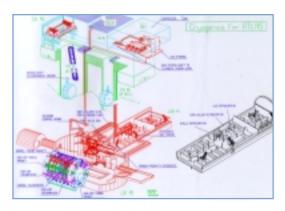




# Superconducting magnet system


The ATLAS magnet system comprises four superconducting magnets, the power supply, cryogenics, vacuum, control and safety systems. The overall dimensions are 26 m length and 20 m diameter. Three of the four magnets are toroids type: the Barrel Toroid (BT) and the two End-Cap Toroids (ECT). Each of the three magnets consists of eight racetrack coils connected in series, with a flat pancake type of winding, assembled around the central axis of the detector. The magnetic field at the conductor is 4 T at 20.5 kA.

The Central Solenoid (CS) is a single-layer coil wound

internally in a supporting cylinder integrated in a common cryostat together with the Liquid Argon Barrel Calorimeter. The central field is 2 T at 7.6 kA. All coils are built with aluminium-stabilised NbTi/Cu conductor.

| Property<br>Overall dimensions | Unit            | Barrel<br>Toroid | End Cap<br>Toroids | Central<br>Solenoid |
|--------------------------------|-----------------|------------------|--------------------|---------------------|
| Inner diameter                 | m               | 9.4              | 1.65               | 2.46                |
| Outer diameter                 | m               | 20.1             | 10.7               | 2.63                |
| Axial Length                   | m               | 25.3             | 5                  | 5.3                 |
| Number of Coils                |                 | 8                | 2 x 8              | 1                   |
| Mass                           |                 | 0                | 2.0                |                     |
| Conductor                      | tons            | 118              | 2 x 20.5           | 3.8                 |
| Cold mass                      | tons            | 370              | 2 x 160            | 5.4                 |
| Total assembly                 | tons            | 830              | 2 x 239            | 5.7                 |
| Coils                          |                 |                  |                    |                     |
| Turns /coil                    |                 | 120              | 116                | 1173                |
| Nominal current                | kA              | 20.5             | 20.0               | 7.6                 |
| Magnet stored energy           | GJ              | 1.08             | 2 x 0.25           | 0.04                |
| Peak Field                     | Т               | 3.9              | 4.1                | 2.6                 |
| Conductor                      |                 |                  |                    |                     |
| Overall size                   | mm <sup>2</sup> | 57 x 12          | 41 x 12            | 30 x 4.25           |
| Ratio AI:Cu:NbTi               |                 | 28:1.3:1         | 19:1.3:1           | 15.6:0.9:1          |
| No of strands                  |                 | 38               | 40                 | 12                  |
| Strand diameter                | mm              | 1.3              | 1.3                | 1.22                |
| Critical current @5T,4.2K      | kA              | 58               | 60                 | 20.4                |
| RRR AI                         |                 | > 800            | > 800              | > 400               |
| Working point at 4.5K          | %               | 30               | 30                 | 20                  |
| Temperature margin             | К               | 1.9              | 1.9                | 2.7                 |
| No. units x length             | # x m           | 32 x 1730        | 32 x 800           | 1 x 9100            |
| Total length                   | km              | 56               | 2 x 13             | 10                  |
| Cooling requirements           |                 |                  |                    |                     |
| At 4.5 K                       | W               | 990              | 330                | 130                 |
| At 60-80 K                     | kW              | 7.4              | 1.7                | 0.50                |
| Liquid He mass flow            | g/s             | 410              | 280                | 6-20                |
|                                |                 |                  |                    |                     |

### Cryogenic systems for magnets and Liquid Argon Calorimeters



### Magnets

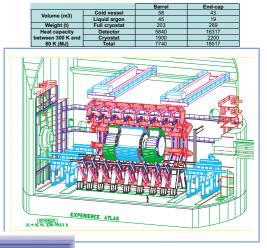
For cooling, forced two-phase helium at 4.5 K circulates in pipes attached to the aluminium coil casings exceeding a total cold mass of 600 tons.

Two complex **proximity cryogenic systems** installed in the detector cavern distribute the helium: one combines all toroid magnets (barrel and end-caps), the second supplies the Central Solenoid. Pumps circulate 1200 g/s of liquid helium to cool the toroids. The solenoid requires 7 g/s of liquid helium.

The **external cryogenics**, consisting mainly of two refrigerators, provide the cooling capacity at all temperature levels between 300 K and 4.5 K. The main refrigerator has a cooling capacity of 6 kW at 4.5 K. The magnet thermal shields are cooled by a dedicated 20 kW shield refrigerator between 40 and 80 K.

#### Liquid Argon Calorimeters

The **cryogenic system** for the calorimeter cryostats consists mainly of a 20 kW nitrogen refrigerator, two liquid nitrogen dewars with a total fill of 100,000 litres and a distribution system.


Liquid nitrogen is circulated to the cryostat internal heat exchangers by means of centrifugal pumps for cooling to 87 K. The liquid is withdrawn from a 15,000 litre storage dewar, which serves as the phase separator and for re-liquefaction of vaporised nitrogen by the refrigerator.

## Liquid Argon Calorimeter

Surrounding the inner detector are the Liquid Argon Calorimeters housed in three individual cryostats: the Barrel and the two End-Cap Calorimeters. They contain a volume of 85 m<sup>3</sup> of liquid argon.

Immersed pipes permit the cooling with two-phase liquid nitrogen.

Three individual expansion vessels connected to the three cryostats via transfer lines allow for expansion and pressure control of the liquid argon.





