also the production

rate of direct photon pairs, especially the “single-” and “two fragmentation” contributions,
whose topologies are similar to the one of the background. Those are severely reduced when
Emax

T is chosen to be very small compared to the transverse momenta of the photons.
Yet a NLO evaluation of fragmentation contributions is still relevant for various reasons.

First, the actual isolation cuts used by collider experiments may be quite more complicated
than the schematical criterion given by eqns. (3.1,3.2). Higher order partonic calculations
are not designed to account for such criteria accurately, contrary to Monte-Carlo event
generators such as PYTHIA [8] or HERWIG [9]. Since these Monte-Carlos and NLO partonic
calculations are based on different QCD approximations, it is worthwhile to compare these
two approaches whenever possible, as for the inclusive production rate, as well as with
rather simple isolation cuts such as the one of eqns. (3.1,3.2). Secondly, the above cone-type
isolation criterion induces infrared sensitivity inside the physical spectrum for observables
such as the qT spectrum of photon pairs. This effect appears at the NLO - and every higher
order - in the “one fragmentation” component, as will be shown in the next section.

4 Phenomenology

In earlier works on di-photon production [10], only the “two direct” contribution was cal-
culated at NLO, while the fragmentation contribution included only the lowest order “one
fragmentation” part 7. Moreover, these works were not implemented in a form suited to com-
pute observables such as the invariant mass relevant for Higgs search, nor flexible enough to

5As already mentioned in the beginning of sect. 2, this statement is strongly fragmentation scale
dependent.

6More about isolation issues in processes involving direct photons is discussed in [7].
7The “box” contribution was included too.
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Figure 1: Diphoton differential cross section dσ/dmγγ vs. mγγ , the mass of the photon pair, at
the Tevatron,

√
S = 1.8 TeV. Preliminary data points (statistical errors and systematics in quadrature)

from the D0 collaboration [12] are compared to the theoretical predictions; the full NLO prediction is
shown as the solid line while open squares (open circles) represent the single (double) fragmentation
contribution.
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Figure 2: Diphoton differential cross section dσ/dpT vs pT , the transverse energy of each photon,
at Tevatron,

√
S = 1.8 TeV. Preliminary data points (statistical errors and systematics in quadrature)

from the D0 collaboration [12] are compared to the theoretical predictions; the full NLO prediction is
shown as the solid line while open squares (open circles) represent the single (double) fragmentation
contribution. The ratio data/(full NLO theory) is shown below.

166



Figure 3: Diphoton differential cross section dσ/dqT vs. qT , the transverse momentum of the photon
pair, at the Tevatron,

√
S = 1.8 TeV. Preliminary data points (statistical errors and systematics in

quadrature) from the D0 collaboration [12] are compared to the theoretical predictions; the full NLO
prediction is shown as the solid line.
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Figure 4: Diphoton differential cross section dσ/dφγγ vs. φγγ , the azimuthal angle between the two
photons, at the Tevatron,

√
S = 1.8 TeV. Preliminary data points (statistical errors and systematics in

quadrature) from the D0 collaboration [12] are compared to the theoretical predictions; the full NLO
prediction is shown as the solid line. The direct contribution is shown as the dashed line while open
squares (open circles) represent the single (double) fragmentation contribution.
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accomodate experimental selection cuts. A further refinement [11] has implemented the same
approximation in a more flexible approach combining analytical and Monte-Carlo integration
techniques, thus allowing the computation of several observables within the same calcula-
tion, and the possibility to account for selection/isolation cuts. Two recent developments
are presented in this workshop (see also C. Balazs’ contribution).

We have implemented the “two direct”, “single-” and “double fragmentation” contri-
butions at NLO accuracy, together with the box gluon-gluon contribution, into a general
purpose computer program of “partonic event generator” type (DIPHOX) presented in de-
tail in [6]. The results which we present here are derived from this analysis.

4.1 Comparison with Tevatron data

The NLO results agree with the preliminary D0 data [12] reasonably, as seen in Figs. (1-
4), except for the tails of each photon’s transverse momentum distribution dσ/dET and
the invariant mass distribution of pairs dσ/dMγγ at large ET and Mγγ respectively, where
the three highest data points are affected by correlated systematic uncertainties due to
background evaluation in both cases. However, more instructive conclusions will be drawn
after a finalized understanding of the systematics, and even more so after the Tevatron Run
II with the statistics improved by a factor of 20.

4.2 Estimates for LHC

We now give some theoretical estimates in the domain relevant for Higgs search at the LHC,
for the invariant mass distribution cf. Fig. (5) with and without isolation. One has to keep
in mind that the theoretical uncertainties are still large. Firstly these results are still plagued
by rather large scale uncertainties, as discussed below. Secondly, for a given scale choice,
they may still underestimate the actual background to Higgs search.

4.3 Critical examination of various theoretical issues

4.3.1 Scale uncertainties

As mentioned above all results depend on three unphysical scales. Varying these between
M2

γγ/4 and 4M2
γγ along the first diagonal µ2 = M2 = M2

f , the NLO results for the invariant
mass distribution appear surprisingly stable, since they change by about 5% only. Alterna-
tively, anti-diagonal variations of µ2 and M2 = M2

f in the same interval about the central
value M2

γγ lead to a variation still rather large (up to 20 %). This is because variations with
respect to µ2 and M2 act in opposite ways. When µ2 is increased, αs(µ

2) and hence the
NLO corrections decrease; on the other hand the relevant values of the momentum fraction
of incoming partons are small, ∼ O(10−3 to 10−2), so that the gluon and sea quark distribu-
tion functions increase when M2 is increased. Scale changes with respect to µ2 and M2 thus
nearly cancel again each other along the first diagonal but add up in the other case. Actually,
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the stability along the first diagonal is accidental at this order 8. These observations hold
separately for the box contribution.

In conclusion, the µ2, M2 dependences are thus not completely under control yet. On the
other hand, accounting for the NLO corrections to the fragmentation components provides
stability with respect to M2

f variations about orthodox choices of the fragmentation scale.

4.3.2 Quantitative importance of fragmentation contributions

For orthodox choices of the fragmentation scale, M2
f of order M2

γγ , the “single fragmentation”
contribution is small at Tevatron, given the stringent isolation cuts used, and the “two
fragmentation” one is even smaller. For example, as can be seen in Figs. (1,2) the “one
fragmentation” contribution is about one order of magnitude less than the “two direct” one.
It may still have a small visible effect, as in the tail of the azimutal angle distribution dσ/dφγγ

(φγγ being the azimutal angle between the two photons of a pair) in the low φγγ range, cf.
Fig. (4).

The situation is the same for LHC predictions, see Fig. (6). Contributions from frag-
mentation are drastically reduced when very stringent cuts are imposed, e.g. Emax

T = 2.5
GeV in R = 0.4. However, in practice such isolation cuts will be nearly saturated by under-
lying events: their veto on the hard event itself is thus even more severe, allowing almost no
transverse energy leakage from the hard process inside the cone. This may be experimentally
most suitable. However, requiring that no transverse energy be deposited in a cone of fixed
size about a photon is not infrared safe order by order in perturbation. It means that finite
but very stringent isolation cuts imposed in fixed order partonic calculations would lead
to unreliable results. When less severe isolation cuts are used, the “one-”, and to a lesser
extend, “two fragmentation” components are subdominant but not negligible.

4.3.3 Infrared sensitive distributions

Being based on a finite order calculation, our computer code is not suited for the study of
observables controled by multiple soft gluon emission [1, 2]. Among those, one may distin-
guish the following examples, most of which would require an improved account of soft gluon
effects.

The transverse momentum distribution of pairs dσ/dqT near qT = 0
The problematics of the “two direct” contribution is similar to the well-known Drell-Yan
process, see [3]. On the other hand, the fragmentation contributions do not diverge order by

8In processes for which the lowest order involves some power of αs, an explicit µ2 dependence appears in
next-to-leading order correction, which partially compensates the µ2 dependence in αs(µ

2). Unlike this, in
the two direct component which dominates the cross section when a drastic isolation is required, the lowest
order involves no αs. The explicit µ2 dependence would thus appear only at O(α2

s), i.e. at next-to-next-to
leading order. At next to leading order, the µ2 dependence occurs only through the monotonous decrease of
the αs(µ

2) weighting the first correction: there is no partial cancellation of µ2 dependence. The mechanism
is more complicated in the fragmentation components, and the situation becomes mixed up between all
components when the severity of isolation is reduced.
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Figure 5: Diphoton differential cross section dσ/dmγγ vs. mγγ at the LHC,
√

S = 14 TeV, without
and with isolation criterion ETmax = 5 GeV in R = 0.4. Same kinematic cuts as in Fig. (6). The scale
choice is M = Mf = µ = mγγ/2.
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Figure 6: Splitting of the diphoton differential cross section dσ/dmγγ at the LHC,
√

S = 14 TeV
with isolation criterion ETmax = 5 GeV in R = 0.4, into the “direct”,“one fragmentation” and “two
fragmentation” components, shown for the scale choice µ = M = Mf = mγγ/2. The following
kinematic cuts are applied: pT (γ1) ≥ 40 GeV, pT (γ2) ≥ 25 GeV, |y(γ1,2)| ≤ 2.5.
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order when qT → 0. Indeed, in the “one fragmentation” case,

parton 1 + parton 2 → γ1 + parton 3 (4.1)

parton 3 → γ2 + X (4.2)

the NLO contribution to the hard subprocess (4.1) yields a double logarithm

∼ αs ln2 ‖pT (γ1) + pT (parton 3)‖ (4.3)

when pT (γ1) + pT (parton 3) → 0. However the extra convolution associated with the frag-
mentation (4.2) involves an integral over z2 = pT (γ2)/pT (parton 3) which smears out this
integrable singularity. The “two fragmentation” contribution involves two such convolu-
tions, and hence one more smearing.

The azimuthal angle distribution dσ/dφγγ near φγγ = π
This case differs from the previous one for two reasons. Firstly, not only the “two direct”
contribution diverges order by order when φγγ → π, but also both “single-” and “double-
fragmentation” contributions do, as can be seen in Fig. (4). Moreover, in both fragmentation
cases, soft gluons may couple to both initial- and final-state hard emitters. Indeed, consider
the example of the “one fragmentation case”, cf. eqns. (4.1). Selecting φγγ → π emphasizes
φ(parton 3)−φ(γ1) → π, so that all the emitted partons besides parton 3 have to be collinear
to either of the incoming or outgoing particles, and/or soft, which yields double logarithms

∼ αs ln2 [π − (φ(parton 3) − φ(γ1))] (4.4)

associated with each of the hard partons 1,2,3 - plus single logarithms as well. For the
observable dσ/dφγγ near φγγ = π, the integral involved in the convolution of the hard sub-
process with the fragmentation functions does not smear these logarithmic divergences, since
the fragmentation variable z2 = pT (γ2)/pT (parton 3) is decoupled from the azimutal variable
φ(parton 3) equal to φ(γ2) in the soft and collinear limits. A similar explanation holds for
the “double fragmentation component”. An analagous problem affects the qT distribution
of a pair photon + jet at low qT .

The azimuthal angle distribution dσ/dφγγ near φγγ = 0
Both fragmentation contributions to dσ/dφγγ diverge also order by order when φγγ → 0.
Here also soft gluons may couple to both initial- and final-state hard emitters. Actually,
given the large invariant mass of the pairs, the vicinity of φγγ = 0 is never probed, so that
an improved treatment of soft gluon effects is not needed in this case. Yet, as a consequence,
an increase of the “single-fragmentation” contribution can be seen 9 in the lower range of
the φγγ spectrum, cf. Fig. (4).

An infrared divergence for dσ/dqT inside the physical spectrum
Besides the well-known issue at qT = 0, another infrared sensitive point appears in the qT

9A similar behaviour occurs also for the “two fragmentation” contribution, which is however too tiny to
have any significant effect.
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spectrum due to isolation, at the critical value qT = Emax
T . Indeed, at lowest order the “one

fragmentation” component is not smooth, it instead behaves as a step function [13],

(
dσ

dqT

)“single fragm”,(LO)

∝ Θ (Emax
T − qT ) (4.5)

Consequently, in agreement with the general study of [4], the NLO - and every higher order
- correction has a double logarithmic divergence at the critical point. Such singularities are
very sensitive to the kinematical constraints and the observable considered. The present
case has a double logarithm below the critical point,

(
dσ

dqT

)“single fragm”,(NLO)

∝ −αs ln2 (Emax
T − qT ) Θ (Emax

T − qT ) + · · · (4.6)

The infrared sensitive behaviour at this critical point can be infered on Fig. (7), where
a rather large value for Emax

T is used in order to split this critical point from the small qT

region.
This effect is not visible on the theoretical prediction of Fig. (3) because of the low value

Emax
T = 4 GeV used by the D0 collaboration. The two infrared sensitive regions (qT → 0

and qT ∼ Emax
T ) are not separated enough, and the bin smearing averages over both effects.

The phenomenon is thus camouflaged. An all order summation of this soft gluon effect has
to be carried out to restore a sensible shape to the qT distribution. A similar observation
would be made about the qT distribution of a pair {photon + jet}.

5 Perspectives

Future improvements of the theoretical understanding of di-photon production will require
various inputs. Next-to-next to leading order corrections would hopefully stabilize the scale
dependences and correct the normalisations. Another important quantitative improvement
would be the higher order corrections to the box contribution, which is within reach thanks
to some recent achievements. Progresses in this direction are reported on elsewhere in these
proceedings [14].

This accounting of multiple soft gluon effects, already implemented in [3] for the “two
direct” contribution in absence of isolation cuts, is needed in the DIPHOX-based study to
provide correct distributions in the infrared sensitive regions. This affects the qT distribution
at low qT . It also concerns the φγγ distribution when φγγ → π, which has been less studied,
and for which the soft gluon effects in the fragmentation cases are more involved than in the
“two direct” case [15, 16]. It is also important for the qT distribution in the vicinity of the
critical point qT = Emax

T , induced by the fixed cone type isolation criterion.
The understanding of the background to the Higgs search is quantitatively not yet on

the same footing as for the signal. Hence, accounting for the higher order correction to the
signal in numerical simulations might be instructive, but the results should be considered
with care in order to avoid statements that are too optimistic.
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Figure 7: Diphoton differential cross section dσ/dqT at LHC,
√

S = 14 TeV, with isolation criterion
ETmax = 15 GeV in R = 0.4.
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6 Higgs search in association with a hard jet

In order to overcome the present insufficient control of higher order corrections in inclusive
production, it has been suggested [17] to study the associated production of h(→ γγ)+ jet, for
which both signal S and background B are lower (but still at the level of hundred signal events
at low luminosity). The lowest order estimate has shown that the S/B ratio is improved
critically (up to 1/2 − 1/3) with the same level of the significance S/

√
B. Furthermore,

higher order corrections to the background have been shown recently [18] to be under better
control than in the inclusive (i.e. unassociated) case.

6.1 Background: associated vs. inclusive

Indeed, in the inclusive case, the magnitude of the NNLO box contribution is comparable
to the LO cross section essentially because the latter is initiated by qq̄, whereas the former
involves gg. The gg luminosity, much larger than the qq̄ one, compensates numerically the
extra α2

s factor of the box. On the contrary, in the channel γγ + jet, the LO cross-section
is dominated by a qg initiated subprocess. The qg luminosity is sizeably larger than the qq̄
one, so that the corresponding NNLO remains small compared to the LO result [18]. Thus,
expecting that the subprocess gg → γγg gives the main NNLO correction, a quantitative
description of the background with an accuracy better than 20% could be achieved already
at NLO in the γγ+ jet channel for a high pT (≥ 30 GeV) jet. All the helicity amplitudes
needed for the implementation of the (“direct” contribution to the) background to NLO
accuracy 10are now available [19, 20, 21].

6.2 Signal vs. background

The origin of this improvement of the S/B ratio is the following. At LO, the signal of
associated h(→ γγ)+jet production has basically a 2-body kinematics, due to the extremely
small Higgs width (a few MeV). On the contrary, the LO background contributions qq̄ → γγg
and gq → γ +γ + q (as well as the NNLO gg → γγg one) have 3-body kinematics. This is in
contrast to the inclusive channel where both signal and background LO subprocesses have
2-body kinematics. This circumstance opens the room for more refined cuts to suppress the
background more efficiently [17]. The contributions qq̄ → γγg and gg → γγg are suppressed
down to 40% of the signal (to be compared with S/B ∼ 1/7 for the inclusive channel).
Unfortunately, as found in [17], the contribution of the other subprocess gq → γγq, which
dominates, yields the overall ratio S/B ∼ 1/2 − 1/3.

The cuts which allow this efficient suppression of the irreducible background at LO are
based on the differences in the shapes of the angular distributions in the partonic c.m.s..
Due to helicity and total angular momentum conservation, the S-wave does not contribute

10We remind the reader unfamiliar with the LO, NLO, NNLO, etc, terminology that this terminology does
not refer to the absolute power of αs involved, but instead to the relative power with respect to the Born
term of the process considered. Hence, NLO corrections to γγ+ jet are also part of the NNLO corrections
to γγ inclusive (converse not true, cf. box).

176



to the dominant signal subprocess gg → Hg. On the contrary, all angular momentum
states contribute to the subprocesses gq → γγq and qq̄ → γγg. Therefore, the signal has a
more suppressed threshold behaviour compared to the background. The S/B ratio can thus
be improved by increasing the partonic c.m.s. energy

√
ŝ far beyond threshold, and a cut√

ŝ > 300 GeV has been found to give the best S/B ratio for the LHC. Actually, the effect can
not be fully explained by the threshold behavior only, since that would result in a uniform
suppression factor. It was shown in [17, 22] (see Figs. 5 and 6 there) that the dependences of
the background and the signal on the c.m.s. angular variables are quite different; therefore,
the strong ŝ cut affects them with different suppression factors (see [17, 22] for more details).
This effect can be exploited to enhance the significance S/

√
B at the same level as S/B. If

the cut cos(ϑ∗)(jγ) < −0.87 on the jet-photon in the partonic c.m.s. is applied for
√

ŝ < 300
GeV and combined with the cut

√
ŝ > 300 GeV, the change on S/B is rather small, while the

significance is improved by a factor ∼ 1.3. The same effect can be observed with the cut on
the jet angle in the partonic c.m.s. (ϑ∗(j), cf. Fig. 5 of [17, 22], but one should notice that
the two variables, ϑ∗(jγ) and ϑ∗(j), are correlated. Therefore, it is desirable to perform a
multi-variable optimization of the event selection. Notice that the present discussion is based
on a LO analysis, and concerns only what was defined above as the “direct” component of
the irreducible background. One now has to understand how this works at NLO.

Other, reducible, sources of background are potentially dangerous. The above-defined
“one fragmentation” component to the so-called irreducible background, and the reducible
background coming from misidentification of jet events were treated on a similar footing
in the LO analysis of [17, 22] as a de facto reducible background. In [17, 22], a rough
analysis found that this reducible background is less than 20% of the irreducible one after
cuts are imposed. The misidentification rate is given mainly by the subprocesses gq → γgq,
gg → γqq̄ and qq′ → γq(g)q′(g), when the final state parton produces an energetic isolated
photon but other products of the hadronization escape the detection as a jet. There, a
γ(π0)/jet rejection factor equal to 2500 for a jet misidentified as a photon and 5000 for a
well separated γ(π0) production by a jet were used. No additional π0 rejection algorithms
were applied. Furthermore, this reducible background is expected to be suppressed even
more strongly than the irreducible background of “direct” type when a cut on

√
ŝ is applied.

In summary, the associated channel H(→ γγ)+ jet with jet transverse energy ET > 30
GeV and rapidity |η| < 4.5 (thus involving forward hadronic calorimeters) opens a promising
possibility for discovering the Higgs boson with a mass of 100-140 GeV at LHC even at low
luminosity. However, to perform a quantitative analysis, the NLO calculations, namely of
the background, have to be completed, and included in a more realistic final state analysis.
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