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1. INTRODUCTION 

The linear tune shift of one beam due to crossing another beam 

at a small angle in a low-8 section has been calculated l)_ It was found 

that the contribution of long-range forces occ�ring when the beams are 

physically separated but still interact electromagnetically can be very 

important. It was implied that the same holds for the widths of non­

linear resonances believed to be responsible for the incoherent beam.­

beam limit. An approximate calculation by Voss has shown that this is 

not necessarily true. In the following we give an accurate derivation 

of the width of non-linear resonances due to the crossing of a beam at 

a small angle in a low-$ section. 

2. REVIEW OF THE WIDTH OF NON-LINEAR RESONANCES 

For convenience a short summary of the Schoch-Guignard theory 

of non-linear resonances 3) is given below. A resonance can occur when 

a relation of the type 

(1) 

holds, where nx, nz and p are integers and Qx and Qz are the horizontal 

and vertical betatron wave numbers, respectively. The order of the 

resonance is 

(2) 

The width of a resonance is defined as 

( 3) 
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and is given by 

�e = 2n k rn-2 (A+� r2)½(N - n) (n + __ N�--'n=----
n n A 

r2 (N - n) 
+ 1 

where n, r and A have indices x or z, and n +.o. Hence, vhen nx or nz 

vanishes (for uncoupled resonances) the choice of the index is fixed, 

otherwise it is immaterial. Furthermore, we have 

nz 2 -r nx x 

r is a normalized amplitude 

r2 = R E 

( 4) 

(5) 

(6) 

with the machine radius Rand the emittance E. The factor k is given by 

the Fourier component of the non-linear perturbation. 

+,r 

k lj 
-,r 

Sx ½lnxl Sz ½lnzl 
(-) (-) R R 

2N - 1 rrJnxJ!JnzJ! 

R2 ;iN V 
B P 0)nxl azlnzl 

( 7) 

Here, Bx and Bz are the amplitude functions, Bp is the magnetic rigidity 

of the particles, and V is a magnetic force potential, i.e. its spatial 

derivatives are the 

generalization with 

➔ ➔ 
cross products v x B / 

respect to 3) since it 

lvl. Introducing V here is a 

does not imply that V obeys 
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Laplace's equation. The phase advances µx and µz are also functions of 

e, the angle around the machine. Their origin is arbitrary. 

For our purposes we specialize the above formulae for the case 

where the horizontal and vertical emittances and amplitude functions are 

equal, Ex = Ez = E and 8x = 8z = 8x, and hence also µx = µz = µx· We 

restrict ourselves to sum resonances with nx � 0 and Uz � O. For a while 

we impose the stricter condition nx > 0, and use (4) with the index x. 

We then find that 

Finally, 

r 2 z 

+ n,? 
r 2 z 

Inserting all this into (4) yields 

E�N - 1 

B p 

+9./2 

-£/2 

Here we have also changed the integration variable from angle e to 

length s, and have introduced the length £ of the crossing region in 

which the two beams interact electromagnetically. In what follows we 

(8) 
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shall assume that the tunes Qx and Qz are chosen to be on resonance, 

i.e. that (1) is satisfied. We shall therefore drop the corresponding 

term in (8). It may also be seen that in (8) we may take nx � O and 

nz � O. At least for machines with Qx: � the restriction to sum 

resonances is of no practical importance� since there are fewer difference 

resonances than sum resonances in the vicinity of the Qx = Qz diagonal. 

In the case where the force is due to the crossing with another 

particle beam, we have to add electric and magnetic forces and obtain 

+ ,i2 
N - 1 

1 a Ex 
Ile axnx - 1 

aznz nx ?- 1 

(9) 
axnx a 

nz 
l - 1 Ez 

Z. 
+ 52 

Ile 3xnx 3znZ - 1 nz � l 

Here, Ex and Ez are the electric field components and ll is the usual 

relativistic factor. 

in l) 

EVALUATION OF THE ELECTRIC FIELD ALONG THE PARTICLE TRAJECTORY 

The following is merely a repetition of the field calculation 

We use the co-ordinate system shown in Fig. 1 9 i.e. we assume 

that the two beams cross vertically at a small angle a. For a round 

beam we may use Gauss's theorem and find for the field perpendicular to 

the beam 

Er(r) = 411 
J p(r') r' dr' r (10) 

0 
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where pis the charge density in the beam. The components in the beam 

co-ordinate system are 

Ez' = Er sin i:p 

To obtain the field components in the particle co-ordinate system we 

use the transformations 

X1 = X 

z' = z cos a + s sin a 

s' = s cos a - z sin a 

and 

X = X 1 

z = z' cos a - s' sin a 

s = s' cos a +  z' sin a 

We find 

Ex = Ex' = Er(r) cos � 

Ez = Ez' cos a = Er(r) sin � cos a 

We now specialize to a Gaussian beam 

p(r) 
A e 

= �2 exp(- r2/2cr2) " cr 

(11) 

(12) 

(13) 

(14) 

(15) 

where cr is the rms half-width and A is the number of particles per unit 

length of the beam. Combining (10) and (15) we obtain 



and hence 

E = z 

- 6 -

2A e cos¢ [l - exp(- r2/2cr2)] r 

2A e sin ¢ cos a [l - exp(- r2/2cr2)] 
r 

In evaluating (17) one recalls that 

sin � = z' /r 

cos � = x'/r 

r2 = x• 2 + z'2 

One must also remember that, because of the a variation 

a is a function of s' : 

= B + s' 2/B 0 0 

80 
and cr0 are the amplitude function and the rms beam radius at the 

crossing point, respectively. Because of (19) , the phase advance, 

counted from the crossing point, is given by 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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4. CALCULATION OF THE WIDTH OF A GIVEN RESONANCE 

For given values of nx and nz the width of a resonance is 

given by (8) which we rewrite as follows: 

6e = 

+£/2 

f B /:;N _l_ 
2\ e 

-£/2 

a 

½N - 1 E· 

N - 1 Ex 

axnx - 1 
aznz 

or 

a 
N - 1 Ez 

axnx aznz - 1 

exp (iNµx) ds 

(22) 

In evaluating (22) one must remember that Bx is a function of s, given 

by (19), and that a is a function of s', given by (20). In order to 

obtain the derivative of the electric field one uses (17), differentiates 

it the appropriate number of times, and evaluates the result on the 

trajectory of the test particle, x = z = o. If we decide to evaluate 

( 22) for a particle with the rms betatron amplitude we may put 

and obtain 

6e = 

N-2 
2 ( nx2 + nz2 ) (1 + B2 ) r0 \ a0 80 

+£/2 

I 
-£/2 

2N TT nx!nz! s 2 y 

a 
N - 1 Ex 

axnx 
S /:,N 1 

( _E) 2). e  So 
;JN 

axnx 

- 1 
axnz 

or 

- 1 Ez 
n -

dZ z 1 

(23) 

(24) 

exp(iNµx) ds 
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It may be seen from (17) that Ex, and hence its even derivatives with 

respect to x, are all odd functions of x and vanish for x = O, It 

follows from (24) that only resonances with even values of nx are excited. 

Similarly, Ex is an even function of z'. This means that the dependence 

of Ex on s and z 1s such that terms with even powers of s and odd powers 

of z, and vice versa, do not appear in a power series expansion of Ex 

and of its even derivatives with respect to z. For z = O, Ex and all 

its even derivatives with respect to z are even functions of s, whereas 

the odd derivatives are odd functions of s. Since Bx is an even function 

of s, the integrals ( 24) vanish when nz is odd. We conclude that only 

resonances of eYen order with both nx and nz even are excited by beam 

crossings. 

5. WIDTHS OF THE RESONANCES OF ORDER 22 4 AND 6 

The evaluation of (24), and in particular the differentiation 

of E,c and Ez is quite lengthy, and was partly done using the algebraic 

manipulation program SCHOONSHIP 4) The widths of these resonances can 

be written in the form 

t:.e (nx , nz) (25) 

where k,, n is a numerical factor, t:.� is the linear tune shift given by l) 
X Z 

A r
0 R- 80 (1 + 82) R, 

�) t:.Qx = Ix(2Bo 4,r B2y Cl 2 Clo 
0 

(26) 

with 
+� 

Ix 
l 

L 
(l + X-2) { 1 - exp[- ln2x2/(l· + x2)]} = 

� n2 (27) 
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and Inxnz
(�,n) is a correction factor which allows for the variation 

of Sx and for finite crossing angles a. It is normalized such that it 
tends towards one for s,n << 1. The values of� n and the expressions 

X Z 
for In n  (s,nl are listed in Table I. This means that for collinear X Z 
crossings with a small phase advance the tU!le shift is indeed a measure 

of the widths of the non-linear resonances excited by the other beam. 

If the region for which ls[ < so is excluded from all the 

integrals in Table I, (1 + x2) may be replaced by x2 in which case all 

the integrals become closed expressions. These long-range contributions 

to the resonance width are listed in Table II, for two limiting cases, 

nearly head-on �ollisions with n << 1 and�>> so, and well separated 

beams with n >> 1 and��> so• 

6. DISCUSSION 

Figs. 2 to 8 show the correction factors Ini
c"z" There is a 

striking difference between the curves for n � 1 and n >> 1.0. The 

first shows an oscillatory behaviour. This is due to a cancellation 

effect because of the phase factor in (22). Since this factor is varying 

more rapidly for 6th order than for 4th order resonances, the period of 

the oscillation ins is also shorter for the 6th order resonances. When 

the beams are well separated at the end of the intersection region, 

n >> 1, there is no such behaviour. Instead the curves come down rather 

smoothly with increasings• This can be explained by observing that the 

long-range contribution to the resonance width tends to be smaller than 

the contribution to the tune shift, hence their ratio comes down with 

increasing�- The behaviour of different resonances of the same order 

is quite different, for n >> 1. This is explained by the observation 

that the forces, in the vertical plane of crossing, cancel out to a 

large extent when the beams cross at an angle, whereas the forces, per-
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pendicular to the plane of crossing, do not cancel out. Hence the re­

sonances come down in strength when nz goes up for a given order of 

resonance. 

The long-range contribution to the resonance widths shown in 

Table II are in excellent agreement with the accurate results given in 

Figs. 2 to 8 for the case of nearly head-on collisions, n << 1 and 

� >> 1. In the case of well separated beams, the widths of the non­

linear resonances are reduced by a factor of n2 each time the order of 

the resonances is increased by two. This agrees with Voss' s calculation 2) 

However, the widths of the resonances as calculated from the formulae 

in Table II are much smaller than those shown in Figs. 2 to 8. This 

means, of course, that most of the resonance excitation occurs 

close to the crossing point and not where the beams are well separated. 

Hence, the observation that the long-range contribution to the resonance 

width comes down rapidly with increasing n, is of little practical im­

portance because that contribution is only a small fraction of the total 

effect. 

As an example, we consider the optimised proton machines de­

scribed in 5) with� = 5 and n = 17.8. When one assumes that the widths 

of the resonances are just proportional to the tune shift �Qx, one im-

plies that In n  = 1. 
X Z 

If, in addition, one observes that because of 

symmetry the resonances with nz f O should not be excited, one expects 

Inxllz = 0 for these resonances. Comparing this to the computed results 

in Table III shows that the INO values are overestimated by a factor of 

about two, and that the other In n  are underestimated. 
X Z 
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TABLE I 

Widths of resonances of order 2, 4, 6 --------------------,----------------

N = 2, nx = o, nz = 2, K02 = 4 

l 

J 
I2o(t,11) '" t112D 

-� 

1 + x2 

x2 

l + x2 

x2 

! ( - x2n2 
) [ 112x2 

] 
/ 

/
1 - exp \2(1 + x2) 1 + 1 + x2 I 

• cos(2t8Jl-lx) dx 

j � :t') 1- 6(1 + x2) + ( - x2n2 J [ 
exp \2(1 + x2V. 6(1 + 

-� 
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s 

,,,,, ·"' . ":" I � ::') 
-s 

s 

. � I �· ::') ,_ "' .. ,, 
-s 

+ 3x2 n2] l 
· 

N = 6, "x = o, llz = 6, Ko6 = 1/32 

s 

3 \ f1 
x
+6

x
2\ l-I 06 ( s, n) = n6so j V -; 

-s 

• cos(6tan-1x) dx 
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N = 6, nx = 2, nz = 4, K24 = 5/3·32 

J (' ::' J I "' 
-F; 

,.,<c,ol • ;!co f (' 
-F; 

2 

- 8(1 + x2 ) 

N = 6, nx = 6, nz = 0, K50 = 1/32 

F; 

I5o(s,nl = n"sD � -) 
3 

J 
G_ : x21 

F; 

where D = (;�2 
J 

-F; 

-F; 
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TABLE II 

Long-range_contribution_to_the_resonance_widths 

For nearly head-on collisions, n << 1 and�>> 1 

8 6 -1 
(1 + 1;2)2 = �tan i; 

For well separated beams, n >> 1 and i; >> 1 

( ) 4 11 4 - i tan-1 < I o4 s, n = n2 I + 1 + ,2 , ; 

( ) --
2
n� 1

1
1 I oG s, n • 

( ) 120 I 1 I 42 s, n = -;;i,-
I 

( ) -- 2
n
44 1

1
1 I Go i;, n 

s 12 6 -1 I 
(1 + 1;2)2 + 1 + ,2 - � tan i; I 

8 12 6 -J , + - - tan � 
(1 + 1;2) 2 1 + 1;2 i; 
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TABLE III 

Correction factors In n  for s = 5, � = 17. 8 
X Z --------------------------------------------

nx nz I nxnz 

4 0 0. 51981 

2 2 0. 05873 

0 4 0. 00318 

6 0 o. 45421 

4 2 0. 07975 

2 4 0. 00409 

0 6 0. 00010 



y 

(test particle) 

----
-.- (beam) 

Fig. 1 - Co-ordinate systems. The angle between the beams is �; 

r-� is a cylindrical co-ordinate system about the beam direction 
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