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Abstract

The link between the ground (g) and the 4- bands of even deformed nuclei is
studied via the collective vector-boson model with a broken SU(3) symmetry. The g-
~ bandmixing interaction as well as the limiting cases, in which the SU(3) symmetry
is reduced completely, are estimated in terms of the energy splitting between these
two bands. It is shown, that the systematical behavior of the g—y splitting, observed
in rotational regions, supports our analyses.

In a recent work we have started a systematical study of the link between the ground (g)
and the v- collective bands in even—even deformed nuclei {1}. The approach is based on the
collective Vector-Boson Model (VBM) with a broken SU(3) symmetry [2, 3. 4]. In VBM the
two bands (g and ~+} belong to one split SU(3) muitiplet, appearing in the SU{3) 2 O{3)
group reduction and labeled by a given irreducible representation (irrep) (A, ) of SU(3).
The corresponding basis states are constructed with the use of two vector-bosc:, creation

operators £¥, t and are denoted as [5]

(A, 1)
al M |- (1)
The quantum number « distinguishes the various O(3) irreps, (L, M), appearing in a given
SU(3) irrep (A, p) and labels the different bands of the multiplet. The SU(3)-symmetry

breaking Hamiltonian is constructed by using three basic O(3) scalars, which belong to the

enveloping algebra of SU(3) [4]:
V=gl +¢L-Q L+ gATA. (2)

Here ¢, g, and g3 are free parameters; L and () are the angular momentum and quadrupole
operators respectively; and A% = gtigt? = (&* - g2

Using the VBM formalism, it has been shown, that for a given nucleus the physically
significant features of SU{3)-symmetry should be studied in certain regions of (A, u) irreps
instead of a single fixed irrep [1]. On this basis we have investigated various nuclei of rare
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earth region and actinides for which the model descriptions of the g- and y-band energy
levels and the concomitant B(E2) transition ratios have been evaluated [in the form of root
mean square fits] in SU{3) irreps within the range 10 < A < 160 and 2 < g < 8. It has been
found. that the basic SU(3) properties of deformed nuclei depend on the SU(3) splitting.
The latter is characterized by the ratio [1]

AE; = (B3 - E3)/E5 3)

where £ and E; are the energy levels with angular momentum L = 2, which belong to the
g- and the ¥- band respectively. In the rare earth region this ratio varies within the limits
7 < AFE,; < 18, while in the aciinides one observes values in the range 13 < AE,; < 25. See
hgures 1 and 2.

In the nuclei with small band splitting ratios AE; ~ 8 — 10 (164-1%8Er, %Dy and '%*YDb)
we have established clearly outlined regions of “favored” SU(3) multiplets (with relatively
small A-values A = 14 — 20 and p = 2,4,6), where the descriptions of the energy levels
are obtained essentially better than in the other irreps. Further with the increase of the
splitting energy, as in the case of the nucleus *"®Hf (with AF; = 11.6), the favored multiplets
are shifted gradually to larger A-values (A ~ 40}. In the nuclei where large band splitting
is observed. AE,; ~ 14 — 22 (172Yh, 1"8Hf, 80}, the present theoretical scheme provides
almost equally good model descriptions in all (A, g)-muliiplets with A > 60 — —80 up to
A = 160 and p = 6 without presence of any upper limit for the quantum number A. {See
figures 1-8 of ref. {1])

The above results have a reasonable interpretation in terms of the band-mixing in-
teractions. Some preliminary estimates, provided for the (A, 2) multiplets, show that the
increase in the quantum number A is connected with the corresponding decrease in the the
g—~ band-mixing interaction [1}. This suggests, that in the nuclei with small SU(3) splitting
the two bands are strongly mixed, while in the cases with a large splitting they interact
weakly. The systematical behavior of rotationa’ spectra, observed in the rare earth nuclei
and actinides supperts our analyses. The data show, that the g—y band-splitting, which
for the nuclei near the ends of rotational regions is relatively small, increases essentially
towards the midshell nuclei. See figures 1 and 2. In terms of our considerations the strong
g—7 splitting, observed in the middle of given rotational region, corresponds to the weak
mutual perturbation and therefore to the good rotational behavior of the both bands . It is
therefore clear, that the splitting plays an important role in the study of the link between
the g- and the - band.

Here we shall extend our investigations towards the (A, u) multiplets with ¢ > 2, by
estimating the g-v interaction in various limits of the model. On the other hand it is
important to obtain more quantitative information about the the meaning in which the
SU(3) symmetry is reduced in (A, u)-plane. It is therefore worthwhile to derive an analytical
relation between the energy splitting and the SU(3) quantum numbers A and u. For this
purpose, we shall study the energy levels EJ and EJ [which determine the SU(3) splitting
ratio AFE,. Eq. (3)] in terms of VBM.

We remark, that for any (A, ) multiplet (z > 2), the energy levels F£§ and E; are
the only possible ones, appearing at angular momentum L = 2. They are labeled by the
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quantum number a as follows [See inequality (3) of ref. [11}:

oy = /2 — 1, for the y-band state £
ag = /2, for the g-band state £73.

(4)

Hence for L = 2 the Hamiltonian matrix is always two-dimensional and the corresponding
eigenvalue equation [See Eq. (12} of ref. [1]} has the form:

Vi = wlh=? Vi _
det ( Vz,l Vz,z _ wL:'z =0 (5)
where w=? are the eigenvalues and
o ot oy ) L ()
Vi = (a;,2|V]a;,2) = < a;,2,2 i ap,2,2 ! (6)

with 7.7’ = 1,2, are the matrix elements of the Hamiltonian (2) between the highest-weight
basis states {L = M = 2) [See Eq. {1))].
Eq. (5) has two solutions:

A7 = S Vi Vo 0V + V) — 10V Ve — VaaVan) | (7)

The energy levels EY and E are determined as:

ES = Wi b= (8)

E; = wizz — k= 9
where wl=Y is the zero-level eigenvalue

W70 = (2L 0vIE,0) (10)

By using the analytical form of the matrix elements of the operators L - Q- L and AtA
[given in Table 1 of ref. [1]}, we have calculated all necessary matrix elements:

Vie = (5= D.2VI5 - 1.2) = 601+ 602022 + 2 +3) + P(Apr) . (1)

Vi = (5.20V]5.2) = 601 - 6m(2) +2u +3) + Q[N ) (12)
Ga = (G5 - D.2VI52) = 1200 — 2gau(u - 2) | (13)
Vay = (%,2|V|(';—L—l),2)= —12g2) + 29 A(A + 2 + 2) | (14)
where
PAp) = Mp—=2)(p+2)(A+2u+2)+plp—2)(p+ 1) {(p+3), (15)
QA i) = MF(A+2u+2) 4 plp — U+ 1){p+2) . (16)
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For the the zero-level matrix element we have:
],l R ,U, . . -
(5:0VI5,0) = gsp’ (A + e+ 1)7 . (17)

Now we are able to study the g—y band-mixing interaction at L = 2 in (A, u) plane.
Since the basis states {1) are determined for ¢ < A, there are two possible limiting cases:
i) A = oo, with g finite, and @) A = oo, g — oo, with 4 < A. In both cases we estimate
the A- and/or y- dependence of the matrix elements (11)-(14).

In the limiting case t) the matrix elements are determined by the corresponding highest
degrees ol A, so that the Hamiltonian matrix (V; ;) [Eq. 6] obtains the following asymptotical
form:

(Vhroome = ( " ;) , (18)

where the upper offdiagonal element (denoted by ) does not depend on A. Then one can
easily deduce, that the relative contribution of the offdiagonal (band-mixing) terms in the
Hamiltonian matrix decreases with the increase of A as A®/A* = 1/)X%. An exception occurs
in the particular case ¢ = 2 in which the V, ; is proportional to A instead of A% [See Egs. (11)
and (15)]. In this case the offdiagonal contribution decreases as 1/A. So, we find that for all
(A, p¢)- multiplets with g > 2 (i < A}, the increase in the quantum number X is connected
with a corresponding decrease in the g—y band-mixing interaction within the framework of
the SU(3) symmetry.

Consider the case ii) A = oo, 4 — oo, (u < A}. Since the difference X ~ y is always
finite, it is enough to take u = A. Then the asymptotical form of the matrix (V;;) is:

. A A2
(V) iow = ( A2 )\ ) . (19)

=00

Here we find that the relative contributions «i the band-mixing interaction decreases as
M/X® =1/1 i.e., more rapidly in comparison to the previous case.

Generally, our analysis shows that in the both limits, i) and i), the g-y mixing decreases
asymptotically to zero. In such a way the SU(3) symmetry disappears completely, and
the two bands do not belong anymore to the same SU(3) multiplet. Furthermore, our
estimates give a physical insight into the so called group contraction process in which
the SU(3) algebra reduces to the algebra of the triaxial rotor group TsASO(3) [6]. The
contraction limit appears when the eigenvalues of the second order Casimir operator of
SU(3), C2(SU(3)). go to infinity. Since (C;) is a quadratic function of both A and g, it is
clear that considered above cases exactly reproduce this limit.

Let us now turn to the SU(3) splitting, which will be studied in terms of the ratio AE,
[Eq. (3)]. After introducing the matrix elements (11)-(14) and (17) into Egs. (7), (8), (9)

we obtain the following expressions for the energy levels £ and EJ:

?

E] = 6g —2Fg; — 2\//49% + Bg; — Cgags (20)




where

A = A ) = 92+ 2+ 3) — 4] (22)
B = B =[MA+2u+2) +plp+ D) -

= Ap(A+ 2+ 2)(p - 2) (23)
C o= ClAap)=6(2A+2u+3[AN +2u+2) + u(p + 1)} -

— 6Au(A +3u) ; (24)
Fo= FAp)=MA+2u+2)+2u(p+1) . (25)

Hence the energy splitting ratio AFE; obtains the following analytical form:

9
AE, = (26)

(31 — Fga)/\/AQ% + Bgi — Cgags — 1

The above relation allows one to study the g—y band-splitting in (A, u) plane as well as to
estimate it in the two limiting cases.
So, in the limit A — oo, with g finite, the functions (22)-(25) behave like:

A'l,\—mo = 36/\2: B,\—w:o = )‘4; C,\—boo = 12/\3§ F/\—roo = /\2 .
After applying the above asymptotical quantities in Eq. (26), we find:

2

lim AF; = ———— |
s C T —gaflgs| = 1

(27)
We remark that the application of VBM in rare earth nuclei and actinides requires g5 < 0,
which gives limy_, .. AF, = oc. Therefore in this case the g- and the - band are completely
split, i.e., they should not be considered anymore in the same energy scale.

On figure 3 the A-dependence of the theoretically derived splitting ratio AE; [Eq. (26)]
is illustrated numerically. The three curves are obtained for ¢ = 2 and correspond to the
three sets of parameters in the nuclei "*Er, '™Hf and YD [given in Table 2 of re. [1]] .

The AFE,; values, which correspond to the best model descriptions are denoted by the open
circles.

In the limit A = ¢ — oo, one has:
Anmpmse =1080% By = 130Y, Cacpyoo = T20% Facploo = 507

Then the SU(3) splitting ratio goes to:

2
hm AFE;, = '
A=imoe 0 (5/v/13)gs/|gs| — 1

For g3 < 0 we obtain limy—, o AE; = 2/(5/v/13 —1) = 5.1. This is an interesting finding.
In the case the band-mixing interaction vanishes, while the energy splitting between the two
bands remains finite. The latter is even relatively smaller compared to the splitting ratios,

(28)
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observed in rotational nuclei. The above result is illustrated numerically on figure 4, where
the p-dependence of AE, is shown for a typical set of model parameters (g, = 10KeV,
g2 = —0.1keV, g3 = —0.1KeV).

We note. that excepting the sign of g3, in considered above cases the obtained limits do
not depend on the model parameters. (It is assumed that g;, g, and g3 are finite).

The further mnterpretation of the presented results will be a subject of forthcoming
discussions.
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