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Abstract

The aim of this paper is to study the pluricanonical maps of smooth projective 3-folds of
general type. For a given 3-fold X of general type, define ky to be the minimal integer such
that the ko-th plurigenus Py, (X) := h°(X, koK x) > 2, Kolldr proved that the (11kg + 5)-
canonical map is birational. However, given an arbitrary integer m > 11ky + 5, it is hard
to know from Kollar’s method whether the m-canonical map is still birational or not. On
the basis of our previous works, we shall prove, by developing a new approach, that the
(7Tko + 3)-canonical map is birational and that the m-canonical map is birational whenever
m > 10ko+6. If kg > 25, then we shall show that the m-canonical map is birational whenever
m > 8ko + 6. Furthermore, if X is irregular (i.e. h'(Ox) > 0), then the m-canonical map
is birational whenever m > 166.
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To classify algebraic varieties is one of the goals of algebraic geometry. Let X be a smooth
projective variety of dimension d, Kx be the canonical divisor and wyx the dualizing sheaf.
When the system |mK x| # &, we can define a natural rational map

O = Plnscy| 2 X —» PO

where P, (X) := h%(X,w$™) is called the m-th plurigenus of X and ¢y, is called the m-th
pluricanonical map. It is obvious that the behavior of ¢, directly reflects intrinsic properties
of X, so that studying the pluricanonical maps is quite important to the classification
theory. Usually, people are curious about whether ¢,, is an embedding, a birational map, a
generically finite map or a map of fiber type. Furthermore, if it is generically finite, what is
the variety downstairs and what is the degree of the cover? If it is of fiber type, what is the
base variety and what is a general fiber? These questions help to understand the behavior
of ¢,,. The objects considered in this paper are supposed to be varieties of general type.
When d = 1, a smooth projective curve X of general type has the genus g(X) > 2. The
behavior of its pluricanonical maps is quite clear. Explicitly, ¢, is always an embedding
whenever m > 3. ¢» is an embedding with the only exception of genus two case when it is
a double cover. According to the behavior of ¢1, X is called a hyper-elliptic curve if ¢; is a
double cover, a non-hyper-elliptic curve if ¢1 is an embedding. When d = 2, the situation is
more complicated, however, the behaviors of ¢,, are almost clear by virtue of a great deal
of works by many authors. Since this is not a survey article, we don’t plan to mention more
references here. Instead, the results which will be applied in our argument can be found
n [Bo], [B-C], [Ca], [Ci], [Mi], [Rr], and [X1], etc. It is wellknown that ¢,, is birational
whenever m > 5, that ¢4 is birational with the exception for surfaces with (K2, p,) = (1,2),
that @3 is birational with the exception for surfaces with (K?,p,) = (1,2) or (2, 3), and that
¢s is generically finite with the exception for surfaces with (K?2,p,) = (1,0).

It is natural that one should ask about the status of study in the case of d > 3. As far
as we know, it remains open whether there is a constant mg(d) such that ¢, is birational
for any smooth projective d-fold of general type whenever m > mg(d). Comparing with the
surface case, we lack of an effective plurigenera, although the 3-dimensional minimal model
theory has already been well established. To fix the terminology, we say that ¢,,, is stably
birational if ¢,, is birational whenever m > mg. A very natural question (Question 3.2 of
[Ch]) arises:

does “birational” imply “stably birational”?

This is quite non-trivial, though it is true in the case of d < 2. Since X is supposed to be of
general type, ¢,, is stably birational whenever m > 0. So the first step is to find an optimal
bound for this m, once given a variety X. We need the following definition.

Definition 0.1. Let X be a nonsingular projective variety of general type of dimension d.
We define

ko(X) :=min{k| k € ZT, Py(X) > 2};

ks(X) := min{k| k € Z*, ¢ is stably birational};

ps(X) = %, which is called the relative pluricanonical stability of X. Obviously,
ps(X) is a birational invariant.
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ps(d) := sup{ps(X)| X runs through all smooth projective d-folds of general type}, which
is called the d-th relative pluricanonical stability.

Noting that ko(X) is intrinsic with respect to the given X and ko(X) < +oo, it is
reasonable to study ¢,, in the relative way, i.e. to find the optimal bound for k4(X) in
terms of ko(X). The invariant ks(X) is important because it is not only crucial to the
classification theory, but also strongly related to other interesting problems. For example,
it can be applied to determine the order of the birational automorphism group of X ([X2],
Remark in §1). According to [Ko] and [Ch], one has the following

Known Results. Let X be a smooth projective 3-fold of general type, denote ko := ko(X),
then

(R1) ([Ko, Corollary 4.8]) ¢11k,+5 s birational;

(R2) ([Ch, Main Theorem]) either ¢r7x,+3 Or Qrko+5 5 birational and ¢13x,+6 is stably
birational, so ps(3) < 16;

(R3) ([Ch, Corollary 2.3.1], [F, Theorem 4.2], [Ko, Remark 6.6]) if X is irregular (i.e.
h'(Ox) > 0), then ¢i143 is birational.

With a new idea, we aim to present much better bounds here which greatly improve
known results. We shall study, case by case, the following questions.

Q1. If ¢y, is birational, when is ¢, i, stably birational, where m(ko) is a function in
terms of kq?

Q2. If dim¢y, (X) = 3 and ¢y, is not birational, when is @y, (,) stably birational, where
ms(ko) is a function in terms of ko7

Q3. If dim¢g, (X) =n, 1 <n < 2, when is ¢y, (x,) stably birational, where m,, (ko) is a
function in terms of kg for each n?

The main consequences of our technique are the following

Main Results. Let X be a smooth projective 3-fold of general type, denote ko := ko(X),
then

(1) ¢7ky+3 s birational.

(11) b10k,+6 1S stably birational and thus ps(3) < 13; if kg > 25, then ¢sg,+6 s stably
birational.

(iii) if ¢ :== h'(Ox) > 0, then ¢i66 is stably birational; if either ¢ > 1 or ¢ = 1 but
X(Ox) # 1, then ¢105 is stably birational.

These results are contained in Theorem 3.3, Theorem 3.4, Theorem 3.5, Theorem 3.7,
Theorem 3.9, Theorem 3.10, Corollary 4.4, Corollary 4.5 and Corollary 4.6.

The reason of my writing this paper is that the whole setting and the main approach here
are quite different from those in my previous one. On the other hand, we feel that the above
results are closer to the optimal ones which some experts ever expected. It is very strange
to me that the stable bound k; obtained in this paper is even better than Kollar’s birational
bound 11k + 5. For the reader’s convenience, we try to arrange the whole argument to be
self-contained. The method of this paper is a development to the traditional one. First we
use the Kawamata-Viehweg vanishing theorem to reduce the problem to a parallel one for
the adjoint system |Kg + L| on a smooth projective surface S of general type. In general, I.
Reider’s result cannot be applied to this system since L is not a nef and big Cartier divisor,



instead L is the round-up of a nef and big Q-divisor A, i.e. L ="A". We are not going
to treat a very general case since it is difficult to do so. Thanks to expected properties of
the divisor A, we managed to find a sufficient condition for the birationality of the system
|Ks+L|. However, the difficult step is to find a suitable A or L which satisfies this condition.

1. Preliminaries

Throughout this paper, the ground field is supposed to be any algebraically closed field
of characteristic zero. Let X be a normal projective variety of dimension d. We denote by
Div(X) the group of Weil divisors on X. An element D € Div(X)® Q is called a Q-divisor.
A Q-divisor D is said to be Q-Cartier if mD is a Cartier divisor for some positive integer m.
For a Cartier divisor D and an irreducible curve C' C X, we can define the intersection
number D-C in a natural way. A Q-Cartier divisor D is called nef (or numerically effective)
if D-C > 0 for any effective curve C' C X. A nef divisor D is called big if D¢ > 0. We
say that X is Q-factorial if every Weil divisor on X is Q-Cartier. For a Weil divisor D on
X, write Ox (D) as the corresponding reflexive sheaf. Denote by Kx a canonical divisor
of X, which is a Weil divisor. X is called minimal if Kx is a nef Q-Cartier divisor. For a
positive integer m, we set wl™ := Ox(mKx) and call P,,(X) := dimc H°(X,w!™l) the m-th
plurigenus of X. We remark that P, (X) is an important birational invariant. Define the
Kodaira dimension kod(X) to be k, 1 < k < dimX, if there are two constants « and [ such
that

amk < P, (X) < BmF, for m > 0.

X is said to be of general type if kod(X) = dimX.

X is said to have only canonical singularities (vesp. terminal singularities) according to
Reid ([R]) if the following two conditions hold:

(i) for some positive integer r, r K x is Cartier;

(ii) for some resolution f : Y — X, Ky = f*(Kx)+ > a;FE; for 0 < a; € Q (resp.
0 < a;) Vi, where the E; vary all the exceptional divisors on Y.

According to 3-dimensional MMP ([KMM], [K-M]), when V' is a smooth projective three-
fold of positive Kodaira dimension, there exists a birational map o : V --+ X, where X
can be a minimal 3-fold with only Q-factorial terminal singularities and o is a composite of
successive divisorial contractions and flips. Usually, X is not uniquely determined by V.

Let D =) a;D; be a Q-divisor on X where the D; are distinct prime divisors and a; € Q.
We define

the round-down LD, := ZI_CLiJDi, where La; 1 is the integral part of a;,
the round-up "D := —L—D_,
the fractional part {D} :="(D —.DJ)™.

Remark 1.1. Suppose X has only canonical singularities and f : V — X is a resolution,
we have

Pp(X) = h° (V, OV(Lf*(mKX)J)) — B0 (V, Ov ("f*(mKX)"')) — P(V)

for any positive integer m.
Though it seems that the next definition is not standard, we would rather give it in order
to avoid unnecessary redundancy throughout the whole context.



Definition 1.2. Let X be a smooth projective variety and L be a Cartier divisor on X.
If |L| is a linear system without fixed components and h°(X, L) > 2, we mean a generic
irreducible element S of |L| as follows:

(i) if dim®z|(X) > 2, then S is just a general member of |L|.

(ii) if dim®;(X) = 1, then L is linearly equivalent to a union of distinct reduced irre-
ducible divisors of the same type. Explicitly, L ~j, > S;. We mean S a generic S;.

We always use the Kawamata-Ramanujam-Viehweg vanishing theorem in the following
form.

1.3 Vanishing Theorem. ([Ka] or [V]) Let X be a smooth complete variety, D is a
Q-divisor. Assume the following two conditions:

(i) D is nef and big;

(1) the fractional part of D has supports with only normal crossings.
Then H (X,0x(Kx +"D7)) =0 for all i > 0.

(We remark that the normal crossing property is unnecessary when X is an algebraic
surface, by virtue of Sakai’s result.)

1.4 The Matsuki-Tankeev principle. This principle is tacitly used throughout our ar-
gument. Suppose X is a smooth variety, |M| is a base point free system on X and D is a
divisor with |D| # @. We want to know when ®|p_ 5/ is birational. The following principles
are due to Tankeev and Matsuki, respectively.

(P1). (Lemma 2 of [T]) Suppose |M| is not composed of a pencil, i.e. dim®p;(X) > 2
and take a general member Y € |M]|. If the restriction of ®|pyar) to Y is birational, then
@ pyar| 18 birational.

(P2). (see [Ma]) Suppose |M| is composed of a pencil and take the Stein-factorization of
Oy X L0 — WPy,

where W is the image of X through ®y; and f is a fibration onto a smooth curve C. Let
F be a general fiber of f. If we have known (say by the vanishing theorem) that ®|par| can
distinguish general fibers of f and that its restriction to F is birational, then ®p4 ) is also
birational.

1.5 Kollar’s technique. This approach comes from [Ko]. In some cases, its output is
better and is, sometimes, applied to our arguments. Let X be a smooth projective 3-fold
of general type and suppose Py (X) > 2. Choose a 1-dimensional sub-system of |kK x| and
replace X by a birational model X’ where this pencil defines a morphism ¢ : X' — P
(For simplicity, we can suppose X’ = X). Let S be a generic irreducible element of this
pencil, then a general fiber of ¢ is a disjoint union of some surfaces with the same type
as S and S is a smooth projective surface of general type. Let t = k(2p + 1) + p. Then
H°(w%) = H°(P!, g.w’) and we have an injection O(1) < g.w%, and hence an injection

O2p+1)— g*w’)c(@pﬂ). This gives an injection
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where O(2p 4+ 1) ® g.wh = O(1) ® g*wg(/Pl. Now it is wellknown that 9*“’])9(/[?1 is a sum
of line bundles of non-negative degree on P'. If p > 5, the local sections of g.w% give a
birational map for S, and all these extend to global sections of O(2p + 1) ® g.w% . Moreover
its sections separate the fibers from each other, hence ¢, is a birational map for X whenever
p > 5. From this method, according to [BPV] and [X], we can see

(1.5.1) ¢sp42 is generically finite for X if S is not a surface with py(S) = ¢(S) = 0 and
Kgo = 1, where Sy is the minimal model of S. Otherwise, we have at least dimesy12(X) > 2.

(1.5.2) ¢rk43 is birational for X if S is not a surface with

(K3,,pg(5)) = (1,2) or (2,3).

2. Several Lemmas

Lemma 2.1. Let S be a smooth projective surface of general type, L be a nef and big Cartier
divisor on S, then

(i) ®|ks4+mr| @5 birational if m > 4;

(i1) ®|kst3r) is birational if L? > 2;

(iii) Kg + D is effective if D is a divisor with h°(S,D) > 2;

(iv) Ks + A"+ D is effective if A is a nef and big Q-divisor and if h°(S, D) > 2.

Proof. Both (i) and (ii) are direct corollaries of [Rr, Corollary 2]. (iii) is derived by a simple
use of Riemann-Roch. To prove (iv), we may suppose that |D| is base point free. Denote by
C a generic irreducible element of |D|, then the vanishing theorem gives the exact sequence

HY(S,Ks+"A"+C) — H°(C,Kc + H) — 0,

where H := "A7|¢ is a divisor of positive degree. It is obvious that h°(C, K¢ + H) > 2
since C' is a curve of genus > 2. The proof is completed. B

Lemma 2.2. Let X be a nonsingular projective variety of dimension d, D € Div(X) ® Q
be a Q-divisor on X. Then we have the following:

(1) if S is a smooth irreducible divisor on X, then "DV g > "D|g7;

(11) if m: X' — X is a birational morphism, then ©*("D7) > "x*(D)™.

Proof. These statements are obvious. One only has to verify for effective (-divisors. Wl

Lemma 2.3. Let S be a smooth projective surface of general type, A be a nef and big Q-
divisor on S and L :="A", D be a Cartier divisor with h°(S,D) > 2. Suppose Kg + L is
effective, ®|p| is a morphism and L-C > 3, where C is a generic irreducible element of the
moving part of |D|. Then ®\k¢4r14p| is a birational map.

Proof. For simplicity, we can suppose that | D| is base point free. If dim®,p(S) = 2, by (P1),
it is sufficient to prove that ®|x 474 p) | is birational since K¢+ L is effective by assumption.
If | D] is composed of a pencil, we can write D ~y, > C;. Using the Kawamata-Viehweg
vanishing theorem, we can easily see that ®|x, 74 p| can’t only distinguish different general
fibers of ®|p|, but also distinguish disjoint components in a general fiber of ®p|. So, by
(P2), it is also sufficient to verify the birationality of ®|x 114 p|lc. We have

|Ks+ L+C||,=|Kc¢+ D|

by the vanishing theorem, where D := L|c is a divisor of degree > 3. Thus ®|x.4p) is an
embedding and then the lemma is true. B
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Corollary 2.4. Let S be a smooth projective surface of general type, A be a nef and big
Q-divisor on S and L := "A7, D be a Cartier divisor with h°(S,D) > 2, G is another
Cartier divisor. Suppose dim®|q|(C) = 1 where C' is a generic irreducible element of the
moving part of |D|. Then @|kq4r+a+p| 5 a birational map.

Proof. One can suppose that both |G| and |D| are base point free. Then it is obvious that
G- C > 2. According to Lemma 2.1(iv), Kg 4+ L + G is effective. Since A + G is nef and big
and (L+ G) - C > 3, Lemma 2.3 directly derives the corollary. B

Lemma 2.5. Let X’ be a smooth projective 3-fold of general type. Then
(i) Py > 4 if X(Ox2) < 0;
(ii) Py > 3 if x(Ox1) = 0;
(i1i) Pay > 2 if x(Oxr) = 1.

Proof. These are Fletcher’s results. One may refer to [F, 4.2, 4.4]. &

Lemma 2.6. Let X' be a smooth projective 3-fold of general type, ¢(X') > 0. Then
Py(X') > 2

with the possible exception of ¢(X') =2, x(Ox/) = 0.
Proof. This is an announcement of Kollar in [Ko, Remark 6.6].

Lemma 2.7. ([Rr, Theorem 1]) Let S be a smooth projective surface of general type, L be
a nef divisor and L? > 5. Suppose p is a base point of |Ks+ L|, then there exists an effective
divisor E passing through p such that

either L-E =0, B> =—1
or L-E=1, E*>=0.

Corollary 2.8. Let S be a smooth minimal projective surface of general type, then
(1) |4AKg| is base point free.
(ii) |3Ks| is base point free whenever K% > 2.

Proof. This is direct from Lemma 2.7. B

3. Main Theorems

Recalling Definition 0.1, sometimes for simplicity, we denote ko(X) and ks(X) by ko and
ks, respectively.

Proposition 3.1. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. If dim¢y, (X) > 2, then Py, (X) > 2 for all m > 2k.

Proof. First we take a birational modification 7 : X’ — X, according to Hironaka, such
that

(1) X' is smooth;

(2) |koK x| defines a morphism;

(3) the fractional part of 7* (K x) has supports with only normal crossings.



Denote by Sy := Sk, the generic irreducible element of the moving part of |koK x|, then
Sp is a smooth projective surface of general type by Bertini’s theorem. By the vanishing
theorem, we have the exact sequence

HY(X',Kxr + "(t + ko)m* (K x) 7 + So) — H°(So, Ks, + " (t + ko)m*(Kx)7|s,) — 0,
where ¢ > 0 is a given integer and
"(t+ko)m*(Kx) s, > "tn* (Kx)|s, ' + Do,
D := Sy|s, has the property h(Sg, D) > 2 according to the assumption. If ¢ = 0, then
Pory41(X) > h°(Sy, Ks, + D) > 2
by Lemma 2.1(iii). If ¢ > 0, we still have the following exact sequence
H(Sy, Ks, + "t (Kx)|s, "+ C) — H° (K¢ + G) — 0,
where C' is a generic irreducible element of the moving part of |D| and
G :="tr"(Kx)l|s, |
is a divisor of positive degree on C'. Since C'is a curve of genus > 2, we have
Y (C, K¢ + G) > 2.

We can easily see that Pag,4+:41 > 2. The proof is completed. B

Corollary 3.2. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. If ¢y, is birational, then ks < 3kg.

Proof. This is obvious according to Proposition 3.1. H

Theorem 3.3. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. If dim¢y, (X) = 3 and ¢, is not birational, then ks < 3ko + 2.

Proof. Taking the same modification 7 : X’ — X as in the proof of Proposition 3.1, we still
denote by Sy the general member of the moving part of |kgK x+|. Note that both |kqK x|
and |"kom* (K x)7| have the same moving part. For a given integer ¢ > 0, we have

Kxr + "(t+ 2ko)m* (Kx)7 + So < (t+3ko + 1)K x-.
It is sufficient to prove the birationality of rational map given by
|Kx + " (t 4 2ko)m* (Kx)7 + So.

Because
Kxr +"(t 4 2ko)m* (K x)"
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is effective according to Proposition 3.1, by virtue of (P1), we have to prove the birationality
of

Q| /4 (14 2k0 )7 (K ) 450 |, -

We have the following exact sequence according to the vanishing theorem
HO(X, Kxr + 7 (t + 2ko)7* (Kx)7 4+ So) — H°(So, K, + " (t + 2ko)7* (Kx)7s,) — 0,
which means
[ K x4 7t + 2ko)m™ (K x) "+ So| |5, = [ Ko + (¢ + 2ko) 7" (Kx) s -

Noting that
KSD + '_(t + QkO)W*(KX)_||SO > KSO + rtW(KX)|SO—' + 2Lg,

where Lg := Sp|s,, we want to show that

P \Ks, +7tm(Kx)|sy +2Lo|
is birational. Because |Lg| gives a generically finite map, we see from Lemma 2.1(iv) that
KSD + rtﬁ*(Kx)Lso_' + Ly

is effective. On the other hand, let C' be a generic irreducible element of |Lg|, then
dim®z,|(C) = 1. Applying Corollary 2.4, we see that

|K50 + '—tTF*(KX)LgO—' + 2L0|

gives a birational map. The proof is completed. B

Theorem 3.4. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. If dim¢y, (X) = 2, then ks < 4ko + 4.

Proof. First we take the same modification 7 : X’ — X as in the proof of Proposition
3.1. We also suppose that Sy is the moving part of |kgK x/|. For a given integer ¢ > 0, we
obviously have

Kxr+"(t42ko + 2)7" (Kx) "+ 2S5y < (t + 4ko + 3)Kx.
Thus it is sufficient to verify the birationality of the rational map given by
|Kx: 4+ "(t 4 2ko + 2)7* (Kx) ™ + 2Sy|.

By Proposition 3.1,
Kxr +"(t 4 2ko + 2)7" (Kx)" + So

is effective. According to (P1), we only have to prove the birationality of the restriction

Q| K 4T (4420 +2) 7 (K x ) 4250 | \SO
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for the general Sy. The vanishing theorem gives the exact sequence

HO (X', Kxr + 7 (t 4 2ko + 2)m* (K x)7 + 2Sp)
—H"(Sy, Ks, + " (t + 2ko + 2)7* (K x)™ \SO +Sg]s5,) — 0.

This means

B/ 4 (4 2o +2)m* (Kx)4250] | g, = PIK sy +7(t42ko+2)m% (Kx) sy + 5ol 5p |-

Suppose Moy, +2 is the moving part of |(2kg + 2) K x|, we have to study some property of
‘ Mogy+2]s, ‘ Note that Mk, +2 is also the moving part of |7 (2ko + 2)7* (K x)™|. We have

Kx +"™1"(Kx)"4+ 2S5y < (2ko + 2)K x-.
The vanishing theorem gives the exact sequence
HY(X',Kxr + "n*(Kx)" 4 2S0) — H°(So,Ks, + 7" (Kx)7|s, + Lo) — 0,
where Lg := Sp|s,. Denote by M, ., the moving part of
|Kx: 4+ "n*(Kx)"+ 25|
and by G the moving part of
|Ks, + "7 (Kx)"s, + Lol-

Considering the natural map

HO (X', Mjyy 1) =2 H (S0, Mgy 121s,):
we have
h°(So, M3y, 1ols,) > dime (im(B)) = dime (im(c))
=h°(So, Ks, + 7" (Kx)7|s, + Lo)-
Because

My yals, < Ks, + 1" (Kx) s, + Lo,

we see that
G < M£k0+2|50 < M2k0+2|50'

Noting that |Lg| is a free pencil, we can suppose C' is a generic irreducible element of |Ly]|.
Now the key step is to show that dim®|(C) = 1. In fact, the vanishing theorem gives

|Kso + " (Kx)|s, " + Lol | o= |Kc + D),

where D := "*(Kx)|s, " ‘C is a divisor of positive degree. Because C' is a curve of genus
> 2, |K¢ + D] gives a finite map. This shows

dimq)|KSO+'—7T*(KX)|SO_'+L0| (C) = 1,
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thus dim®|(C) = 1. Therefore

d1rn<D|M2]c0+2

(C) =1.

|S()

Noting that
h®(So, Moy 1als,) > h°(So, G) > 2,

we see from Lemma 2.1(iv) that
Ks, +tn" (Kx)s, '+ Mok, 2|5,
is effective. Finally, Lemma 2.3 gives the birationality of the rational map given by
K, + "t (Kx)|s, ' + Makg+2ls, + Lol-
Because

|K50 + I—tﬂ-*(KXHSO—l + M2k0+2|50 + L0|
C|Ks, + " (t + 2ko + 2)7" (Kx) |5, + Lo,

SO
@Ky +T (t+2ko+2)7* (K x) |59 +50] 5, |
is birational. We have proved the theorem. B

From now on, we suppose that dim¢y, (X) = 1. This is the case which prevents us from
getting a better bound for k;. We can take the same modification 7 : X’ — X as in the
proof of Proposition 3.1. Set g := ¢, o m be the morphism from X’ onto

W C PPro—1
where W is the closed closure of the image of X through ¢y,. Let
g: X' Lo w

be the Stein-factorization, then C' is a smooth projective curve. Denote b := ¢g(C'), the genus
of C. If b > 0, it is very easy to see by Kawamata’s vanishing theorem for Weil divisors
that ks < 2ko + 4. (One may also refer to the proof of [Ch, Theorem 2.3.1].) In the rest of
this section, we mainly study the case when C' is the rational curve P!. We have a fibration
f: X' — PL Let S be a general fiber of the fibration, then S is a smooth projective
surface of general type. Note that S is also the generic irreducible element of the moving
part of the system |koK x|.

According to the behavior of the tricanonical map of S, we classify S into two types:

(I); S is not a surface with (K?2,p,) = (1,2) and (2,3), where the invariants represent
the ones of the minimal model of S

(II); S is a surface with (K?,p,) = (1,2) or (2,3).

If S is of type (I):, then ¢7x,+3 is birational according to (1.5.2).
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Theorem 3.5. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. If dim¢g, (X) =1, b=0 and S is of type (II);, then

ks < 5ko + 5.

Proof. Because S is of type (II);, we always have ¢(S) = 0 and py(S) > 2. We shall
formulate our proof into steps and take S be a general fiber of f.

Step 1. dim¢2k0+1(5) Z 1
Noting that
[+ Thon (Kx) 7 4 ) il © [(2ko + 1) K],

and that the vanishing theorem gives
|Kxo + Tkom* (Kx) "+ ) Sil |
= ‘ Kg+ '—k()?T*(Kx)_'|5 ‘D |K5|
we obviously see that dimeag,+1(S) > 1, since pgy(S) > 2.
Step 2. dim¢3k0+2(5) =2
Noting that
[Kx 4+ (2ko + D)7 (Kx)T+ Y Si| € [(3ko + 2) K x|,
and that the vanishing theorem gives
|Kxr + " (2ko + 7" (Kx) "+ > Sil |
= ‘ KS + I—(2k0 + 1)7T*(KX)—I|5 ‘
O | Ks + Magy41s |

where Mok, 11 is the moving part of |"(2ko + 1)7* (K x)7| and thus h°(S, Moy, +1]s) > 2
according to Step 1. Now it is sufficient to see that

| K5 + Mag,41]s |

gives a generically finite map, which is obvious because ¢(S) = 0, p,(S) > 0 and S is of
general type. In fact, one only has to study the restriction to a generic irreducible element
of the moving part of | Mak,+1]s ‘ Therefore dimgsg, +2(S5) = 2.

Step 3. mKx is effective whenever m > 3ky + 2
For a given integer £ > 0, we have
Kxr+7(t+2ko + D)m* (Kx) "+ Y Si < (t+ 3ko + 2)Kx.
The vanishing theorem gives
|Kxr + " (t+ 2k + 1) (Kx) 7+ Y Sil |
= ‘ Ks—l-l—(t—l-Qko—i- 1)7T*(Kx)—||5 ‘
D) ‘ KS + I—t’T('*(KX)—I|S + M2k0+1|5' ‘
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For simplicity, we can suppose that @ Moy 41]s] 18 @ morphism and denote by C a generic
irreducible element of the moving part of the system ‘ Mogy+1ls ‘ The vanishing theorem
also gives

| K+t (Kx)|s™ + Magg11]s \‘03 K¢ + D),

where D := "t1*(Kx)|s ¢ is a divisor of positive degree. Because C is a curve of genus
> 2, we see that h°(C, K¢ + D) > 2. The proof is completed.

Step 4. Studying of |(4ko + 3) K x|

This is an important step of our technique. First we have
|Kxo 4" (3ko + 2)7* (Kx)7+ Y _ Si| C [(4ko + 3)Kx|.
Denote by M3k, 42, Maj,+3 the moving part of
|(3ko + 2)K x|, |(4ko + 3)Kx|
respectively. Also denote by M, iko 43 the moving part of the system
|Kx/ + " (3ko +2)7* (Kx)"+ > _ Sil.
The vanishing theorem gives the following exact sequence

HY(X', Kxr + " (3ko + 2)7" (Kx)7+ > S;)
2LHY(S, K + T(3ko + 2)7* (K x)7|s) — 0.

We also have a natural map

B
HO(Xla Méiko+3) — HO(S’ M‘iko+3|s)'

From these maps, we can see that

h(S, My, +5) > dime (im(81)) = dimg (im(a;))
=n%(S, Kg + "(3ko + 2)7* (Kx)s).

Denote by G’ the moving part of | Kg + " (3ko + 2)7*(Kx)7|s | . Since
M43 < K+ " (3ko + 2)7* (Kx) s,
we see that G' < My, . s|s. Denote by G, G the moving parts of
|Ks|, |"(3ko +2)7*(Kx)7s |
respectively. Then G’ > Go + G and thus

Go + G < Mypy+3ls.
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Furthermore, we should have h°(S,Gy) > 2 and dim®(S) = 2. If C'is a generic irreducible
element of |Gyl, then dim®|(C) = 1.
Step 5. The birationality

For a given integer £ > 0, we study the system
[Kxo + (¢ + dko + 3)m* (Kx) "+ > Sil.

According to Step 3,
Kxr + "(t 4+ 4ko + 3)7* (Kx)™

is effective. In order to use (P1), it is enough to study the restriction. The vanishing theorem
gives

|Kxo+(t+ ko +3)m" (Kx)" + > Sil |
= | Kg+"(t+4ko + 3)7" (Kx) s |
O | Ks+"tr* (Kx)|s 7+ G+ Go | .

By Corollary 2.4 and Step 4, we see that
| Ks + "tn* (Kx)|s" + G+ Gy |

gives a birational map. The theorem has been proved. B

Corollary 3.6. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. Then either ¢rx,+3 @s birational or ks < dko + 5. In particular,
O7ko+3 1S definitely birational.

Proof. This is a direct result from Theorem 3.3, Theorem 3.4, Theorem 3.5 and (1.5.2). B

In order to prove the stable birationality, we need to classify surfaces into the following 3
types, where we suppose S is a smooth projective surface of general type:

(1), py(S) = 2;

(II)s pg(S) <1and Kg > 2, where Sy is the minimal model of S;

(I1T)s py(S) <1 and K, = 1.

Theorem 3.7. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. If dim¢g, (X) =1, b=0 and S is of type (I)s, then

ks < 6ko+ 5.

Proof. It is obvious that type (II); is a special one of type (I)s. However, one may use
a similar argument to that of Theorem 3.5. One point to note here is that S may be not
only regular but also irregular. So the bound for kg is slightly weaker than in Theorem 3.5.
We keep the same notations as in the proof of Theorem 3.5. We shall omit unnecessary
redundancy by virtue of the argument there. Suppose S is a general fiber of the derived
fibration f : X' — P!,
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Step 1. dim¢ok,+1(S) = 1. (omitted)
Step 2. dim¢4k0+2(5’) = 2.
Noting that
|Kxo 4" (3ko + )7 (Kx) 7+ Y _ Si| C [(dko + 2)Kx,

and that the vanishing theorem gives

|Kxr + " (3ko + D" (Kx) "+ > Sil |
— \ Ks+"™(3ko + 1)m*(Kx) s \
D) ‘ Kg +'—k07r*(Kx)|5—' +M2k0+1|5 ‘

where Mo, 11 is the moving part of |"(2ko + 1)7* (K x)7| and thus h°(S, Moy, +1]s) > 2
according to Step 1. Now it is sufficient to see that

Kg + Thom™ (Kx)|s™ + Magg41s |

gives a generically finite map. In fact, Kg + "kom*(Kx)|s™ is effective, kom* (K x)|s is nef
and big, and for the generic irreducible element C' of the moving part of ‘ Moy, +1ls ‘, it is
easy to see that

PRI Ks+rkom (Kx)|s+Makg 1115

can distinguish different generic irreducible elements C’s. The vanishing theorem gives
‘ K¢+ '—k()Tr*(KX)|5—' +C HC: |Kc + D|,

where D := Tkon*(Kx)|s |c is a divisor of positive degree. Thus |K¢ + D| gives a finite
map, and so does
| Ks + Tkom™ (Kx)|s™ + Magyt1ls |

bu virtue of (P2). Therefore dimeggg,+2(S5) = 2.
Step 3. mK x is effective whenever m > 3ko + 2. (omitted)
Step 4. Studying of |(5ko + 3) K x-|.

First we have
|Kxo + " (4ko + 2)7* (Kx) 7+ Y _ Si| C [(5ko + 3)Kx.
Denote by Mk, +2, M5, +3 the moving part of
(4o + 2)Kx+[, |(5ko + 3)Kx/|

respectively. Also denote by M, éko 43 the moving part of the system

|Kxr + " (4ko + 2)7* (Kx)"+ > Sil.
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The vanishing theorem gives the following exact sequence
HY(X' Kxr + (ko + 2)7" (Kx)7+ > S;)
“HHO(S, Ks + "(4ko + 2)7* (Kx)|s) — 0.
We also have a natural map
HO(X', My, y5) = HO(S, My, y515).
From these maps, we can see that
hO(S, Mék0+3) > dimg (im(ﬁl)) = dim¢ (im(al))
:hO(S, Kg+ " (4ky + 2)7* (K x)Vs)-
Denote by G” the moving part of ‘ Kg + "(4dko + 2)m*(Kx) s ‘ . Since
Mgy sls < Kg + " (4ko + 2)m™ (Kx) s,
we see that G" < My, s|s. Denote by Gy, G the moving parts of
|Ks|, |™(4ko +2)7* (Kx)7s |
respectively. Then G” > Gy + G and thus
Go+ G < Msiy43]s-

Furthermore, we should have h°(S, Gy) > 2 and dim®||(S) = 2. If C is a generic irreducible

element of |G|, then dim®|(C) = 1.
Step 5. The birationality

For a given integer ¢ > 0, we study the system
|Kxo + 7 (t+5ko +3)7" (Kx) T+ ) _ Sil.

According to Step 3,
Kx + "(t+ 5ko + 3)7* (Kx)™

is effective. In order to use (P2), it is enough to study the restriction to S. The vanishing
theorem gives

[Kxr + T (t+ 5ko + 3)m* (Kx) "+ Y Sil |
= ‘ K5+'—(t+5k0+3)7r*(KX)—'|5 ‘
O | Kg+tn* (Kx)|s7+ G+ Gy | .

By Lemma 2.4 and Step 4, we see that
‘ Kg +"tr* (Kx)|s7+ G+ Gy ‘

gives a birational map. The theorem has been proved. B
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Proposition 3.8. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. If dimey,(X) =1, b= 0 and S is of type (II)s or (III),, then mK x
is effective whenever m > 6kg + 3.

Proof. According to (1.5.1), dim¢sg,+2(X) > 2. For a given integer ¢ > 0, we want to study
the system
|Kxo +7(t+ 5k + 2)7" (Kx)" + > Sil.

Now using a parallel argument to that of Step 3 in the proof of Theorem 3.5, one can easily
get the result. B

Theorem 3.9. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. If dim¢g, (X) =1, b=0 and S is of type (II)s, then

ks < 9kp + 6.
Proof. Since S is of type (II)s, the technique of Theorem 3.5 is not effective here. We shall

study in an alternative way. The key step is to study the system |(7ko + 3) K x-|. Denote by
M7, +3 the moving part of |(Tko + 3) K x-|. It is obvious that

Py(Tho+3) Ky | = P Morg sl

For a general fiber S, we suppose N3 is the moving part of |[3Kg|. By virtue of Kollar’s
technique, we know that the global sections of |3Kg| extends to global sections of

|(Tko + 3) K x|

and so that
D (7ho+3)K ||

does behave more than @35 |. This means we should have
|Mzko43] | 4D [ N3]

Now let
c:S5 — Sy

be the natural contraction onto the minimal model Sy. By Lemma 2.8(ii), we know that
|3K s, | is base point free. So 0* (3K, ) is linearly equivalent to the moving part N3 of [3K¢|.
We can write

N3 ~lin U*(KSD) + U*(ZKSO).

According to [X], we know that |0*(2Kg,)| defines a generically finite map.
The next step is to study |(8kg + 4)K x|. Denote by Mgy, +4 the moving part of

|(8ko + 4) Kx/|,

and by Mék0+4 the moving part of the system

|Kxr + " (Tho + 3)7* (Kx)" + > _ Sil.
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The vanishing theorem gives the exact sequence
HO (X', Kxo +(Tho + 3)7* (Kx)" + Y _ S;)
“HHO(S, Ks + (Tho + 3)7* (Kx)7|s) — 0.

We have another natural map

HO(X, My ) 5 (S, My, als):
It is obvious that
Mg als < Ks+ ™ (Tko + 3)m" (Kx) s
On the other hand, we have
hO(S, My, 44ls) > dimg (im(8])) = dimg (im(c))
=h%(S, Ks + " (Thko + 3)7* (Kx)7|s)-

So we have
G < Mgy, 1als < Mspg44ls,

where we denote by G the moving part of
‘ KS + I—(7k0 + 3)7T*(Kx)_l|5 ‘ .
Because
KS+F(7I€0+3)7T*(K)()_'|S > Kg + N3
= KS + U*(KSD) + U*(ZKSO)
> 0"(2Ks,) + 0" (2K,)
Z N2 +N2a

where N, is the moving part of the system |0*(2Kg,)|. Denote by C' the generic irreducible
element of |N3|, then dim® |y, (C) = 1.
For a given integer £ > 0, we want to study the system

|Kxr + 7 (t+8ko + )7 (Kx) + Y _ Sil-

By Proposition 3.8, Kx/ + "(t + 8k + 4)7*(Kx)" is effective. On the other hand, the
vanishing theorem gives

|Kxr + 7 (t+8ko + )7 (Kx) "+ Y Sil |
= | Kg+"(t+8ko + 4)7" (Kx) s |
D ‘ K5+rt7r*(Kx)|S—l+N2—|—N2 ‘ .

Corollary 2.4 derives that
| Kg + "tn* (Kx)|s" + N2+ Ny |

defines a birational map. Therefore we see that ¢;49x,+5 is birational for all ¢ > 0. The
proof is completed. B
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Theorem 3.10. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. If dim¢g, (X) =1, b= 0 and S is of type (I1I)s, then

ks < 10kq + 6.
Proof. The technique is similar to the one in the last theorem. The key step is to study
|(9ko + 4)K x/|. Denote by Mo, +4 the moving part of [(9k¢ + 4) K x/|. It is obvious that
Dok +a) Ky | = P Moy 4l

For a general fiber S, we suppose Ny is the moving part of |4Kg|. By virtue of Kollar’s
technique, we know that the global sections of |4Kg| extends to global sections of

|(9ko + 4)K x/|
and so that
D)ok +4)K s ||
does behave more than @45 . This means that we should have
| Moy 44| | gD [Val-

Now let
c:S — Sy

be the natural contraction onto the minimal model S;. By Lemma 2.8(i), we know that
|[4K g, | is base point free. So 0*(4Kg,) is linearly equivalent to the moving part Ny of [4Kg|.
We can write
Ny ~iin 07 (2K5,) + 07 (2K 5,)
> 0" (2Kg,) + No
According to [X], we know that

dimq)|g*(2Kso)|(S) > 1.
So hO(S, Ng) Z 2.
For a given integer £ > 0, we want to study the system
|Kxr + 7 (t+ 9k + )7 (Kx) + ) Si|-

By Proposition 3.8, Kx/ + "(t + 9k + 4)7*(Kx)" is effective. On the other hand, the
vanishing theorem gives

|Kxr + 7 (t+ 9k + )7 (Kx) "+ Y Sil |
= | Kg+"(t+ 9k + 47" (Kx) s |
D ‘ Kg+"tn*(Kx)|s"+ 0" (2Kg,) + N2 ‘ .

Lemma 2.1(iv) tells that
Kg + '—tTI'*(Kx)|5—' + O'*(2K50)

is effective, since h%(S,0*(2Kg,)) > 2. Now using Lemma 2.3, we see that
| Ks + "tn" (Kx)|s" + 0" (2Ks,) + N2 |

defines a birational map. Therefore we see that ¢;410%,+5 is birational for all ¢ > 0. The
proof is completed. W
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4. Further discussion

From arguments of the last section, we have seen that the worse case possibly happens
when |kgK x| is composed of a rational pencil of surfaces with small invariants. Here, we
go on studying this case in a more delicate way. We suppose f : X’ — P! is the derived
fibration from |koK x-| and keep the same notations as in the previous section. From the
spectral sequence:

EY?:= HP(P', RIf,wx/) = E" := H"(X',wx/),
we get by direct calculation that
(X', 0x/) = B (P', fiwx) + h°(PY, R fuwx),
(X" = hN(X',0x) = ' (P!, R fuwx/).

Lemma 4.1. ([Ci, Theorem 3.1]) Let S be a smooth projective minimal surface of general
type, pg(S) > 1, then |2Kg| is base point free.

The following lemma, as well as the proof, was provided by Prof. C. Ciliberto.

Lemma 4.2. Let S be a smooth projective minimal surface of general type with K% = 1
and py(S) =1, then |3Kg| is base point free.

Proof. Since py(S) = 1, we have only one canonical curve C. Because ¢(S) = 0, the line
bundle O¢(K) has no global section, i.e. h%(C,0c(K)) = 0. Let = be a base point of
|3K |, then x € C since |2Kg| is base point free according to Lemma 4.1. Considering the
divisor D = 2C € |2Kg| and using Theorem 4.5 of [Ci] to the system |[Kg + D|, we see
that D = A4+ B, A-B = 1. This leads to A2 + B2 =2, A2 4+ 1 =2Kg-A > 0 and
B2 +1=2Kg-B > 0. One can see from the Hodge Index Theorem that the only possibility
is
A’=B?=Kq-A=Kg-B=1.

Therefore it is easy to see that
A ~num B ~num C.

According to Bombieri ([Bo]), Pic(S) has no torsion element. Thus A = B = C. So Mendes
Lopes Lemma (Theorem 4.5 of [Ci]) implies that z is a smooth point of C' and

Oc(z) = Oc(C) = Oc(Ks),

a contradiction. W

Proposition 4.3. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. If dim¢y, (X) =1, b =0 and py(S) =1, then

ks < 8ko + 6.
Proof. We know that |[3Kg| is base point free by virtue of both Corollary 2.8 and Lemma

4.2 and that |2Kg| is base point free by Lemma 4.1. We are going to formulate the proof
through steps.
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Step 1. Studying of |(5ko + 2) K x-|.

Denote by M;sg,+2 the moving part of |(5kg + 2)Kx/|. By virtue of Kollar’s technique,
we know that the global sections of |2K ¢| extends to global sections of

|(5ko + 2) K x|

and so that
D (sko+2) Ky ||5

does behave more than @5 |. This means that we should have
| Msky 42| | gD [Val,
where N is the moving part of [2Kg|. Now let
c: 85— Sy

be the natural contraction onto the minimal model Sy. It is obvious that Ny = 0*(2Kg,).
So we get
| Msgot2| gD |0"(2Ks,)]-

Step 2. Studying of |(6ko + 3) K x|.
Denote by Mgg,+3 the moving part of |(6ko + 3) K x|. The vanishing theorem gives

|Kxr + " (5ko + 2)7" (Kx)" + 8] |
=| Ks + " (5ko + 2)7* (K x)7|s |
D | Ks + Msg,12|s |
D|Ks +0"(2Kg,)|-

Suppose Méko+3 is the moving part of the system
| Kxr + " (5ko + 2)7" (Kx)" + 5],
then it is not difficult to see that
| M43l |¢2 1Vl,
where N3 = 0*(3Kg,) is the moving part of
|Ks +0"(2Ks,)|.

So it is also true that
|Mekot3| |¢D l0*(3Ks,)].

Step 3. Studying of |(Tko + 4) K x-|.
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Denote by M7y, +4 the moving part of the system |(7ko + 4) K x-|. It is clear that
|Kxr + " (6ko + 3)7" (Kx)"+ S| C |(Tko + 4)K x/|.
The vanishing theorem gives

|KX’ —|—|—(6k0 +3)7T*(Kx)_'+5| ‘SD‘ KS +M6kg+3|5 ‘
D|K5 —I—O'*(3K50)| D |0*(2K50) +U*(2K50)|.

Denote by M§k0+4 the moving part of
|Kx: 4+ "(6ko + 3)7* (Kx)" + S|,
then it is easy to see that
| M7y 14l | 4D 0% (2K5,) + 0™ (2K5,).

So we should have
|M7k0+4| ‘SD |U*(2K50) + U*(2K50)|7

since |0*(4Ks,)| is base point free.

Step 4. The stable birationality of ¢gx, +6-

Given a positive integer ¢t > 0, it is obvious that
|Kx: +"(t+ Thko + 4)7* (Kx)" 4+ S| C |(t + Tko + 5) K x/|.
By Proposition 3.8, we see that
Kxr +T(t+ Thky + )7 (K x)™
is effective. In order to use (P2), it is sufficient to prove that
QK s+ (t4+Tho+4)m* (K x )1+ |s
is birational. The vanishing theorem gives

|Kx + " (t+ Tho + 4)7* (Kx)"+ 5| |
=| Kg+"(t+ Tho + 4)7* (Kx)7|s |
D | Ks +"tn* (Kx)|s™ + 0" (2Ks,) + 0" (2Ks,) | -

Since |0*(2Kg, )| gives a finite morphism, it is easy to see by Corollary 2.4 that
‘ Ks + I—tﬂ*(Kx)Lg—l + U*(ZKSO) + U*(ZKSO) ‘

gives a birational map. The proof is completed. B



23

Corollary 4.4. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. If ko > 25, then

ks < 8ko+ 6.

Proof. If dim¢y, (X) > 2 or dim¢y, (X ) = 1 and b > 0, we have seen from the last section that
ks < 8ko+6. If dimey, (X) =1, b =0 and S is of type (I)s, one has ks < 6k + 5 according
to Theorem 3.7. If p,(S) = 1, then Proposition 4.3 implies ks < 8ky + 6. The remain case
is the one when p,(S) = 0. We automatically have ¢(S) = 0. So, ¢(X') = h*(Ox+) =0
and x(Ox/) = 1. Lemma 2.5(iii) implies ko < 24. So if kg > 25, then the final case doesn’t
occur.

Corollary 4.5. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. If ¢(X) := h*(Ox) > 0, then ¢4 is stably birational.

Proof. For the same reason, we can suppose that dime¢g, (X) =1 and b= 0. If ¢(X') > 0,
then we should have ¢(S) > 0. So py(S) > 0. Using Proposition 4.3, we have k, < 8ky + 6.
Now according to both Lemma 2.5 and Lemma 2.6, we have kg < 20. So ¢146 is stably
birational. l

Corollary 4.6. Let X be a minimal projective 3-fold of general type with only Q-factorial
terminal singularities. Suppose q(X) > 1 or q¢(X) = 1 but x(Ox) # 1, then ¢1o5 is stably
birational.

Proof. If S is of type (I)s, then ks < 6ko + 5. This means ¢195 is stably birational, since
ko < 20.
If S is of type (II)s, then
q(5) < py(5) < 1.
Because ¢(X') > 0, we see that ¢(S) > 0. So we should have
q(X") = q(S) =py(S) =1 and R' fuwxs = wpr.
Therefore
R (Ox:) = B (P, fiwy:) < 1.
Now we have
X(Ox1) =1 —q(X") + 1*(Ox') = py(X') < 1.
By assumption, x(Ox-) # 1, so x(Ox) < 0. Thus kg < 4 by Lemma 2.5. This means ¢4; is
stably birational according to Theorem 3.9. B
Finally, recalling Definition 0.1, we would like to put forward the following
Conjecture. ps(3) <6.

This paper has proved that ps(3) < 13. We know that ps(1) = 3 and ps(2) =5 ([BPV]).
For every minimal smooth projective 3-fold X of general type, it is true that us(X) < 6.
No counter-examples have been found such that pus(X) > 6. Recently, we were informed of
a new example by Professor E. Stagnaro who constructed a smooth projective 3-fold Y of
general type with

pg(Y) =q(Y)=h*(Oy) =0, P,=1, Py=2
and ¢,, is birational if and only if m > 11. So it is clear this example has the property
ﬂ’s(Y) = 1_31
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