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Abstract

The aim of this paper is to study the pluricanonical maps of smooth projective 3-folds of

general type. For a given 3-fold X of general type, de�ne k0 to be the minimal integer such

that the k0-th plurigenus Pk0(X) := h0(X; k0KX) � 2, Koll�ar proved that the (11k0 + 5)-

canonical map is birational. However, given an arbitrary integer m > 11k0 + 5, it is hard

to know from Koll�ar's method whether the m-canonical map is still birational or not. On

the basis of our previous works, we shall prove, by developing a new approach, that the

(7k0 + 3)-canonical map is birational and that the m-canonical map is birational whenever

m � 10k0+6. If k0 � 25, then we shall show that the m-canonical map is birational whenever

m � 8k0 + 6. Furthermore, if X is irregular (i.e. h1(OX) > 0), then the m-canonical map

is birational whenever m � 166.
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To classify algebraic varieties is one of the goals of algebraic geometry. Let X be a smooth

projective variety of dimension d, KX be the canonical divisor and !X the dualizing sheaf.

When the system jmKX j 6= ?, we can de�ne a natural rational map

�m := �jmKX j : X 9 9 KPPm(X)�1

where Pm(X) := h0(X;!
mX ) is called the m-th plurigenus of X and �m is called the m-th

pluricanonical map. It is obvious that the behavior of �m directly reects intrinsic properties

of X, so that studying the pluricanonical maps is quite important to the classi�cation

theory. Usually, people are curious about whether �m is an embedding, a birational map, a

generically �nite map or a map of �ber type. Furthermore, if it is generically �nite, what is

the variety downstairs and what is the degree of the cover? If it is of �ber type, what is the

base variety and what is a general �ber? These questions help to understand the behavior

of �m. The objects considered in this paper are supposed to be varieties of general type.

When d = 1, a smooth projective curve X of general type has the genus g(X) � 2. The

behavior of its pluricanonical maps is quite clear. Explicitly, �m is always an embedding

whenever m � 3. �2 is an embedding with the only exception of genus two case when it is

a double cover. According to the behavior of �1, X is called a hyper-elliptic curve if �1 is a

double cover, a non-hyper-elliptic curve if �1 is an embedding. When d = 2, the situation is

more complicated, however, the behaviors of �m are almost clear by virtue of a great deal

of works by many authors. Since this is not a survey article, we don't plan to mention more

references here. Instead, the results which will be applied in our argument can be found

in [Bo], [B-C], [Ca], [Ci], [Mi], [Rr], and [X1], etc. It is wellknown that �m is birational

whenever m � 5, that �4 is birational with the exception for surfaces with (K
2; pg) = (1; 2),

that �3 is birational with the exception for surfaces with (K
2; pg) = (1; 2) or (2; 3), and that

�2 is generically �nite with the exception for surfaces with (K2; pg) = (1; 0).

It is natural that one should ask about the status of study in the case of d � 3. As far

as we know, it remains open whether there is a constant m0(d) such that �m is birational

for any smooth projective d-fold of general type whenever m � m0(d). Comparing with the

surface case, we lack of an e�ective plurigenera, although the 3-dimensional minimal model

theory has already been well established. To �x the terminology, we say that �m0
is stably

birational if �m is birational whenever m � m0. A very natural question (Question 3.2 of

[Ch]) arises:

does \birational" imply \stably birational"?

This is quite non-trivial, though it is true in the case of d � 2. Since X is supposed to be of

general type, �m is stably birational whenever m� 0. So the �rst step is to �nd an optimal

bound for this m, once given a variety X. We need the following de�nition.

De�nition 0.1. Let X be a nonsingular projective variety of general type of dimension d.

We de�ne

k0(X) := minfkj k 2 Z+; Pk(X) � 2g;

ks(X) := minfkj k 2 Z+; �k is stably birationalg;

�s(X) :=
ks(X)

k0(X)
, which is called the relative pluricanonical stability of X. Obviously,

�s(X) is a birational invariant.
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�s(d) := supf�s(X)jX runs through all smooth projective d-folds of general typeg, which

is called the d-th relative pluricanonical stability.

Noting that k0(X) is intrinsic with respect to the given X and k0(X) < +1, it is

reasonable to study �m in the relative way, i.e. to �nd the optimal bound for ks(X) in

terms of k0(X). The invariant ks(X) is important because it is not only crucial to the

classi�cation theory, but also strongly related to other interesting problems. For example,

it can be applied to determine the order of the birational automorphism group of X ([X2],

Remark in x1). According to [Ko] and [Ch], one has the following

Known Results. Let X be a smooth projective 3-fold of general type, denote k0 := k0(X),

then

(R1) ( [Ko, Corollary 4.8]) �11k0+5 is birational;

(R2) ( [Ch, Main Theorem]) either �7k0+3 or �7k0+5 is birational and �13k0+6 is stably

birational, so �s(3) � 16;

(R3) ( [Ch, Corollary 2.3.1], [F, Theorem 4.2], [Ko, Remark 6.6]) if X is irregular (i.e.

h1(OX) > 0), then �143 is birational.

With a new idea, we aim to present much better bounds here which greatly improve

known results. We shall study, case by case, the following questions.

Q1. If �k0 is birational, when is �m(k0) stably birational, where m(k0) is a function in

terms of k0?

Q2. If dim�k0(X) = 3 and �k0 is not birational, when is �m3(k0) stably birational, where

m3(k0) is a function in terms of k0?

Q3. If dim�k0(X) = n, 1 � n � 2, when is �mn(k0) stably birational, where mn(k0) is a

function in terms of k0 for each n?

The main consequences of our technique are the following

Main Results. Let X be a smooth projective 3-fold of general type, denote k0 := k0(X),

then

(i) �7k0+3 is birational.

(ii) �10k0+6 is stably birational and thus �s(3) � 13; if k0 � 25, then �8k0+6 is stably

birational.

(iii) if q := h1(OX) > 0, then �166 is stably birational; if either q > 1 or q = 1 but

�(OX) 6= 1, then �125 is stably birational.

These results are contained in Theorem 3.3, Theorem 3.4, Theorem 3.5, Theorem 3.7,

Theorem 3.9, Theorem 3.10, Corollary 4.4, Corollary 4.5 and Corollary 4.6.

The reason of my writing this paper is that the whole setting and the main approach here

are quite di�erent from those in my previous one. On the other hand, we feel that the above

results are closer to the optimal ones which some experts ever expected. It is very strange

to me that the stable bound ks obtained in this paper is even better than Koll�ar's birational

bound 11k0 + 5. For the reader's convenience, we try to arrange the whole argument to be

self-contained. The method of this paper is a development to the traditional one. First we

use the Kawamata-Viehweg vanishing theorem to reduce the problem to a parallel one for

the adjoint system jKS +Lj on a smooth projective surface S of general type. In general, I.

Reider's result cannot be applied to this system since L is not a nef and big Cartier divisor,
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instead L is the round-up of a nef and big Q-divisor A, i.e. L = pAq. We are not going

to treat a very general case since it is di�cult to do so. Thanks to expected properties of

the divisor A, we managed to �nd a su�cient condition for the birationality of the system

jKS+Lj. However, the di�cult step is to �nd a suitable A or L which satis�es this condition.

1. Preliminaries

Throughout this paper, the ground �eld is supposed to be any algebraically closed �eld

of characteristic zero. Let X be a normal projective variety of dimension d. We denote by

Div(X) the group of Weil divisors on X. An element D 2 Div(X)
 Q is called a Q-divisor.

A Q-divisor D is said to be Q-Cartier if mD is a Cartier divisor for some positive integerm.

For a Q-Cartier divisor D and an irreducible curve C � X, we can de�ne the intersection

number D �C in a natural way. A Q-Cartier divisor D is called nef (or numerically e�ective)

if D � C � 0 for any e�ective curve C � X. A nef divisor D is called big if Dd > 0. We

say that X is Q-factorial if every Weil divisor on X is Q-Cartier. For a Weil divisor D on

X, write OX(D) as the corresponding reexive sheaf. Denote by KX a canonical divisor

of X, which is a Weil divisor. X is called minimal if KX is a nef Q-Cartier divisor. For a

positive integerm, we set ![m]
:= OX(mKX) and call Pm(X) := dimCH

0
(X;![m]

) the m-th

plurigenus of X. We remark that Pm(X) is an important birational invariant. De�ne the

Kodaira dimension kod(X) to be k, 1 � k � dimX, if there are two constants � and � such

that

�mk < Pm(X) < �mk; for m� 0:

X is said to be of general type if kod(X) = dimX.

X is said to have only canonical singularities (resp. terminal singularities) according to

Reid ([R]) if the following two conditions hold:

(i) for some positive integer r, rKX is Cartier;

(ii) for some resolution f : Y �! X, KY = f�(KX) +
P
aiEi for 0 � ai 2 Q (resp.

0 < ai) 8i, where the Ei vary all the exceptional divisors on Y .

According to 3-dimensional MMP ([KMM], [K-M]), when V is a smooth projective three-

fold of positive Kodaira dimension, there exists a birational map � : V 9 9 KX, where X

can be a minimal 3-fold with only Q-factorial terminal singularities and � is a composite of

successive divisorial contractions and ips. Usually, X is not uniquely determined by V .

Let D =

P
aiDi be a Q-divisor on X where theDi are distinct prime divisors and ai 2 Q .

We de�ne

the round-down xDy :=

X
xaiyDi; where xaiy is the integral part of ai;

the round-up pDq := �x�Dy;

the fractional part fDg := p(D � xDy)q:

Remark 1.1. Suppose X has only canonical singularities and f : V �! X is a resolution,

we have

Pm(X) = h0
�
V;OV

�
xf�(mKX)y

��
= h0

�
V;OV

�
pf�(mKX)q

��
= Pm(V )

for any positive integer m.

Though it seems that the next de�nition is not standard, we would rather give it in order

to avoid unnecessary redundancy throughout the whole context.
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De�nition 1.2. Let X be a smooth projective variety and L be a Cartier divisor on X.

If jLj is a linear system without �xed components and h0(X;L) � 2, we mean a generic

irreducible element S of jLj as follows:

(i) if dim�jLj(X) � 2, then S is just a general member of jLj.

(ii) if dim�jLj(X) = 1, then L is linearly equivalent to a union of distinct reduced irre-

ducible divisors of the same type. Explicitly, L �lin

P
Si. We mean S a generic Si.

We always use the Kawamata-Ramanujam-Viehweg vanishing theorem in the following

form.

1.3 Vanishing Theorem. ( [Ka] or [V]) Let X be a smooth complete variety, D is a

Q-divisor. Assume the following two conditions:

(i) D is nef and big;

(ii) the fractional part of D has supports with only normal crossings.

Then Hi
(X;OX(KX + pDq)) = 0 for all i > 0.

(We remark that the normal crossing property is unnecessary when X is an algebraic

surface, by virtue of Sakai's result.)

1.4 The Matsuki-Tankeev principle. This principle is tacitly used throughout our ar-

gument. Suppose X is a smooth variety, jM j is a base point free system on X and D is a

divisor with jDj 6= ?. We want to know when �jD+M j is birational. The following principles

are due to Tankeev and Matsuki, respectively.

(P1). (Lemma 2 of [T]) Suppose jM j is not composed of a pencil, i.e. dim�jM j(X) � 2

and take a general member Y 2 jM j. If the restriction of �jD+M j to Y is birational, then

�jD+M j is birational.

(P2). (see [Ma]) Suppose jM j is composed of a pencil and take the Stein-factorization of

�jM j : X
f
�! C �! W � PN ;

where W is the image of X through �jM j and f is a �bration onto a smooth curve C. Let

F be a general �ber of f . If we have known (say by the vanishing theorem) that �jD+M j can

distinguish general �bers of f and that its restriction to F is birational, then �jD+M j is also

birational.

1.5 Koll�ar's technique. This approach comes from [Ko]. In some cases, its output is

better and is, sometimes, applied to our arguments. Let X be a smooth projective 3-fold

of general type and suppose Pk(X) � 2. Choose a 1-dimensional sub-system of jkKX j and

replace X by a birational model X 0
where this pencil de�nes a morphism g : X 0 �! P1.

(For simplicity, we can suppose X 0
= X). Let S be a generic irreducible element of this

pencil, then a general �ber of g is a disjoint union of some surfaces with the same type

as S and S is a smooth projective surface of general type. Let t = k(2p + 1) + p. Then

H0
(!tX) = H0

(P1; g�!
t
X) and we have an injection O(1) ,! g�!

k
X , and hence an injection

O(2p+ 1) ,! g�!
k(2p+1)

X . This gives an injection

O(2p+ 1)
 g�!
p
X ,! g�!

t
X ;
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where O(2p + 1) 
 g�!
p
X = O(1) 
 g�!

p
X=P1

. Now it is wellknown that g�!
p
X=P1

is a sum

of line bundles of non-negative degree on P1. If p � 5, the local sections of g�!
p
X give a

birational map for S, and all these extend to global sections of O(2p+1)
 g�!
p
X . Moreover

its sections separate the �bers from each other, hence �t is a birational map for X whenever

p � 5. From this method, according to [BPV] and [X], we can see

(1.5.1) �5k+2 is generically �nite for X if S is not a surface with pg(S) = q(S) = 0 and

K2

S0
= 1, where S0 is the minimal model of S. Otherwise, we have at least dim�5k+2(X) � 2.

(1.5.2) �7k+3 is birational for X if S is not a surface with

(K2

S0
; pg(S)) = (1; 2) or (2; 3):

2. Several Lemmas

Lemma 2.1. Let S be a smooth projective surface of general type, L be a nef and big Cartier

divisor on S, then

(i) �jKS+mLj is birational if m � 4;

(ii) �jKS+3Lj is birational if L
2 � 2;

(iii) KS +D is e�ective if D is a divisor with h0(S;D) � 2;

(iv) KS + pAq +D is e�ective if A is a nef and big Q-divisor and if h0(S;D) � 2.

Proof. Both (i) and (ii) are direct corollaries of [Rr, Corollary 2]. (iii) is derived by a simple

use of Riemann-Roch. To prove (iv), we may suppose that jDj is base point free. Denote by

C a generic irreducible element of jDj, then the vanishing theorem gives the exact sequence

H0
(S;KS + pAq + C) �! H0

(C;KC +H) �! 0;

where H := pAqjC is a divisor of positive degree. It is obvious that h0(C;KC + H) � 2

since C is a curve of genus � 2. The proof is completed. �

Lemma 2.2. Let X be a nonsingular projective variety of dimension d, D 2 Div(X)
 Q

be a Q-divisor on X. Then we have the following:

(i) if S is a smooth irreducible divisor on X, then pDqjS � pDjSq;

(ii) if � : X 0 �! X is a birational morphism, then ��(pDq) � p��(D)q.

Proof. These statements are obvious. One only has to verify for e�ective Q-divisors. �

Lemma 2.3. Let S be a smooth projective surface of general type, A be a nef and big Q-

divisor on S and L := pAq, D be a Cartier divisor with h0(S;D) � 2. Suppose KS + L is

e�ective, �jDj is a morphism and L �C � 3, where C is a generic irreducible element of the

moving part of jDj. Then �jKS+L+Dj is a birational map.

Proof. For simplicity, we can suppose that jDj is base point free. If dim�jDj(S) = 2, by (P1),

it is su�cient to prove that �jKS+L+DjjC is birational sinceKS+L is e�ective by assumption.

If jDj is composed of a pencil, we can write D �lin

P
Ci. Using the Kawamata-Viehweg

vanishing theorem, we can easily see that �jKS+L+Dj can't only distinguish di�erent general

�bers of �jDj, but also distinguish disjoint components in a general �ber of �jDj. So, by

(P2), it is also su�cient to verify the birationality of �jKS+L+DjjC . We have

jKS + L+ Cj
��
C
= jKC +Dj

by the vanishing theorem, where D := LjC is a divisor of degree � 3. Thus �jKC+Dj is an

embedding and then the lemma is true. �
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Corollary 2.4. Let S be a smooth projective surface of general type, A be a nef and big

Q-divisor on S and L := pAq, D be a Cartier divisor with h0(S;D) � 2, G is another

Cartier divisor. Suppose dim�jGj(C) = 1 where C is a generic irreducible element of the

moving part of jDj. Then �jKS+L+G+Dj is a birational map.

Proof. One can suppose that both jGj and jDj are base point free. Then it is obvious that

G �C � 2. According to Lemma 2.1(iv), KS +L+G is e�ective. Since A+G is nef and big

and (L+G) � C � 3, Lemma 2.3 directly derives the corollary. �

Lemma 2.5. Let X 0 be a smooth projective 3-fold of general type. Then

(i) P2 � 4 if �(OX0) < 0;

(ii) P4 � 3 if �(OX0) = 0;

(iii) P24 � 2 if �(OX0) = 1.

Proof. These are Fletcher's results. One may refer to [F, 4.2, 4.4]. �

Lemma 2.6. Let X 0 be a smooth projective 3-fold of general type, q(X 0
) > 0. Then

P20(X
0
) � 2

with the possible exception of q(X 0
) = 2, �(OX0) = 0.

Proof. This is an announcement of Koll�ar in [Ko, Remark 6.6]. �

Lemma 2.7. ( [Rr, Theorem 1]) Let S be a smooth projective surface of general type, L be

a nef divisor and L2 � 5. Suppose p is a base point of jKS+Lj, then there exists an e�ective

divisor E passing through p such that

either L � E = 0; E2
= �1

or L � E = 1; E2
= 0:

Corollary 2.8. Let S be a smooth minimal projective surface of general type, then

(i) j4KSj is base point free.

(ii) j3KSj is base point free whenever K2

S � 2.

Proof. This is direct from Lemma 2.7. �

3. Main Theorems

Recalling De�nition 0.1, sometimes for simplicity, we denote k0(X) and ks(X) by k0 and

ks, respectively.

Proposition 3.1. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. If dim�k0(X) � 2, then Pm(X) � 2 for all m � 2k0.

Proof. First we take a birational modi�cation � : X 0 �! X, according to Hironaka, such

that

(1) X 0
is smooth;

(2) jk0KX0 j de�nes a morphism;

(3) the fractional part of ��(KX) has supports with only normal crossings.
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Denote by S0 := Sk0 the generic irreducible element of the moving part of jk0KX0 j, then

S0 is a smooth projective surface of general type by Bertini's theorem. By the vanishing

theorem, we have the exact sequence

H0
(X 0;KX0 + p(t+ k0)�

�
(KX)q+ S0) �! H0

(S0;KS0 + p(t+ k0)�
�
(KX)qjS0 ) �! 0;

where t � 0 is a given integer and

p(t+ k0)�
�
(KX)qjS0 � pt��(KX)jS0q+D0;

D := S0jS0 has the property h
0
(S0;D) � 2 according to the assumption. If t = 0, then

P2k0+1(X) � h0(S0;KS0 +D) � 2

by Lemma 2.1(iii). If t > 0, we still have the following exact sequence

H0
(S0;KS0 + pt��(KX)jS0q+ C) �! H0

(KC +G) �! 0;

where C is a generic irreducible element of the moving part of jDj and

G := pt��(KX)jS0qjC

is a divisor of positive degree on C. Since C is a curve of genus � 2, we have

h0(C;KC +G) � 2:

We can easily see that P2k0+t+1 � 2. The proof is completed. �

Corollary 3.2. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. If �k0 is birational, then ks � 3k0.

Proof. This is obvious according to Proposition 3.1. �

Theorem 3.3. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. If dim�k0(X) = 3 and �k0 is not birational, then ks � 3k0 + 2.

Proof. Taking the same modi�cation � : X 0 �! X as in the proof of Proposition 3.1, we still

denote by S0 the general member of the moving part of jk0KX0 j. Note that both jk0KX0 j

and jpk0�
�
(KX)qj have the same moving part. For a given integer t > 0, we have

KX0 + p(t+ 2k0)�
�
(KX)q+ S0 � (t+ 3k0 + 1)KX0 :

It is su�cient to prove the birationality of rational map given by

jKX0 + p(t+ 2k0)�
�
(KX)q+ S0j:

Because

KX0 + p(t+ 2k0)�
�
(KX)q
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is e�ective according to Proposition 3.1, by virtue of (P1), we have to prove the birationality

of

�jK
X0+p(t+2k0)��(KX)q+S0j

��
S0
:

We have the following exact sequence according to the vanishing theorem

H0
(X;KX0 + p(t+ 2k0)�

�
(KX)q+ S0) �! H0

(S0;KS0 + p(t+ 2k0)�
�
(KX)qjS0) �! 0;

which means

jKX0 + p(t+ 2k0)�
�
(KX)q+ S0j

��
S0
= jKS0 + p(t+ 2k0)�

�
(KX)qjS0 j:

Noting that

KS0 + p(t+ 2k0)�
�
(KX)qjS0 � KS0 + pt�(KX)jS0q+ 2L0;

where L0 := S0jS0 , we want to show that

�jKS0+pt�(KX)jS0q+2L0j

is birational. Because jL0j gives a generically �nite map, we see from Lemma 2.1(iv) that

KS0 + pt��(KX)jS0q+ L0

is e�ective. On the other hand, let C be a generic irreducible element of jL0j, then

dim�jL0j(C) = 1. Applying Corollary 2.4, we see that

jKS0 + pt��(KX)jS0q+ 2L0j

gives a birational map. The proof is completed. �

Theorem 3.4. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. If dim�k0(X) = 2, then ks � 4k0 + 4.

Proof. First we take the same modi�cation � : X 0 �! X as in the proof of Proposition

3.1. We also suppose that S0 is the moving part of jk0KX0 j. For a given integer t > 0, we

obviously have

KX0 + p(t+ 2k0 + 2)��(KX)q+ 2S0 � (t+ 4k0 + 3)KX0 :

Thus it is su�cient to verify the birationality of the rational map given by

jKX0 + p(t+ 2k0 + 2)��(KX)q+ 2S0j:

By Proposition 3.1,

KX0 + p(t+ 2k0 + 2)��(KX)q+ S0

is e�ective. According to (P1), we only have to prove the birationality of the restriction

�jK
X0+p(t+2k0+2)��(KX)q+2S0j

��
S0
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for the general S0. The vanishing theorem gives the exact sequence

H0
(X 0;KX0 + p(t+ 2k0 + 2)��(KX)q+ 2S0)

�!H0
(S0;KS0 + p(t+ 2k0 + 2)��(KX)q

��
S0

+S0jS0) �! 0:

This means

�jK
X0+p(t+2k0+2)��(KX)q+2S0j

��
S0
= �jKS0+p(t+2k0+2)��(KX)qjS0+S0jS0 j

:

Suppose M2k0+2 is the moving part of j(2k0 + 2)KX0 j, we have to study some property of��M2k0+2jS0

��. Note that M2k0+2 is also the moving part of jp(2k0 + 2)��(KX)qj. We have

KX0 + p��(KX)q+ 2S0 � (2k0 + 2)KX0 :

The vanishing theorem gives the exact sequence

H0
(X 0;KX0 + p��(KX)q+ 2S0)

�
�! H0

(S0;KS0 + p��(KX)qjS0 + L0) �! 0;

where L0 := S0jS0 . Denote by M
0
2k0+2

the moving part of

jKX0 + p��(KX)q+ 2S0j

and by G the moving part of

jKS0 + p��(KX)qjS0 + L0j:

Considering the natural map

H0
(X 0;M 0

2k0+2)
�
�! H0

(S0;M
0
2k0+2jS0);

we have

h0(S0;M
0
2k0+2

jS0) � dimC

�
im(�)

�
= dimC

�
im(�)

�

=h0(S0;KS0 + p��(KX)qjS0 + L0):

Because

M 0
2k0+2

jS0 � KS0 + p��(KX)qjS0 + L0;

we see that

G �M 0
2k0+2jS0 �M2k0+2jS0 :

Noting that jL0j is a free pencil, we can suppose C is a generic irreducible element of jL0j.

Now the key step is to show that dim�jGj(C) = 1. In fact, the vanishing theorem gives

jKS0 + p��(KX)jS0q+ L0j
��
C
= jKC +Dj;

where D := p��(KX)jS0q
��
C
is a divisor of positive degree. Because C is a curve of genus

� 2, jKC +Dj gives a �nite map. This shows

dim�jKS0+p��(KX)jS0q+L0j
(C) = 1;
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thus dim�jGj(C) = 1. Therefore

dim�jM2k0+2
jS0 j

(C) = 1:

Noting that

h0(S0;M2k0+2jS0) � h0(S0; G) � 2;

we see from Lemma 2.1(iv) that

KS0 + pt��(KX)jS0q+M2k0+2jS0

is e�ective. Finally, Lemma 2.3 gives the birationality of the rational map given by

jKS0 + pt��(KX)jS0q+M2k0+2jS0 + L0j:

Because

jKS0 + pt��(KX)jS0q+M2k0+2jS0 + L0j

�jKS0 + p(t+ 2k0 + 2)��(KX)qjS0 + L0j;

so

�jKS0+p(t+2k0+2)��(KX)qjS0+S0jS0 j

is birational. We have proved the theorem. �

From now on, we suppose that dim�k0(X) = 1. This is the case which prevents us from

getting a better bound for ks. We can take the same modi�cation � : X 0 �! X as in the

proof of Proposition 3.1. Set g := �k0 � � be the morphism from X 0
onto

W � PPk0�1;

where W is the closed closure of the image of X through �k0 . Let

g : X 0 f
�! C �! W

be the Stein-factorization, then C is a smooth projective curve. Denote b := g(C), the genus

of C. If b > 0, it is very easy to see by Kawamata's vanishing theorem for Weil divisors

that ks � 2k0 + 4. (One may also refer to the proof of [Ch, Theorem 2.3.1].) In the rest of

this section, we mainly study the case when C is the rational curve P1. We have a �bration

f : X 0 �! P1. Let S be a general �ber of the �bration, then S is a smooth projective

surface of general type. Note that S is also the generic irreducible element of the moving

part of the system jk0KX0 j.

According to the behavior of the tricanonical map of S, we classify S into two types:

(I)t S is not a surface with (K2; pg) = (1; 2) and (2; 3), where the invariants represent

the ones of the minimal model of S;

(II)t S is a surface with (K2; pg) = (1; 2) or (2; 3).

If S is of type (I)t, then �7k0+3 is birational according to (1.5.2).
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Theorem 3.5. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. If dim�k0(X) = 1, b = 0 and S is of type (II)t, then

ks � 5k0 + 5:

Proof. Because S is of type (II)t, we always have q(S) = 0 and pg(S) � 2. We shall

formulate our proof into steps and take S be a general �ber of f .

Step 1. dim�2k0+1(S) � 1

Noting that

jKX0 + pk0�
�
(KX)q+

X
Sij � j(2k0 + 1)KX0 j;

and that the vanishing theorem gives

jKX0 + pk0�
�
(KX)q+

X
Sij

��
S

=

�� KS + pk0�
�
(KX)qjS

��� jKS j

we obviously see that dim�2k0+1(S) � 1, since pg(S) � 2.

Step 2. dim�3k0+2(S) = 2

Noting that

jKX0 + p(2k0 + 1)��(KX)q+

X
Sij � j(3k0 + 2)KX0 j;

and that the vanishing theorem gives

jKX0 + p(2k0 + 1)��(KX)q+

X
Sij

��
S

=

�� KS + p(2k0 + 1)��(KX)qjS
��

�
�� KS +M2k0+1jS

��

where M2k0+1 is the moving part of jp(2k0 + 1)��(KX)qj and thus h0(S;M2k0+1jS) � 2

according to Step 1. Now it is su�cient to see that

�� KS +M2k0+1jS
��

gives a generically �nite map, which is obvious because q(S) = 0, pg(S) > 0 and S is of

general type. In fact, one only has to study the restriction to a generic irreducible element

of the moving part of

��M2k0+1jS
��. Therefore dim�3k0+2(S) = 2.

Step 3. mKX0 is e�ective whenever m � 3k0 + 2

For a given integer t > 0, we have

KX0 + p(t+ 2k0 + 1)��(KX)q+

X
Si � (t+ 3k0 + 2)KX0 :

The vanishing theorem gives

jKX0 + p(t+ 2k0 + 1)��(KX)q+

X
Sij

��
S

=

�� KS + p(t+ 2k0 + 1)��(KX)qjS
��

�
�� KS + pt��(KX)qjS +M2k0+1jS

��
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For simplicity, we can suppose that �jM2k0+1
jS j is a morphism and denote by C a generic

irreducible element of the moving part of the system

�� M2k0+1jS
��. The vanishing theorem

also gives �� KS + pt��(KX)jSq+M2k0+1jS
��
���
C
� jKC +Dj;

where D := pt��(KX)jSqjC is a divisor of positive degree. Because C is a curve of genus

� 2, we see that h0(C;KC +D) � 2. The proof is completed.

Step 4. Studying of j(4k0 + 3)KX0 j

This is an important step of our technique. First we have

jKX0 + p(3k0 + 2)��(KX)q+

X
Sij � j(4k0 + 3)KX0 j:

Denote by M3k0+2, M4k0+3 the moving part of

j(3k0 + 2)KX0 j; j(4k0 + 3)KX0 j

respectively. Also denote by M 0
4k0+3

the moving part of the system

jKX0 + p(3k0 + 2)��(KX)q+

X
Sij:

The vanishing theorem gives the following exact sequence

H0
(X 0;KX0 + p(3k0 + 2)��(KX)q+

X
Si)

�1
�!H0

(S;KS + p(3k0 + 2)��(KX)qjS) �! 0:

We also have a natural map

H0
(X 0;M 0

4k0+3
)

�1
�! H0

(S;M 0
4k0+3

jS):

From these maps, we can see that

h0(S;M 0
4k0+3) � dimC

�
im(�1)

�
= dimC

�
im(�1)

�

=h0(S;KS + p(3k0 + 2)��(KX)qjS):

Denote by G0
the moving part of

�� KS + p(3k0 + 2)��(KX)qjS
�� : Since

M 0
4k0+3

� KS + p(3k0 + 2)��(KX)qjS ;

we see that G0 �M 0
4k0+3

jS . Denote by G0, G the moving parts of

jKS j;
�� p(3k0 + 2)��(KX)qjS

��

respectively. Then G0 � G0 +G and thus

G0 +G �M4k0+3jS :
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Furthermore, we should have h0(S;G0) � 2 and dim�jGj(S) = 2. If C is a generic irreducible

element of jG0j, then dim�jGj(C) = 1.

Step 5. The birationality

For a given integer t > 0, we study the system

jKX0 + p(t+ 4k0 + 3)��(KX)q+

X
Sij:

According to Step 3,

KX0 + p(t+ 4k0 + 3)��(KX)q

is e�ective. In order to use (P1), it is enough to study the restriction. The vanishing theorem

gives

jKX0 + p(t+ 4k0 + 3)��(KX)q+

X
Sij

��
S

=

�� KS + p(t+ 4k0 + 3)��(KX)qjS
��

�
�� KS + pt��(KX)jSq+G+G0

�� :

By Corollary 2.4 and Step 4, we see that

�� KS + pt��(KX)jSq+G+G0

��

gives a birational map. The theorem has been proved. �

Corollary 3.6. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. Then either �7k0+3 is birational or ks � 5k0 + 5. In particular,

�7k0+3 is de�nitely birational.

Proof. This is a direct result from Theorem 3.3, Theorem 3.4, Theorem 3.5 and (1.5.2). �

In order to prove the stable birationality, we need to classify surfaces into the following 3

types, where we suppose S is a smooth projective surface of general type:

(I)s pg(S) � 2;

(II)s pg(S) � 1 and K2

S0
� 2, where S0 is the minimal model of S;

(III)s pg(S) � 1 and K2

S0
= 1.

Theorem 3.7. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. If dim�k0(X) = 1, b = 0 and S is of type (I)s, then

ks � 6k0 + 5:

Proof. It is obvious that type (II)t is a special one of type (I)s. However, one may use

a similar argument to that of Theorem 3.5. One point to note here is that S may be not

only regular but also irregular. So the bound for ks is slightly weaker than in Theorem 3.5.

We keep the same notations as in the proof of Theorem 3.5. We shall omit unnecessary

redundancy by virtue of the argument there. Suppose S is a general �ber of the derived

�bration f : X 0 �! P1.
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Step 1. dim�2k0+1(S) = 1. (omitted)

Step 2. dim�4k0+2(S) = 2.

Noting that

jKX0 + p(3k0 + 1)��(KX)q+

X
Sij � j(4k0 + 2)KX0 j;

and that the vanishing theorem gives

jKX0 + p(3k0 + 1)��(KX)q+

X
Sij

��
S

=

�� KS + p(3k0 + 1)��(KX)qjS
��

�
�� KS + pk0�

�
(KX)jSq+M2k0+1jS

��

where M2k0+1 is the moving part of jp(2k0 + 1)��(KX)qj and thus h0(S;M2k0+1jS) � 2

according to Step 1. Now it is su�cient to see that

�� KS + pk0�
�
(KX)jSq+M2k0+1jS

��

gives a generically �nite map. In fact, KS + pk0�
�
(KX)jSq is e�ective, k0�

�
(KX)jS is nef

and big, and for the generic irreducible element C of the moving part of

�� M2k0+1jS
��, it is

easy to see that

�jKS+pk0��(KX)jSq+M2k0+1
jS j

can distinguish di�erent generic irreducible elements C 0s. The vanishing theorem gives

�� KS + pk0�
�
(KX)jSq+ C

����
C
= jKC +Dj;

where D := pk0�
�
(KX)jSqjC is a divisor of positive degree. Thus jKC + Dj gives a �nite

map, and so does �� KS + pk0�
�
(KX)jSq+M2k0+1jS

��

bu virtue of (P2). Therefore dim�4k0+2(S) = 2.

Step 3. mKX0 is e�ective whenever m � 3k0 + 2. (omitted)

Step 4. Studying of j(5k0 + 3)KX0 j.

First we have

jKX0 + p(4k0 + 2)��(KX)q+

X
Sij � j(5k0 + 3)KX0 j:

Denote by M4k0+2, M5k0+3 the moving part of

j(4k0 + 2)KX0 j; j(5k0 + 3)KX0 j

respectively. Also denote by M 0
5k0+3

the moving part of the system

jKX0 + p(4k0 + 2)��(KX)q+

X
Sij:
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The vanishing theorem gives the following exact sequence

H0
(X 0;KX0 + p(4k0 + 2)��(KX)q+

X
Si)

�1
�!H0

(S;KS + p(4k0 + 2)��(KX)qjS) �! 0:

We also have a natural map

H0
(X 0;M 0

5k0+3
)

�1
�! H0

(S;M 0
5k0+3

jS):

From these maps, we can see that

h0(S;M 0
5k0+3

) � dimC

�
im(�1)

�
= dimC

�
im(�1)

�

=h0(S;KS + p(4k0 + 2)��(KX)qjS):

Denote by G00
the moving part of

�� KS + p(4k0 + 2)��(KX)qjS
�� : Since

M 0
5k0+3jS � KS + p(4k0 + 2)��(KX)qjS ;

we see that G00 �M 0
5k0+3

jS . Denote by G0, G the moving parts of

jKS j;
�� p(4k0 + 2)��(KX)qjS

��

respectively. Then G00 � G0 +G and thus

G0 +G �M5k0+3jS :

Furthermore, we should have h0(S;G0) � 2 and dim�jGj(S) = 2. If C is a generic irreducible

element of jG0j, then dim�jGj(C) = 1.

Step 5. The birationality

For a given integer t > 0, we study the system

jKX0 + p(t+ 5k0 + 3)��(KX)q+

X
Sij:

According to Step 3,

KX0 + p(t+ 5k0 + 3)��(KX)q

is e�ective. In order to use (P2), it is enough to study the restriction to S. The vanishing

theorem gives

jKX0 + p(t+ 5k0 + 3)��(KX)q+

X
Sij

��
S

=

�� KS + p(t+ 5k0 + 3)��(KX)qjS
��

�
�� KS + pt��(KX)jSq+G+G0

�� :
By Lemma 2.4 and Step 4, we see that

�� KS + pt��(KX)jSq+G+G0

��

gives a birational map. The theorem has been proved. �
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Proposition 3.8. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. If dim�k0(X) = 1, b = 0 and S is of type (II)s or (III)s, then mKX0

is e�ective whenever m � 6k0 + 3.

Proof. According to (1.5.1), dim�5k0+2(X) � 2. For a given integer t � 0, we want to study

the system

jKX0 + p(t+ 5k0 + 2)��(KX)q+

X
Sij:

Now using a parallel argument to that of Step 3 in the proof of Theorem 3.5, one can easily

get the result. �

Theorem 3.9. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. If dim�k0(X) = 1, b = 0 and S is of type (II)s, then

ks � 9k0 + 6:

Proof. Since S is of type (II)s, the technique of Theorem 3.5 is not e�ective here. We shall

study in an alternative way. The key step is to study the system j(7k0+3)KX0 j. Denote by

M7k0+3 the moving part of j(7k0 + 3)KX0j. It is obvious that

�j(7k0+3)K
X0 j = �jM7k0+3

j:

For a general �ber S, we suppose N3 is the moving part of j3KSj. By virtue of Koll�ar's

technique, we know that the global sections of j3KS j extends to global sections of

j(7k0 + 3)KX0 j

and so that

�j(7k0+3)K
X0 jjS

does behave more than �j3KS j. This means we should have

jM7k0+3j
��
S
� jN3j:

Now let

� : S �! S0

be the natural contraction onto the minimal model S0. By Lemma 2.8(ii), we know that

j3KS0 j is base point free. So �
�
(3KS0) is linearly equivalent to the moving part N3 of j3KSj.

We can write

N3 �lin �
�
(KS0) + ��(2KS0):

According to [X], we know that j��(2KS0)j de�nes a generically �nite map.

The next step is to study j(8k0 + 4)KX0 j. Denote by M8k0+4 the moving part of

j(8k0 + 4)KX0 j;

and by M 0
8k0+4

the moving part of the system

jKX0 + p(7k0 + 3)��(KX)q+

X
Sij:
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The vanishing theorem gives the exact sequence

H0
(X 0;KX0 + p(7k0 + 3)��(KX)q+

X
Si)

�0

1
�!H0

(S;KS + p(7k0 + 3)��(KX)qjS) �! 0:

We have another natural map

H0
(X 0;M 0

8k0+4)

�01
�! H0

(S;M 0
8k0+4jS):

It is obvious that

M 0
8k0+4

jS � KS + p(7k0 + 3)��(KX)qjS :

On the other hand, we have

h0(S;M 0
8k0+4

jS) � dimC

�
im(�0

1
)

�
= dimC

�
im(�0

1
)

�

=h0(S;KS + p(7k0 + 3)��(KX)qjS):

So we have

G �M 0
8k0+4jS �M8k0+4jS ;

where we denote by G the moving part of

�� KS + p(7k0 + 3)��(KX)qjS
�� :

Because

KS + p(7k0 + 3)��(KX)qjS � KS +N3

= KS + ��(KS0) + ��(2KS0)

� ��(2KS0) + ��(2KS0)

� N2 +N2;

where N2 is the moving part of the system j��(2KS0)j. Denote by C the generic irreducible

element of jN2j, then dim�jN2j(C) = 1.

For a given integer t > 0, we want to study the system

jKX0 + p(t+ 8k0 + 4)��(KX)q+

X
Sij:

By Proposition 3.8, KX0 + p(t+ 8k0 + 4)��(KX)q is e�ective. On the other hand, the

vanishing theorem gives

jKX0 + p(t+ 8k0 + 4)��(KX)q+

X
Sij

��
S

=

�� KS + p(t+ 8k0 + 4)��(KX)qjS
��

�
�� KS + pt��(KX)jSq+N2 +N2

�� :
Corollary 2.4 derives that

�� KS + pt��(KX)jSq+N2 +N2

��

de�nes a birational map. Therefore we see that �t+9k0+5 is birational for all t > 0. The

proof is completed. �
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Theorem 3.10. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. If dim�k0(X) = 1, b = 0 and S is of type (III)s, then

ks � 10k0 + 6:

Proof. The technique is similar to the one in the last theorem. The key step is to study

j(9k0 + 4)KX0j. Denote by M9k0+4 the moving part of j(9k0 + 4)KX0j. It is obvious that

�j(9k0+4)K
X0 j = �jM9k0+4

j:

For a general �ber S, we suppose N4 is the moving part of j4KSj. By virtue of Koll�ar's

technique, we know that the global sections of j4KS j extends to global sections of

j(9k0 + 4)KX0 j

and so that

�j(9k0+4)KX0 jjS

does behave more than �j4KS j. This means that we should have

jM9k0+4j
��
S
� jN4j:

Now let

� : S �! S0

be the natural contraction onto the minimal model S0. By Lemma 2.8(i), we know that

j4KS0 j is base point free. So �
�
(4KS0) is linearly equivalent to the moving part N4 of j4KSj.

We can write

N4 �lin �
�
(2KS0) + ��(2KS0)

� ��(2KS0) +N2

According to [X], we know that

dim�j��(2KS0 )j
(S) � 1:

So h0(S;N2) � 2.

For a given integer t > 0, we want to study the system

jKX0 + p(t+ 9k0 + 4)��(KX)q+

X
Sij:

By Proposition 3.8, KX0 + p(t+ 9k0 + 4)��(KX)q is e�ective. On the other hand, the

vanishing theorem gives

jKX0 + p(t+ 9k0 + 4)��(KX)q+

X
Sij

��
S

=

�� KS + p(t+ 9k0 + 4)��(KX)qjS
��

�
�� KS + pt��(KX)jSq+ ��(2KS0) +N2

�� :
Lemma 2.1(iv) tells that

KS + pt��(KX)jSq+ ��(2KS0)

is e�ective, since h0(S; ��(2KS0)) � 2. Now using Lemma 2.3, we see that

�� KS + pt��(KX)jSq+ ��(2KS0) +N2

��
de�nes a birational map. Therefore we see that �t+10k0+5 is birational for all t > 0. The

proof is completed. �
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4. Further discussion

From arguments of the last section, we have seen that the worse case possibly happens

when jk0KX j is composed of a rational pencil of surfaces with small invariants. Here, we

go on studying this case in a more delicate way. We suppose f : X 0 �! P1 is the derived

�bration from jk0KX0 j and keep the same notations as in the previous section. From the

spectral sequence:

E
p;q
2

:= Hp
(P1; Rqf�!X0)) En

:= Hn
(X 0; !X0);

we get by direct calculation that

h2(X 0;OX0) = h1(P1; f�!X0) + h0(P1; R1f�!X0);

q(X 0
) := h1(X 0;OX0) = h1(P1; R1f�!X0):

Lemma 4.1. ( [Ci, Theorem 3.1]) Let S be a smooth projective minimal surface of general

type, pg(S) � 1, then j2KS j is base point free.

The following lemma, as well as the proof, was provided by Prof. C. Ciliberto.

Lemma 4.2. Let S be a smooth projective minimal surface of general type with K2

S = 1

and pg(S) = 1, then j3KS j is base point free.

Proof. Since pg(S) = 1, we have only one canonical curve C. Because q(S) = 0, the line

bundle OC(K) has no global section, i.e. h0(C;OC(K)) = 0. Let x be a base point of

j3KSj, then x 2 C since j2KSj is base point free according to Lemma 4.1. Considering the

divisor D = 2C 2 j2KS j and using Theorem 4.5 of [Ci] to the system jKS + Dj, we see

that D = A + B, A � B = 1. This leads to A2
+ B2

= 2, A2
+ 1 = 2KS � A � 0 and

B2
+1 = 2KS �B � 0. One can see from the Hodge Index Theorem that the only possibility

is

A2
= B2

= KS �A = KS � B = 1:

Therefore it is easy to see that

A �num B �num C:

According to Bombieri ([Bo]), Pic(S) has no torsion element. Thus A = B = C. So Mendes

Lopes Lemma (Theorem 4.5 of [Ci]) implies that x is a smooth point of C and

OC(x) = OC(C) = OC(KS);

a contradiction. �

Proposition 4.3. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. If dim�k0(X) = 1, b = 0 and pg(S) = 1, then

ks � 8k0 + 6:

Proof. We know that j3KS j is base point free by virtue of both Corollary 2.8 and Lemma

4.2 and that j2KSj is base point free by Lemma 4.1. We are going to formulate the proof

through steps.
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Step 1. Studying of j(5k0 + 2)KX0 j.

Denote by M5k0+2 the moving part of j(5k0 + 2)KX0 j. By virtue of Koll�ar's technique,

we know that the global sections of j2KSj extends to global sections of

j(5k0 + 2)KX0 j

and so that

�j(5k0+2)K
X0 jjS

does behave more than �j2KS j. This means that we should have

jM5k0+2j
��
S
� jN2j;

where N2 is the moving part of j2KSj. Now let

� : S �! S0

be the natural contraction onto the minimal model S0. It is obvious that N2 = ��(2KS0).

So we get

jM5k0+2j
��
S
� j��(2KS0)j:

Step 2. Studying of j(6k0 + 3)KX0 j.

Denote by M6k0+3 the moving part of j(6k0 + 3)KX0 j. The vanishing theorem gives

jKX0 + p(5k0 + 2)��(KX)q+ Sj
��
S

=

�� KS + p(5k0 + 2)��(KX)qjS
��

�
�� KS +M5k0+2jS

��
�jKS + ��(2KS0)j:

Suppose M 0
6k0+3

is the moving part of the system

jKX0 + p(5k0 + 2)��(KX)q+ Sj;

then it is not di�cult to see that

jM 0
6k0+3j

��
S
� jN3j;

where N3 = ��(3KS0) is the moving part of

jKS + ��(2KS0)j:

So it is also true that

jM6k0+3j
��
S
� j��(3KS0)j:

Step 3. Studying of j(7k0 + 4)KX0 j.
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Denote by M7k0+4 the moving part of the system j(7k0 + 4)KX0j. It is clear that

jKX0 + p(6k0 + 3)��(KX)q+ Sj � j(7k0 + 4)KX0 j:

The vanishing theorem gives

jKX0 + p(6k0 + 3)��(KX)q+ Sj
��
S
�
�� KS +M6k0+3jS

��
�jKS + ��(3KS0)j � j�

�
(2KS0) + ��(2KS0)j:

Denote by M 0
7k0+4

the moving part of

jKX0 + p(6k0 + 3)��(KX)q+ Sj;

then it is easy to see that

jM 0
7k0+4

j
��
S
� j��(2KS0) + ��(2KS0)j:

So we should have

jM7k0+4j
��
S
� j��(2KS0) + ��(2KS0)j;

since j��(4KS0)j is base point free.

Step 4. The stable birationality of �8k0+6.

Given a positive integer t > 0, it is obvious that

jKX0 + p(t+ 7k0 + 4)��(KX)q+ Sj � j(t+ 7k0 + 5)KX0 j:

By Proposition 3.8, we see that

KX0 + p(t+ 7k0 + 4)��(KX)q

is e�ective. In order to use (P2), it is su�cient to prove that

�jK
X0+p(t+7k0+4)��(KX)q+SjjS

is birational. The vanishing theorem gives

jKX0 + p(t+ 7k0 + 4)��(KX)q+ Sj
��
S

=

�� KS + p(t+ 7k0 + 4)��(KX)qjS
��

�
�� KS + pt��(KX)jSq+ ��(2KS0) + ��(2KS0)

�� :

Since j��(2KS0)j gives a �nite morphism, it is easy to see by Corollary 2.4 that

�� KS + pt��(KX)jSq+ ��(2KS0) + ��(2KS0)

��

gives a birational map. The proof is completed. �
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Corollary 4.4. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. If k0 � 25, then

ks � 8k0 + 6:

Proof. If dim�k0(X) � 2 or dim�k0(X) = 1 and b > 0, we have seen from the last section that

ks � 8k0+6. If dim�k0(X) = 1, b = 0 and S is of type (I)s, one has ks � 6k0+5 according

to Theorem 3.7. If pg(S) = 1, then Proposition 4.3 implies ks � 8k0 + 6. The remain case

is the one when pg(S) = 0. We automatically have q(S) = 0. So, q(X 0
) = h2(OX0) = 0

and �(OX0) = 1. Lemma 2.5(iii) implies k0 � 24. So if k0 � 25, then the �nal case doesn't

occur. �

Corollary 4.5. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. If q(X) := h1(OX) > 0, then �166 is stably birational.

Proof. For the same reason, we can suppose that dim�k0(X) = 1 and b = 0. If q(X 0
) > 0,

then we should have q(S) > 0. So pg(S) > 0. Using Proposition 4.3, we have ks � 8k0 + 6.

Now according to both Lemma 2.5 and Lemma 2.6, we have k0 � 20. So �166 is stably

birational. �

Corollary 4.6. Let X be a minimal projective 3-fold of general type with only Q-factorial

terminal singularities. Suppose q(X) > 1 or q(X) = 1 but �(OX) 6= 1, then �125 is stably

birational.

Proof. If S is of type (I)s, then ks � 6k0 + 5. This means �125 is stably birational, since

k0 � 20.

If S is of type (II)s, then

q(S) � pg(S) � 1:

Because q(X 0
) > 0, we see that q(S) > 0. So we should have

q(X 0
) = q(S) = pg(S) = 1 and R1f�!X0

�
= !P1:

Therefore

h2(OX0) = h1(P1; f�!X0) � 1:

Now we have

�(OX0) = 1� q(X 0
) + h2(OX0)� pg(X

0
) � 1:

By assumption, �(OX0) 6= 1, so �(OX) � 0. Thus k0 � 4 by Lemma 2.5. This means �41 is

stably birational according to Theorem 3.9. �

Finally, recalling De�nition 0.1, we would like to put forward the following

Conjecture. �s(3) � 6.

This paper has proved that �s(3) � 13. We know that �s(1) = 3 and �s(2) = 5 ([BPV]).

For every minimal smooth projective 3-fold X of general type, it is true that �s(X) � 6.

No counter-examples have been found such that �s(X) > 6. Recently, we were informed of

a new example by Professor E. Stagnaro who constructed a smooth projective 3-fold Y of

general type with

pg(Y ) = q(Y ) = h2(OY ) = 0; P2 = 1; P3 = 2

and �m is birational if and only if m � 11. So it is clear this example has the property

�s(Y ) =
11

3
.
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