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Multiple Scales in the Fine Structure of the Isoscalar Giant Quadrupole Resonance in
208p

D. Lacroix,! A. Mai,? P. von Neumann-Cosel,> A. Richter,? and J. Wambach?
' LPC/ISMRA, Bivd du Maréchal Juin, 14050 Caen, France,
2 Institut fiir Kernphysik, Technizche Universitit Darmstadt, D-64289 Darmstadt, Germany
(January 5, 2000)

The fine structure of the isoscalar giant quadrupole resonance in *°*Pb, observed in high-resolution
{p,p*) and (e,c’) experiments, is studied using the entropy index method. In a novel way, it enables
to determine the number of scales present in the spectra and their magnitude. We find intermediate
scales of fluctuations around 1.1 MeV, 460 keV and 125 keV for an excitation energy region 0 —
12 MeV. A comparison with scales extracted from second RPA calculations, which are in good
agreement with experiment, suggests that they arise from the internal mixing of collective motion
with two particle-two hole components of the nuclear wavefunction.

PACS: 24.30.Cz, 21.10.Re, 21.60.J3, 27.80.4w
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L INTRODUCTION

The decay of giant resonances in nuclei provides im-
portant information on how a well-ordered collective ex-
citation dissolves into a disordered motion of internal de-
grees of freedom in fermionic quantum many-body sys-
tems (see e.g. [1]). This can be understood to result from
the decay of the collective modes towards compound nuc-
lear states leading to internal mixing. Besides this in-
ternal mixing, the nuclear states may also decay into a
continuum of escaping states giving rise to the dexcita-
tion of the system through particle emission.

It is generally agreed that internal mixing occurs
through a hierarchy of couplings towards more and more
complex degrees of freedom in the nucleus. Collective
states are constructed in mean-field theory as a coherent
superposition of one particle-one hole (1p-1h) excitations
and are generally treated in the random-phase approx-
imation {RPA} [2,3]. In order to understand their decay
towards the compound nucleus, one has to go beyond the
mean field and introduce two-body effects as embodied in
the second RPA (SRPA) [4]. Such approaches are valid
under the assumption that collective motion is preferen-
tially damped by 2p-2h components of the many-body
wavefunction, reflecting the two-body nature of the nuc-
lear interaction. The description can be extended by in-
troducing more and more complex components such as
3p-3h...np-nh. Indeed, all iransport theories assume a
classification in increasing degrees of complexity [5-7].

Since this picture is based on a particular hierarchy,
one should be able to extract experimental information
on it by studying scales present in the decay of collect-
ive motion, One expects a hierarchy of lifetimes linked
to a hierarchy of energy scales starting from the typical
scale associated with collective states, the full width at
half maximum (FWHM) which is of the order of a few
MeV, going down to scales characterized by the width of
long-lived compound nuclear states which is of the order
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of a few eV. In order to test this framework, an exper-
imental identification of scales involved in the decay of
giant resonances appears as an important issue.

Experimental evidence for scales associated with the
coupling between collective states and internal and ex-
ternal degrees of freedom is a long-standing problem.
On the one hand, the spectral analysis requires high-
resolution experiments. Proton and electron scattering
experiments, which may reach resolutions better than 50
keV, present a promising candidate for this type of ana-
lysis. The appearance of fine structure in the isoscalar
giant quadrupole resonance (ISGQR) of 2°®Pb has been
reported already a long time ago in high-resolution elec-
tron scattering [9,10}. This finding, which has led to con-
siderable debate, was finally confirmed [11] when proton
scattering data of comparable resolution became avail-
able [12]. On the other hand, one has to develop tools to
exiract the information from a complex signal where sev-
eral scales of different nature are mixed. Different meth-
ods have been proposed to study fluctuations properties
of the experimental spectra either using a doorway model
and microscopic calculations [13] or taking advantage of
autocorrelation techniques [14] assuming a statistical dis-
tribution of the decay channels [15]. However, such ana-
lyses remain dependent on underlying model hypotheses
and become difficult to handle when more than one scale
of the fine structure exists.

In the present paper, we reanalyze the 2°8Ph(p,p')
and 2°®Pb(e, ¢’) experiments using a model-independent
method, the entropy index, which is especially suited for
the study of multiscale fluctuations [16]. In particular,
this method does not make any a priori assumptions on
the decay mechanism. In the next section the entropy
index method is briefly summarized. Its application is
then illustrated for the 2°8Pb(p, p') experiment where fine
structure at different scales is found. Results of electron
and proton scattering are then compared showing a per-
fect agreement between these two independent measure-



ments. We finally analyze the results of SRPA calcula-
tions of the ISGQR in 2°®Pb in order to understand the
origin of the fluctuations. A good agreement of scales
extracted from the calculated and experimental results
is found. This supports an interpretation in favor of a
two-body nature of the dominant decay channels.

II. THE ENTROPY INDEX METHOD

The original idea of the entropy index method is to
focus on fluctuations at a given resolution in energy 4 F.
Suppose that we have an experimental spectrum in the
excitation energy region AE = (Emin, Frmaz)- In order
to study fluctuations, we can divide this interval into n
bins with n = AE/SE. If we call o (E) the fluctuating
function, i.e. the cross section or the strength in each bin
J, we can define a coefficient D

D68 = [ dE o () 0(8) 1)

i

where E; = E.., + jéE. In this expression,
Q;(E) denotes a function limited to the interval
[Ej-1, E;]. In the following, we suppose* that Q;(E) =
sign (E — (f — 1/2) 6 E). With this definition, Dj repres-
ents a coarse-grained derivative of the function ¢, ard
the fluctuations of these coefficients are directly related
to the fluctuations of ¢ at the considered scale. In order
to infer global properties of these fluctuations, we can
define an entropy K

K (JE):% > W, (6E)log W; (SE) (2)

i=ln

where tW;(JE) = D,/(D;) stands for the coeffi-
cients D; normalized to their averaged value Doy =
]-/n Zj:l,n DJ)

This technique has been initially proposed in order to
study self-similar fluctuations in heartbeats which could
be identified through a linear dependence of K (6E) on
the logarithm of the resolution §£ [17]. It has recently
been shown that the entropy index method is also suit-
able in situations where well-separated scales of fluctu-
ations exist {16]. Then, the linear increase is replaced by
a change in curvature of the entropy which corresponds
to transitions of § £ from one scale to another.

*It should however be noted that the choice of Q;(E) is not
unique and other odd functions with respect to the center of
the interval could be used.

II1. RESULTS

In the following, we apply the presented method to the
experimental data. A sample spectrum of the 208ph(p, p’ )
reaction [12] is displayed in Fig. 1 at = 8°, where AL —
2 transitions - and thus the population of the ISGQR -
are enhanced. With an experimental resolution of about
50 keV fine structure has been observed at excitation
energies below 12 MeV.
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FIG. 1. The 2 Pb(p,p’) experimental spectrum at a beam
energy [5p = 200 MeV and # = 8°,

Let us first illustrate the entropy index method with
the spectrum in Fig. 1. In a doorway picture, one expects
a large increase of the density of states to which collect-
ive modes are coupled with increasing excitation energy,
E;. As aresult, scales present at low excitation energies
might differ from those at high energy. This evolution
of scales with E necessitates investigations whether the
entropy index method should be applied to the whole
spectrum or to selected parts of it. In Fig. 2 we present
the evolution of K(6E) as a function of §E for differ-
ent energy intervals. Note that, in order to avoid prob-
lems due to the limited number of bins for large 6 F, we
have considered a function defined as 31 repetitions of
the spectrum as in Ref. [16].

When only the high-energy part (E, > 9.7 MeV} is
selected (squares), the entropy index is almost constant
for 6&# < 5 MeV indicating the absence of fine-structure
scales above 50 keV. This curve gives a global normaliz-
ation of the spectrum corresponding to the disorder in-
troduced by the background. Contrary, when only low
energies are included, e.g. £, = 0—9.7 MeV (diamonds),
we observe an increase of the entropy with decreasing
0 E accompagnied by changes in the curvature. Changes
around 1-2 MeV and 200 keV are clearly seen while a less
pronounced one is present around 500 keV. When the in-
terval is further reduced to E; < 6.5 MeV (crosses), the
change around 1-2 MeV disappears. Finally, when the
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method is applied to the whole spectrum, the entropy

index appears as a superposition of the results from the

partial spectra and all inflections are present.
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FI(:. 2. The variation of the entropy index K (§E) (in logar-
ithm scale) obtained from the ***Pb(p, p’) data in Fig. 1. The
different plots represent the entropy index variations depend-
ing on the chosen excitation energy interval: total £, < 24
MeV (circles), E. < 6.5 MeV (crosses), E: < 9.7 MeV (dia-
monds), E. = 9.7 — 24 MeV (squares).

Besides the analysis of the proton inelastic scattering
results, we can also apply the entropy index method to
the 2°5Pb(¢, ¢’) data [10]. An experimental spectrum ob-
tained for £, = 50 MeV and © = 93° is presented in
the upper part of Fig. 3. In the (e, ¢’) case, the high-
resolution part of the experimental spectrum is limited
to E; =7.6—11.7 MeV, the background is removed and
the experimental resolution is again around 50 keV. The
part of the (p,p’) spectrum corresponding to the same
energy interval is plotted in the lower part of Fig. 3. A
detailed correspondence exists in the fine structure, up to
about 10 MeV even on a level-by-level basis [11]. This is
indeed confirmed by the entropy index analysis. Figure
4 presents the variation of K (§E) as a function of §F in
the electron scattering case (circles) as well as for proton
scattering (crosses). The similarity in the fine structures
observed in Fig. 3 is reflected in a perfect superposition of
the curves obtained from these two independent experi-
ments. This agreement provides further confidence in the
estimated localization of curvature changes in K (6 E).
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FIG. 3. Top: the ***Pb(e,e’) spectrum (where the back-
ground is removed) at E, = 50 MeV and 8 = 93° in the ex-
citation energy range E, = 7.6 —11.7 MeV. Bottom: the cor-
responding part of the ***Pb(p, p’) spectrum shown in Fig. 1.

In view of the presented results, we can see that, when
selecting different parts of the available spectra, we are
able to study the fine structure in the excitation energy
region up to 12 MeV. It appears that a scale around 1-2
MeV is present in the energy region expected for col-
lective states while two finer structures exist in the low-
energy part. Although the number of dominant scales
appears directly from the analysis, their precise determ-
ination is not straightforward from the localization of the
curvature changes.
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FIG. 4. Comparison between the entropy index evolutions
obtained from the ***Pb(p,p’) reaction (crosses) and the
205 Pb(e, e') reaction (circles). In both cases, the energy inter-
val is B; = 7.6 — 11.7 MeV,

In order to gain a deeper insight, the work performed



in [16] has been extended. It can be shown that for
the models considered in [16] the entropy index can be
properly fitted by a function F(§E) defined as F(6E) =
?-n Kn(6E) where n is an index running on the different
scales and where K,,(JE) is defined as a Fermi-Dirac like
distribution function

kn

1+ exp (W) (3)

Kn(6E) =

with parameters k., d, and A,,, An example of the fit
obtained with ¥ is shown for the (p, p') data and for ex-
citation energies £, > 6.5 MeV in Fig. 5. In the model
mvestigations [16], where the scales T',, are known, an em-
pirical relation could be established between the fitting
functions and the scales, i.e. Ka(Tn)/k, = 0,92 £ 0.01.
Application of the same relation to the experimental data
allows the identification of fine-structure scales at 1.1
MeV, 460 keV and 125 keV. It should be noted that the
value of the smallest scale might already be affected by
the experimental resolution.

Considering the larger scales, it is interesting to note
that assuming a two-doorway picture for the ISGQR in
208Ph, the authors of Ref. [13] predicted spreading widths
T of 490 keV and 740 keV, respectively. The first scale
in particular seems to corroborate our result while the
second one is somewhat smaller than what is deduced
here. We would like to emphasize, however, that our
present method does not suppose any number of door-
ways.
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FIG. 5. The variation of the entropy index as a function of
the resolution JF obtained with the 208Pb(p,p') data when
¢xcitation energies E; > 6.5 MeV are selected {crosses). The
solid line corresponds to a fit of Eq. (3) using a sum of
Fermi-Dirac functions.

IV. COMPARISON WITH SECOND RPA
RESULTS

The interpretation of the fine-structure scales is far
from being straightforward. Indeed, as we pointed out in

the introduction, having precise information on the scales
present in the damping of giant resonances is of particular
interest since it may help to understand which mechan-
isms are involved in the internal mixing. On the theory
side, many physical effects might contribute to the damp-
ing [18]. Already at the mean-field level, the Landau frag-
mentation may introduce a typical scale. However, qual-
itative agreement with experiment can only be achieved
when models include two-body effects as in extended
RPA approaches [4,11,19]. In that case, we expect differ-
ent effects due to the coupling of 1p-1h with 2p-2h states.
The coherent coupling to low-lying collective surface vi-
brations may introduce fragmentation f20]. In addition,
strong coupling may lead to a reduction of widths, either
from interferences due to coupling through common de-
cay channels [21-23] or due to motional narrowing [24].
Furthermore, different assumptions are used in models in
order to treat the decay channels of the collective states
and/or the interaction matrix elements. For example,
statistical assumptions might be needed when the ex-
citation energy increases [25,26], while in a microscopic
picture like the SRPA, in particular at low excitation en-
ergy, only a few 2p-2h states are coupled to the collective
states and statistical assumptions may break down.

In this section, we apply the entropy index method to
SRPA results for the isoscalar giant quadrupole response
in 2°®Pb. The calculation is based on the M3Y interac-
tion [27] with some adjustment of the short-range part
which allows to reproduce the experimental centroids of
the low-multipolariy electric giant resonances in 2°%Ph.
A truncation of the 2p-2h configuration space is neces-
sary, e.g., at the upper limit of the calculation £, = 20
MeV one would have to include about 1.5 x 10% 2p-2h
states. The method used here focuses on diagonal matrix
elements in the 2p-2h subspace. Their distribution can
be approximated by a Gaussian assuming random fluc-
tuations. All configurations associated with matrix ele-
ments exceeding this Gaussian fit are included in the fur-
ther analysis (about 3000 in the present example). The
complex SRPA selfenergy is chosen to attain a finite res-
olution similar to the experimental data. The calculated
strength function of the ISGQR is presented in Fig. 6. At
the RPA level (not shown) the strength function consists
essentially of a single collective state around 12 MeV. By
introducing 2p-2h components, the FWHM strongly in-
creases and fine structure appears on top of the global
shape.
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FIG. 6. The SRPA isoscalar giant quadrupole strength
function in 2°®Ph. The presented result was calculated with
a width of the complex selfenergy to give a resolution similar
to the experimental spectra in Figs. 1 and 3.

The result obtained from the entropy index method
analysis for this SRPA spectrum and E, < 12 MeV is
shown in Fig. 7. Using the same fitting procedure as in
the experimental case permits to identify scales of fluc-
tnations at 2.1 MeV, 400 keV, and 120 keV. The two
smaller ones show very good agreement with the exper-
imental observation while the first one is somewhat lar-
ger. The good agreement suggests that the origin of the
fine-structure scales is indeed due to the coupling of the
2p-2h excitations to the collective states and that their
magnitude characterizes the two-body components of the
nuclear Hamiltonian, i.e. the coupling matrix elements
and density of states.
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FIG. 7. The variation of the entropy index K(6E) as a
function of the scale 8F obtained from the 2°*Pb SRPA
strength function for E; < 12 MeV. The solid Line is a fit
of expression (3).
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V. CONCLUSION

In this paper, using the model-independent entropy in-
dex method in high-resolution proton and electron elastic

scattering, we show that multiple scales of the fine struc-
ture appear in the damping of the isoscalar giant quadru-
pole resonance of 2*8Pb. In addition to the entropy index
method a fitting procedure has been developed that en-
ables a more precise estimate of the magnitude of these
scales. Fine-structure scales appear at 1.1 MeV, 460 keV
and 125 keV, in perfect agreement between electron and
proton scattering data. The application of the entropy
index method to a SRPA strength function gives results
in very satisfactory agreement with experiment while the
RPA alone is not able to exhibit any of these scales, This
provides a strong argument that the observed scales res-
ult from the decay of collective modes into 2p-2h states.
In particular, they should be connected to the density of
2p-2h states and the coupling matrix elements of the in-
medium residual interaction associated with this damp-
ing mechanism which is a rather unique way to infer
properties of two-body components in the nuclear sys-
tem. The quantitative knowledge of the scales may help
to improve effective interactions which are generally fit-
ted to mean-field properties only. In addition, the results
argue in favor of a hierarchy of complexity in the internal
components of the nucleus: one-body, two-body, three-
body... One may hope in the near future, with improved
experiments, to uncover even smaller fine structure scales
that are connected to more complex internal degrees of
freedom and go a step further in our understanding of
the transition from order to chaos in nuclear systems.
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