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ABSTRACT

The asymptotic behavior of multiparticle scattering amplitudes is
discussed and reviewed with an emphasis on the analytic structure of the
amplitudes as a function of the channel invariants. Single and multiple
asymptotic limits of the Regge and helicity type are defined and a recipe
is given for obtaining the asymptotic behavior of amplitudes in these
limits controlled by exchanges of factorizable Regge poles and constrained
by analyticity requirements. Applications to inclusive cross sections and
the decoupling theorems for a Pomeron Regge pole are reviewed as illustra-
tive consequences of unitarity for multi-Regge theory. The present under-
standing of the relationship of cuts in angular momentum to unitarity is
also described and suggestions given for further research. An effort has
been made to keep the discussion pedagogical, while at the same time
providing an entrée to the literature.
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1. Introduction
1.1. Regge Poles iﬁ Hadron Dynamics

Regge in 1959 (Regge; 1959, 1960) observed that eigen-
solutions of the Schr&dinger equation of different angular
momentum could be grouped into families, each. family beiﬁg
connected by a single pole in the complex angular momentum
plane that moved through the integers.in angular momentum as
the total energy was increased. These Regge poles, as they
came to be called, are connected with the asymptotic~behavior
of the scattering amplitude as the cosine of the t-channel
scattering angle cos8 in the four-particle amplitude (Fig. 1.1)
becomes infinite (Sec. 1.2). Because cos® is linearly related

2

to the invariant s = (pa + P, )¢, the amplitude for the crossed

reaction ab -+ a'b’ has the high energy behavior

i

/\4 ~ YD Souf? ~ ' (r.1)

S5-9 &9

It is natural to try to generalize the idea of Regge
behavinr +tn mulii-begge acymptotic kehavior of multiparticle
amplitudes (Kibbie, 1963; Ter-Martirosyan, 1964; Razmi, 1964;
Frazer and Roberts, 1967; Chan, Kajantie, and Ranft, 1967;
Zachariasen and Zwieg, 1967; Bali, Chew, and Pignotti, 1967a,b).
These extensicns were guesses motivated from Regge Behavior
of four-particle amplitudes and did not attempt to reflect
a detailed understanding of the phase and singularity structure
of the'multiparticle amplitudes.

Let us review the difficulties briefly. Consider the

process ac > a'p'c' of Fig. 2.1. Suppose we were interested

in studying a double-Regge asymptotic limit .

Sy, S S, tu,tz 4&':&{[. (1.2)



The expected result is

. PR ' iz
As ~ 5 Q'({‘)S “! )X(t.,f:., 5i2/5,5,). (1.3)

1 2 .
The difficulties in formulating a rigorous derivation of such

a result center around the notion of the helicity of the Reggeons
oy and a,. The kinematic analysis of Sec. 2 below shows that

it is indeed possible to identify an angle, namely the Toller
angle Wyos whose Fourier components are the helicities of

both ay and oy (both, because helicity is not changed by the

scalar particle b'). In the limit (1.2) the angle is given byv
: 4
Sin/, 2(t, 4, coawy =1t -T, o/t (1)
12 S,S, _

/
A, t, mt)
Meab,e) = ar b rcro24b -2be -24c,

(1.5)

It is necessary to fix the helicities of the Reggeons in the
limit (1.2), i.e. to fix 512/5152’ and so the residue ¥ in
(1.3) becomes a function of this ratio.

) The amplitude Ag caﬂ have a rather complicated dependence
on the.ratio slz/slsz, if we consider that it has poles and
branch points in all three invariants. This leads in general

to an infinite spectrum in helicities for the Reggeons, so that

co . : .
e N2 TS :
Y = 2 ¥ e, ~ (1.0)
A>=00 ‘ : _ -

where the series must diverge at values of w9 corresponding
through (1.4) to singularities in 512/5152’

Apart from the technical problems of finding a rigorous
derivation of (1.3), there is the practical problem of how |
one should go about introducing signature into (1.3) in view
of the fact that y must have a phase associated with singularities

in 512/5182’ In order to deal with all of these problems,



one must first understand what asymptotic singularities in AS

as a function of sl,sé, and Sy, might be permitted on general
grounds and how these singularities enter into Y; A convenient-
vehicle for studying this question is the generalization of
helicity to complex values. It is necessary to considef

poles in complex helicity in analogy to pdles in complex angular
momentum. The existence of complex helicity poles is intimately
related to the asymptotic singularity structure of multiparticle
amplitudes. An understanding of the consequences of Regge
behavior for multiparticle amplitudes cannot be complete without
taking them into account. Thié is a feature unique to multiparticle
amplitudes and never appears at the four-particle levelg

Progress has been made in recentvyears towards developing
a detailed understanding of multi~Regge behavior, and it is
the purpose of this repbrt‘to describe what we know now.

The story is far from complete and is a rich area for further.
research.

Our present discussion is devoted mainly to the asymptotic
behavior prcduced by Regge poles, since relatively little is
known about the role of cuts in the asymptotic behavior of
multiparticle amplitudes. We explore the problems in making
Regge asymptotic behavior compatible with some fundamental
assumptions about the asymptotic singularity structure of
amplitudes and show that a theory of multi-Regge behavior
can be formulated consistent with a restricted set of asymptotic
singulérities, namely those arising from normal threshold
branch points. Simple Regge poles cannot tell the whole story.
We know from unitarity that if there are poles in the J plaﬁe.
then there must be cuts. Our attitude toward J-plane cuts
is that they should be understood as being generatedfffom

combinations of poles through unitarity. This principle has
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been suggested greviqusly for cuts and poles in the energy
'plane'(see Chew, 1966) under the title"maximal analyticity of

“the first degree“. In keeping with this principle,'it is

apparent that one must first understand the properties of
pole-dominated amplitudes before attempting to understaﬂd the
properties of Regge cuts.

Apart from the deeper questions relating to the foundations

.0of Regge theory there are other reasons for studying the asymptotic
structure of multipar;icle amplitudes. We list a few applications:
(i) Phenomenology of inclusive cross sections. Here we need to
know how to take the discontiﬁuity of multiparticle amplitudes in

a particular channel. Whét does multi-Regge behavior séy about
inclusive reactions? Do the Regge-pole contributions factor

in the discontinuity, if they do so in the amplitude? How much

do we learn about the ful{_amplitude by measuring the disconéinuity?
(ii) Phenomenology of exclusive multiparticle production. What

is the asymptotic phase of a_multiparticle production amplitude?
What can be said about the dependence on the Toller angle? What
does the presence cf a helicity pole have to éo with the asymptotic
behavior of multiparticle amplitudes?

(iii)Reggeon scattering amplitudes. Can Reggeon amplitudes be
defined which have properties similar to particle amplitudes (iie.
unitarity,“analyticity), so that we can write dispefsion relations,
finite energy sum rules, etc., for them?

(iv) Theorems about decoupling of the Pomeron. If the Pomeron is a
simple'pole in angular momentum, what can one say about its couplings?

For the reader interested in the basic theoretical ideas, we

suggest he read Secs. 1.2-1.4, 2.1-2.2, and all of 3. This aliows
the reader to complete the analysis of the simplest multi~-Regge
vertex, namely, the two-Reggeon, one-particle vertex. Thé article

as a whole can be viewed as follows. We study the basic three-
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point Reggeon vertices (Fig. 1.2) for one Reggeon (trivial case, Sec. 1.2),
for two Reggeons (Sec. 3) and three Reggeons (Sec. 4). We discuss the
analytic structure in the helicity angle (Secs. 3.5, 4.2). Then we show
that factorized products of these basic vertices occur in general multi-
Regge limits (Sec. 5). These ideas are then applied to the inclusive
process, where we encounter four- and five-point vertices (Sec. 6).
Having discussed the behavior of amplitudes dominated by Regge poles,

we turn briefly to unitarization problems. As an illustration, from .
direct (s) channel unitarity we find bounds on diffractive production
(Sec, 7) and from crossed (t) channel unitarity the two-Reggeon cuts
(Sec. 8). Clearly these applications represent only the first small

steps in an iterative approach to the generation of all J-plane singu-

larities.

We have included an appendix which illustrates the general discussion
in the main body of the text by giving the explicit forms in the dual
resonance model, since it is the simplest model exhibiting all the Regge
pole properties discussed here. The reader may find it useful to refer

to the appendix for comparison from time to time.



1.2; Regge Poleg - Review
. In order to motivate our approach to multi?Regge behavior,
welbegin by reviewing Regge theory for the four-particle amplitude.
[For‘extensive re?iews, see Collins and Squires (1968) and

Collins (1971)]. .

A Regge pole is a pole in the complex angular momentum
plane of a partial wave amplitude. Its presence has implications
for the asymptotic behavior of a scattering amplitude as the
cosine of a scattering angle ( and therefore certain channel
invariants) become infinite.

For a scalar 2-to-2 amplitude (Fig. 1.l1l) in the physical
region for aa' + bb', the partial wave amplitudes are defined
in the t-channel center-of-momentum frame by the usual Legendre
series . '

. 0o
A(*/ﬂ s J (2T+1) ?J(z)a.(J,{'), ‘

Jso

(1.7)

2
where t = (p_ + pa.)“ iz the square oI tihie tctal eneryy and

z = cos 6 is the césine of the scattering angle in that frame.*
Usihg the method of Froissart and Gribov, the particle
wave amplitudes a(J,t) may be continued into the complex J plane.
It is necessary to define separate continuations for even and
odd J, and this is done by introducing the signatured amplitudes
At(z,t), T = %1, which have only right-hand cuts in z and are‘

related to A(z,t) as follows:

' Alz,t) = [ Atee) + ATC3)] + [AGD —A'(-igt)],

(1.8)

* A : .
We use the convention that all momentum labels refer to incoming;
particles. Thus for antiparticles P =~ pb , etc. ’



The asymptotic behavior due to a J-plane pole or cut

is obtained from the Sowmer;eld-Watson representation of (1.7}:

14060
"2
. ~ﬂ'
e -l 43 (z:u)P(a) (1)
A (%, ) = PH
. ‘ ,'vuo'!
(1.9)
The contour stands to the right of poles in the signatured partial
wave amplitude 3'(J,t) but to the left of J = 0. We recall that.
in order to be able to push the contour to the left of Re J = -1/2
we need to use Mandelstam's ﬁrick,which effectively replaces
‘Py ("&) - Q_,:,‘ (i)

o (1010)
Furthermore, since we are chiefly interested in the leading asymp-

totic behavior, we replace

T re9 (Zt)

.."jil)

Q-5 (-3 ~-

(1.11)
If we express only the manifest singularity in J in T'(-J) in

(1.11) and absorb inessential factors in the redefinition of

27(J,t) we are led to

| ;.
ATz, t) = f‘“r( 7)) & ne,

2,71’&

(1.12)
where the contour separates poles in T'(-J) from dynamical singu-
vlarities in ET(J,t). A rightmost factorizable pole at J = a(t)
in 3%(J,¢t) leads to an asymptotic behavior of the signatured

amplitude



cbh!

A'r(ilt) ;:;oo /S (‘>/b ({)( 1) F(”aa)) (1.13)
This familiar result expresses not just the fact that the
amplitude has power behaviér in z. It also carries information
about the presence in AT(z,t) of a discontinuity'in z. For non-
integral a(t) the asymptotic expression -appears to have a branch
point at z = «©, This is a reflection of the accumulation at
infinity of right-hand branch points in z in the signatured amp-
litude. Since they originate from branch points in the crossed
channel invariants s = (pa + pb)2 and u = (pa + pb,)z, which
are linearly related to z, e.q.
= Alt)z + B
Mo t, mm(ma:)l Ne[ &, m, (m"')]
—5w % |

PN 3
b G- mp \ R (n)) -yt

Alt)=

B(t) = (md)E+ ()" + 2(—7"4:"““ 2/E
| (1.14)
LN 2P TG T .2, J.‘; fz,. 24 L 2bhe ~240,C
ALG,D, ", ~ ia T ¥ - - fu e 2
it is natural to rewrite (1.13) in terms of channel invariants
alone:
’ dl‘!‘)
y b y -alt)
AT(s,t) ~ le““({*)/s‘ (6) -)°" [-atel,
EE X-)
(1.15)
where _ et/
p(t) /!’(t)[A(ﬂ] (1.16)

For special values of t, the coefficient A(t) in Eq. (1.14) is
singular. These singularities do not correspond to actual singu-
larities in t and s in AT(s,t) and so are called kinematical

singularities. Therefore, they must also appear in B(t) in Eq. (1.13)
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bﬁt not in B(t) in (1.15). Thus Eg. (1.15) is a more natural
‘way to express what the presence of a Regge pole implies for -
;he aé&mptotic behavior of the amplitude., In fact it is also
vweil-suited fof analytic continuation ip t to the physical
region for the s-channel process ab + a'b'.

- We may also re-express the "leading behavior" of the.

Sommerfeld-Watson transform (1.9) in terms of channel invariants:

A (510) - = JJ reJ C-—s) a7, L t), - (1.;7) 

where

- ¢¥&).«¢
T = { % (J.#). '
o (5, t) [A H) ¢ / (1.13)

~

.This expréssion contains all the essential features 6f the

Somnerfeld-Watson transform: the partial wave series is obtained

as avpolynomial in .s by cl;sing the contour to the right; for |

integral a(t) the Regge pole residue is a poiynomial of order

3= a(e). | |
Although [(L.17) was derived oﬁly foL’Lhe léaaing s behavior,

it is possible té interprét it as an exact expression. It is

a Mellin transform representation of the amplitude. Such'repre-

sentations in ﬁerms of the invariants were first discussed by

Khuri (iééé}.IhTheré is a one-to-one corrééﬁbﬁdeﬁée-ﬁetwééﬁl

the legﬁéng member of a family (integrally spaced) of pqlegﬂ

in the Mellin variable J at J = a(t), a(t) -1, ... and a pole

in the'true angular momentum at J = a(t). Since we are chiefly

concerned with the analytic structure manifested by cuts in

the asymptotic behavior in s, a structure which is unaffected

by addifional invefse powers of s, we shall refer loosely to

the Mellin variable J in (1.17) as "angular momentum".

For a pole of definite 51gnqture we have, from (1.8)

A(:,t) ~ /s““ (*‘)/s“(t)f‘( aztt))[l D A LIS PO
S0 .



wheré left- and right-hand cuts in s are shown explicitly.l As

long as the singularities in s accumulate on the positive and
negative axis at infinity, it is conventional to expect that

- Eq. (1.19) gives a valid representation of the asymptotic behavior
of the amplitude for the cut complex s plane m > afé s >0

21 > arg s > 7. Real analyticity requires B(t) to be real.
The point is that the phase of Eq. (1.19) and the range of validity
in s depend on prior knowledge'of the locations of the singularities
at very lafge s. This knowledge is provided by unitarity{and

is built into the Froissart-Gribov amplitudes in part through

iheir asymptotic properties fér ReJ » ». Suppose, instead, there
had been a series of branch points which accumulated aléng the

ray arg s = ¢, but that the power behavior was otherwise the

same. These branch points could be represented by an expression
just like Eg. (1.15), except that the expression would be valid

for 2w - o > afg s > 0 and the pﬁase of B(t) would need to be
adjusted according to the available information in that case.

These obsefvations will préve useful in discussing the asymptotic

bahavicor or multzparticle amplitudes.
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1.3. Method of Attack

The methods which we have outlined for the four-point
amplitude in Sec. 1.2 above are the ones we shall adopt in the
study of multiparticle amplitudes. The outline of the procedure

is as follows:

(i) -0(3) Partial wave analysis. Identify scattering angles,

angular momenta, and helicitieé. Define the asymptotic limit

in terms of the scattering angles and express the asymptotic be-
havior of the amplitude in terms of the angles, as in (cos 9)“,

eté. We motivate this step from-our understanding of the four-

particle amplitude (1.13).

(ii) Analytic expression in terms of channel invariants. Relate

the angles to the channel invariants. Re-define the limit and
re-express the asymptotic behavior in terms of channel invariants
(1.15). These are the variables in which the analytic structure
of the amplitude is most simply expressed. At this stage we
inject our assumptions about ‘the allowed singularity structure.

{iii) Mcliin represen=zzzion. As a matter of zscinvenlzrnce we then

rewrite the asymptotic behavior in terms of a Mellin transform
in the J planes and complex helicity planes (1.17). This provides
a succinct represcntation of the amplitude and facilitates.the
discussion of helicity singularities.

Apart from the relatively uncontroversial generalization
of the four-particle Regge behavior at step (i), the only point
where a dynamical assumption is necessary is in step (ii); This
i;, in féct, the heart of our analysis and is so crucially important
to our conclusions that it deserves amplification, which we provide

in the following subsection.
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1.4, Assunptions
We summarize our assumptions about the asymptotic analytic
structure for the Regge-pole contribution:
(A) Uniformity. Multiple asymptotic limits can be reached in
any order.
(B) Only normal threshold branch points in any channel invariant
affect the asymptotic behavior due to Regge poles.
(C) Complex J-plane poles are moving so that they produce an
asymptotic behavior, e.gq. (-s)a, giving a discontinuity in s.
Only assumption (B) requires special comment. It is the
very strong assumption that the only singularities in asymptotic
invariantg affecting the asymptotic behavior are normal threshold
branch points.* The essentially useful feature of normal threshold;
singularities as contrasted with higher order Landau singularities
is their independence (Olive, 1964). For in taking multi-Regge
asymptotic llmlts we will be faced with the necess1ty of inter-
preting expressions of the form (--sA)CIA (-s ) °s where Sa and Sg -
refer to two channel invariants of a multiparticle amplitude.
7£ the cvident cuts in Sa and Sy in such an expﬁeésion wexe inde-~
pendent, we would be safe in interpreting such an expgession as
representing a product of two functions each cut on the positive
real axis., If they were not independent, the cuts in Sp might
move in a complicated way as Sp varied. Such an expréssion would

not then be sﬁitable for a straightforward interpolation between

various boundary values above and below cuts in Sa and Sg

2Another useful consequence of the independence of normal
threshold singularities is that many combinations of cuts can
be ruled out, thereby vastly simplifying the asymptotic structure.

To see this, consider an arbitrary n-to-m scattering amplitude

*The single-Regge limit of the four-particle amplitude s“‘tkn%)
has a simultaneous discontinuity in s and t reflecting a higher
order Landau singularity. We are not excluding them. We are
concerned with singularities appearlng jointly in two or more

aszmgtotlc invariants.
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as shown in Fig. 1.3. It is useful to introduce the notion of
6ver1appipg channels. In the figure, the dotted line labeled
A (B) separates the momenta of channel A (B). When these lines
intersect as in Fig. l.3a we say the channels "overlap". if not,
as in Fig. 1.3b, they do not. A property of normal threshold'
singularities is that their discontinuity is free of normal thresh-
old singularities in overlapping channels. Such overlapping
double discontinu;ties appear only when higher order Landau singu-
larities are considefed. However, normal threshold singularities
do occur simultaneously in non-overlapping channels. Therefore,
- -
B

we can rule out asymptotic terms of the form (-SA) ’

when s, and s_ refer to overlapping invariants.

A B
As a corollary to (B) we therefore have:
(D) No 6verlapping channel discontinuities: Discontinuities’
as revealed in (C) do not occur simultaneously in two overlapping
channel invariants. | : ' . -
To réstrict ourselves to.normal thresholds, although we
are safe in doing so, may be overly pessimistic. What we know
‘in S-waiwix theor, ubout locations of singuizzitizs in channel
invariants‘comes from unitarity. Our present understanding
of the asymptotic structure of amplitudes in the présence of
higher order Landau singularities is far from complete; What

we want to emphasize is not so much a particular assumption

about the asymptotic singularity structure, as the importance

of making some statement oY assumption and the relationship

between the assumed structure and the Regge asyriptotic behavior.

We believe that further research will indicate in what way our
assumptions have been stated too strongly and in what way they
would need to be modified so as to make our conclusions more
broédly applicable. We remark that all explicit models for
multi~Regge amplitudes étudied thus far (e.g. ladder model,

dual resonance model) satisfy our assumptions.
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As an example cf the possibility that our assumptions may
be relaxed in some cases, we refer to the Steinmann relations.
These follow from axiomatic field theory and there is good reason
to suspect that they will eventually be found to be valid in ax~
iomatic S-matrix theory as well (Steinmann, 1960; Araki, 1960;
Stapp, 1971; Cahill and Stapp, 1972, 1973). The Steinmann relation
states that (D) is valié for any multiparticle amplitude regardless
of whether the cuts are due to normal threshold branch points or
higher order Landau singularities, provided only that the discon-
tinuities are taken in the physical region of some scattering
process.* We occasionally require (D) outside physical regions
as well, but on the other hand, only in certain asymptotic regions.
Perhaps the Steinmann relations can bevextended to these regions

as well. This is certainly a subject deserving further study.

*To apply the Steinmann relations as we apply (D) one must assume
that (—SA)a% (~-sB)“a represents independent cuts in sp and Sp-
Higher order Landau singularities do not always have this property--
see Patrascioiu (1973a,b). ,
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1.5. Other Approaches
1.5.1. Sommerfeld-Watson Approach

We conclude this section with some discussion of the relation-
ship between the approach to multi-Regge behavior taken here and
that taken by others. The direct and conventional approach to
multi-Regge behavior is to generalize the treatment of the four-
particle amplitude:

(1) Specify the analytic structure of the amplitude.

(ii) Define the Froissart-Gribov continuation of the 0(3) partial
wave amplitudes. Assumption (i) affects the continuation.

(iii) Write the generalized Sommerfeld-Watson transform.

(iv) Assume poles in complex angular momentum. Obtain the Regge
asymptotic behavior.

Although this method is almost the reverse of ours, since
the assumptions are identical, we of course expect identical con-
clusions. Specifically, the Regge behavior must conform to the
assumptions (i), although the manner in which the information
from (i) is translated into the Froissart-Gribov continuation
may ba qaive subtle. It is for this and peocagegicar reasons that
we have adopted a more heuristic approach in which the connection
between the assumed analytic structure and Regge behavior is more
transparent. Indeed the technical difficulties in carrying out
this conventional approach are quite awesore, and it ma§ be that
our heuristic approach can serve as a useful guide.

We feel that a rigorous development of the conventional
approach would be quite valuable. Actually a good deal of progress
has been made in this direcfion recently by Goddard and White
(1971) and White (l97la.b;1973b) and we shall refer to these results
from time to time for more rigorous support of our analysis.' It
is interesting to note that technical difficulties have forced.

a restriction of a detailed treatmeﬁt to normal threshold singu-~

larities, so the conclusions from both approaches should be
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comparable.
1.5.2. Group Theoretic Approach

The 0(2,1) [and 0(3,1)] approach to multi-Regge behavior
(Bali, Chew, Pignotti,"1967;. . Toller, 1969b; Jones, Low,
Young, 1971a,b), which is a generalization of Sertorio and
Toller's treatment of the four-particle amplitude, (Sertorio
and Toller, 1964; Toller, 1965) has also been quite fashionable.
It has the advantage of directly treating the amplitude in the
physical scattering region of interest. However, the expansion
of the amplitude in terms of 0(2,1l) representations by itself
does not give any information. It is only by identifying the
0(2,1) representation label with the crossed channel angular
momentum, using the equivalénce to the 0(3) Sommerfeld-Watson-
analysis (Boyce, 1967; Toller, 1968a; Olive, 1970; Goddard
and White, 1971) that one knows what representations are
expected to be present. Thus in the end one must return to
the conventional approach. In any case, again at some stage,
information on the singularity structure of the amplitude must
e introcusad. We =h2:l not discuss the 0(2,1) parcial wave
analysis here, but we shall occasionally use the 0(2,1) method
to treat physical regién kinematics, since it is particularly
convenieht and elégant. '

The proper little group fof a momentum trangfef changes
_diséontinuously as.t varies [0(2,1) for t < O, 0(3;1) or E(Z),
for t = O,Iand 0(3) for t > 0). However, the fullvamplitude '
is smooth at t = 0 so this complication can be avoided if we
express the amplitude in terms of the invariants instead of the

' group variables as in step (ii).



2. kegge Limits for Multiparticle Amplitudes

In this section we begin applfing the method outlined .
in Sec. 1.3 to multiparticle amplitudes. Here we present the
notation and kinematical analysis, defining angles and asymptotic
limits. In subsequent sections we investigate the analytic
structure.

2.1. Definition of Scattering Angles »

Before defining the scattering angles for a multiparticle
amplitude, it is necessary to decide in which channels.and in
which c.m. .frames the partial wave projection is desired.

To illustrate the procedure, let us consider the amplitude for
the process aa' * b'cc” shown in Fig. 2.1. (All particles

P

"have spin and parity J° = 01.) The particle labels are taken

by convention to refer to incoming particles, and the momenta
are p,s Pais’ Ppe = “Ppes Pg = “Pgs Pov = ~Pgis respectively
where the bars denote antiparticles. The channel invariants

_ 2 2 -0 2 - 2
£, =9 = (p, + pa.) and t, = 0Q, (p, + pc.) . We have
also indicated for future reference the parameters ay and a, of
the lezadliinr Ragge trajectories in the {(aa') and {cc') channels

respectively, and the invariants 8, 2 S = (pa. + pb,)z,

2 2
S, 2 Spuge = (P + Pi)i sy,= 5,0 = (p, +p.)". Our con-

2
vention for labeling the channel invariants is that the letters
a,b,c, ... always refer to the particles in the channel. ‘
This.provides a unique notation for each channel. Among all
the channel invariants overlapping one or more momentum transfers
Q;j, we single out one, as shown in Fig. 2.1, and give it a
numerical subscripﬁ, corresponding to the momentum transfexs)
" which it overlaps.

We intend to define the scattering angles appropriate
to the partial wave decdmpositon in the rest frame of Q1 and in

the rest frame of Q,- This stipulation defines a "coupling

scheme” for the multiparticle amplitude. Each coupling scheme



is associated with a unique kinematical diagram.' There are
1/2°5! = 60 unigque possibilities or; excluding those related
to others by reversing c.m. momenta, 15 for the five-particle
amplitude of which a few are shown in Fig. 2.2. Each of the
coupling schemes leads to a particular configuration of scattering
angles, angular momenta, and helicities for the five-particle
amplitude.

To illustrate the definition of the éngles, we refer to
the coupling scheme of Fig. 2.1. First, treating (cc') as a
single particie of momentum Qz, we define 01 to be the usual
‘c.m. scattering angle for the process aa' -+ B'(S&'). Second,
in the regt frame of (timelike) Qz, let 92 and wg 5 be the polar
and azimuthal angles of the three-momentum BE' when'ﬁa. is in
the x-z plane and Bé. is along the positive z axis. (Fig. 2.3).
The angle wg 5 is the helicity angle or Toller angle (Bali, Chew,
and Pignotti, 1967).  . Its Fourier components give the Jacob- -
Wick (1959) helicity of the quasi-particle (cc') in the rest
frame of Ql' It also happéns to give the helicity of the quasi-
particic (za') in tho rest frame of Q, since the spinless
particle b’ does not change the helicity at the vertex.

Having understobd the five-particle kinematics, the
six-particle function presents no new difficulties, since it
can be treated as a five—barticle amplitude if we'lumé two of
its particlesvtogefher. Consider the coupling scheme shown in
Fig. 2.4. Lumping (EE'), we follow the procedure for the five-
particle amplitude described above, and define scattering angles
91 énd 92 and Toller angle Wyye Lumping (bb") together, we
define angles Gl and 93 and Toller angle* (fw3l). This gives

five angles, which together with the invariants tl' t2' and

t3 give the eight Lorentz invariants needed to describe the

. amplitude. . Within a particular coupling scheme, the Toller

*The minus sign is chosen to make subsequent expressions symmetric.



angle is always associated with a particular pair of momentum
transfers at a vertex.

- We could make the assignment of variekles symmetrical by
introducing a third Toller angle Wyge _This angle is related

to the other two by the constraint

w',. & wzs -+ wzl = o. (Zl')

Because of the greater complexity of the three-point
vertex in this coupling scheme, the relationship between the
wij and helicities is more subtle. 1In order to define helicity,
‘it is necessary to have a poiht of reference to which rotations
about the z axis are compared. If we always let Ea,‘define
the x-z piane as we have in the above and in Fig. 2.3, then
Wy is the Fourier transform of Az, the helicity carried into
the vertex by the line Qz, and (—wl3) is the Fourier transform

of A Since helicity is, conserved at the vertex, the helicity

3.
carried in by Ql is Al and

)‘ + )?— 4 )3 = O. (2.7.-)

The analysis can be made more symmetrical by choosing instead
of E gt Some arbitrary direction for the x-z plane in Flg. 2. 3.
Then 1f we say that ¢l gives the polar angle of p , and ¢2,

the polar angle of Pa' {in place of wlz), etc; and if we define
do-¢ Wu = b-bs; a3 = #y-t, (2.3)

then A A and A, are the Fourier components of ¢l' ¢2, and ¢3.

1’ "2’ 3
Because of helicity conservation, the amplitude never depends on
our arbitrary choice of the x-z plane - nor do the wij’ of
course - so we could just as well have put ¢l = 0, as we did

in Fig. 2.3, and defined_A1 using Eq. (2.2).
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) A second coupling scheme is shown in Fig. 2.5. We consider the
reaction aa’ + b’c’d’d. Once again we can rely on our five-particle
analysis. First group (dd’). We then proceed to define the scattering
angles 0; and 0, appropriate to the rest frames of Q1 and Q2, respectively,
and the Toller angle w;2. We then shift one link to the right and,
lumping (aa’) in the rest frame of Q3, we construct a diagram analogous
to Fig. 2.3 (see Fig. 2.6a,b), thereby defining 03 and w23 as the polar

and azimuthal angles of ;s,.

The generalization to arbitrary amplitudes with arbitrary coupling

schemes should be obvious. A systematic procedure is described in Sec. 2.3.
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2.2. Definition of Asymptotic Limits
2.2.1. Definition in Terms of Angles.

_ We shall consider three types of limits.
(1) Regge asymptotic limit. In this limit the cosine of one
of the c.m. scattering angles cosei is taken to infinity with
all other angles and channel invariants tj held fixed.
(ii) Helicity asymptotic limit. In this limit the cosine of
one of the Toller angles cOS Wjj is taken to infinity with all
other angles and channei invariants tj fixed. .
(iii) Multiple limits. We shall also consider multiple limits
found by taking cqmbinations of the above. We always assume
a uniformipy in the amplitude that permits limits to be reached

uniquely in any order.

2.2;2. Single-Regge Limit in Terms of Channel Invariants

How are these asymptotic limits expressed in terms of
channel invariants? Let us consider the limit cose1 + o in
the five-particle amplitude of Fig. 2.1. 1It is useﬁul to ‘\
distinguioh two classes of invariants. those that AQerlap .

tlhie chaunel of nomentum transfex 1, ‘i.e. the chgo line al

and those that do not. The six invariants

S b ) S&b 'SO.'C ) S.a‘ ’ SGC’S.“ > (z"})
all overlap, whereas the four invariants
., 1., Sple’s Sple - (2.5)

do not,

All invariants overlapping t1 have in common the property
that they are linear in cosei and sin 01 with coefficients
in the linear expression depending on non-overlapping invariants

and on(dlz. For example, it is straightforward to show that
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Since Spigt does not overlap tl, cose2 depends only on non-
overlapping invariants.

Therefore, the dependence on the
overlapping invariants is as described.
Thus, as cosel

», all overlapping invariants tend
to infinity with fixed ratios.

All the non-overlapping invariants
stay fixed. To fixculz in this limit, it suffices to fix

54.:./5‘2,5, s Siz/s, =_Cmu),z..+ D (2.7)

and this ratio can be used in place of the variable uﬁz.
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Generalizing from this example, we define:

(i) Regge asymptotic limit: Take to infiniiy all channel

invariants that overlap the Regge line, but fix the ratios

between them. Fix, also, the channel invariants that do not

overlap ‘'the Regge line.

We find that choosing a particular coupling scheme,
defining the scattering angles in that scheme, and taking
an asymptotic limit on the angles leads to a well-defined limit_
on the channel invariants. Had we chosen a second coupling
;cheme and taken an asymptotiq linit on the angleé appropriate
to the second scheme, we might have obtained a different limit
on the channel invariants. Suppose we turn the procedufe
around. Does a particular asymptotic limit on the channel
invariants single out a unique coupling scheme? Not always.
Consider the single~Regge limit just discussed in which the
invariants (2.4) become asymptotic, while the invariants (2.5)
remain fixed. There are actually three coupling schemes in
which the invariants (2.4)'over1ap a Regge line whereas the
invariznee {2,5) do not. Those are sheown in Fig. 2.1 and
Fig. 2.2a,b, corresponding to whether we pair (cc'), (bte"y,
or (b'c). The others are ruled out. Either of these thfee

coupling schemes is suitable for analyzing the single-Regge limit.

2.2.3. Helicity Asymptotic limit in Terms of Channel Invariants
To illustrate the helicity asymptotic limit we consider,

once again, the five-particle amplitude. From (2.6) as coso)12

becomes asymptotic, the only asymptotic channel invariants

are those overlapping both lines oy and Ay namely,
Sa“ ~ Sa'lcl ~-—5¢c1 A= S =¥ 0. (2.8)

All other invariants remain fixed.

Generalizing from this example, we define the limit.

(ii) Helicity Limit: Take to infinity all channel invariants



that overlap both lines connected by the Toller angle. Fix

their ratios. Fix all other channel invariants.

We remark that in taking the helicity asymptotic limit
of the six-particle amplitude of Fig. 2.4 one nmust be careful
to respect the constraint (2.1), which requires that at least
two cosuﬁj's beéome asymptotic togethgr.

Specifying the helicity asymptotic limit for the five-
particle amplitude in this way singles out a unique coupling
schehe, since there is only one in which the four asymptotic
invariants (2.8) overlap two Regge lines and the others do not.
For the six-particle amplitude, the correspondence is not
unique for isolated values of the invariants, but holds otherwise 4
(Patrascioiu, 1972 ). We shall avoid these special configurations
in our discussion.

2.2.4. Multi-Regge Limit in Terms of Channel Invariants

Let us now consider the effect upon the channel invariants
of taking two Regge asymptotic limits at the same time (double-~
Regge limit). for the fivé-particle amplitude, we see from
(2.5f tha:va: cosei and cose2 become asymptotic all invariants
overlapping a, grow like cosel, all those overlapping Gy

like cos® and all those overlapping both, like the product cosel

2'
cosez.A 7 A
. N ”
S, 2 Syt v = Sap! % 008 (2.9)
O, —» s 2.
5,“-’52"“ _551‘ o Co ¥y .
- 6, co0b, —» oo,
S;2 ® Sac ~ Cal! V" Sac? V= a’e % 0% :
In particular the Toller angle is found from the (fixed) ratio*
’. .
’ - v e 2 w7y
5.3 E N =-f'0 todmyy 'r‘-;"t—: cos-«y o (2.10)
2
3, 5, A(tu t&) mbl)

*The Cambridge notation for WP is the inverse of ours.
[prummond (1968)). , : .
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Thus we write:

(iii) Multi-Regge limits: Group the channel invariants according

to the Regge lines which they overlap. Ratios of invariants

in each group are fixed. Invariants which overlap several

lines tend to infinity as the product of invariants overlapping

each of the individual lines alone. All invariants -

not overlapping any asymptotic Regge line are fixed.

Note that for the five-particle amplitude, specifying
" the double-Regge limit in terms of the channel invariants
singles out a unique coupling scheme--(Fig. 2.1) .
An additional complication arises in'discussing limits
for amplitudes with six or more particles. Consider the coupling
scheme of Fig. 2.5. If we follow the prescription (iii) above,

the triple-Regge limit is

-D 60 S, =D oQ Soq =209 )
% | 2 3 (2.1
Sin S23 e Si2z  fived
t,, t, b 2 * — 13 * ==, Ni23® —= 7TiXea.
1) "3 P s, 53 113 Sz Sy S, 5, 5y

s

Since the six-particle amplitude depen&srnxonly eight Lorentz
invariants and not the nine listed here, there must be a constraint.
Indeed, when we consider that the angles ei can each be replaced

by sy and the anglestuij, each ﬁy “ij' as in (2.10), we. see

that the fixed ratio n,,; must depend on the other fixed

variables. It is straightforward to show that, in fact,

MNizs = "lu"l::,. or S S = S Siy- - (za2)

In the coupling scheme of Fig. 2.4 we would define the
triple-Reggze limit as

S 2 3 - (2.13)

. ‘ s 5 o . 8. 'S ‘
t, b, ts, M= s 7B, it 22 fixed.
o L TET! S2 53 s, 33
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In this case the nij's are related to thetuij's through expressions

like (2.10), and the constraint (2.1) reduces the nine variables

to eight.
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2.3. Kinematics for General Hulti-Regge‘Limits

In this subsection we describe a systematic procedure
for defining the scattering angles and working out their connection
to the channel invariants for an arbitrary coupling scheme.
This is the elegant group-theoretical procedure‘due to Toller
(1969b) and Bali, Chew, and Pignotti (1967).

The idea is actually quite simple aﬁd is best illustrated
by considering the six-particle amplitude in the coupling
scheme of Fig. 2.5. We recall that to define the angles 62
andtolz, we considered a particular orientation of the three-
momenta of particles a', b', and ¢' in the rest frame of
Qz, shown in Fig. 2.6a. Then to define the angles 03 énd
0,5, Ve considered the analogous orientation of the three-
momenta of particles b', ¢', and d' in the rest frame of Q.
which we show in Fig. 2.6b. The key idea of the Toller analysié
is that these frames are related by a simple combinations
of rotations and Lorentz boosts, and the rotation angles
are precisely the same as.are necessary for the partial
wave analysis. In particular, we see that if we started
with the momenta as in Fig. 2.6a, we could put them in the
configuration of Fig. 2.6b by the following sequence of '
operations: rotate about z by ('“ﬁz)’ rotate about y by
(-92); boost along the z axis so as to make as = 0. The
magnitude of the boost is determined completely by tl' t2, and
(mc.)z. Let us call the Lorentz frame of Fig. 2.6a, frame (2)
and that of Fig. 2.6b, frame (3). Then using superscripts
to denote the frame in which the momenta are expressed, we have,

in going from frame (3) to frame (2):

(-2 ] (&)

P(")z R% ((AJu) Ry (9;) B% [ ‘.3"' (2.14)

for any four-momentum p. The R's denote four-by-four rotation .
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matrlces, the B s boost matrlces, and 9, , a boost angle.:
i

Q = Q,”;?z
= ( {Z. ©, © °)-
""), ‘r o, o, o)
TE LIRS

w= @ 1/" 9 oW M?; )
= (J cods Y ¢, s 2 A " (VN
Q e, Aam “’uz"‘:’d"?“)' A «“® 8! )’

Sume o . OO O

(2.15)

f’M

*
we find

‘ k3
()2 ot t!‘-Lvn")" ' -1 (3)5(2 )"l" [ i, ts, tm.) ]

- ’ g T . (2.0

ch;,,.. YR 3 2VE. 6
The result Egqs. (2.15) and (2.16) is the same as what we would '
have obtained, had we been considering the decay of a resonance
of mass /Ez to a resonance of mass /E3 and a particle of mass My

We arelléd naturally to a sequence of Lorentz frames
forrdescribing the orientation of the mcmenta of the six-
particle awplitude. We can indicatc the ralstionshilp amouay the
frames by draﬁing the coupling scheme for the six-particle
amplifude and letting a position of the diagram be associated
with a frame. Thus the frames (2) and (3) are located Qith
an asterisk on the diagrams in Fig. 2.6 and the relationship
among the frames is summarized in Fig. 2. 7. One can also

(1) » (a')

efine z boosts q, , etc., to transform to the rest
frame of Py etc. These are also shown in Fig. 2.7.

In this way it is possible to follow a path through
diagrams of arbitrary complexity by a sequence of z boosts

-and rotations. The various channel invariants can be defined

in a straightforward manner--for example, for s a'b'’ reading.

*The boo<'tq(3) > (1) quite generally transforms from the rest-
frame of p. X to that of P; with p,‘ the third momentum at the
vertex. : i v
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the transformations from the rest frame of b' to the rest frame

of a' from Fig. 2.7, we have

(ma) ? (mp)” -ZPaI'FS’

Sa’b’ = . ()0
. ’ bJ®
[%:).)("’J R, ‘al) BZ [ ZI. ]S ?

(20
l .
Pa"ps = ™ ' {8, tt

where { }  denotes the time-time component of the four-by-

t
four Lorentz transformation matrix. Thus
i Y 7 l[ L (tn->029 )=
Sy = (ma)t e (mg) e 2o LE 4« 3 |
LY== l2d8)
. u)-o(a') . ¢
bawh g 0]

In this manner the expressions of Eq. (2.6) can.be calculated.
As a further illustration, we show the rotations and
boosts for another coupling scheme of the six-point function
in Fig. 2.8. Note in particular the closed loop of transformations
about the middle vertex. Since z boosts commute with z rotations,t
it £ollows that )
W, + Wi t Wyq =0

(3} (2) > . W= _ )

, +z3 2 = 0.

Thus there are only two independent wij's at a vertex with
three Q's.

Let us count variables to see if the set of (ti, ei, wij)
gives the correct number of Lorentz-invariant degrees of freedom.
Consider a general coupling scheme with N external lines P
and therefore N - 3 momentum transfers Q and N - 2 vertices.

Such an amplitude has 3N - 10 Loregtz-invariant degrees of

freedom.
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If we define

7 = number of vertices with three Q's.
D = number of vertices with two Q's énd one P.
S = number of vertices with one Q and two P's,

Then counting P's and vertices, we have

1D + 2S = N '

T+ D+ 8 =N~ 2.
Therefore, since there are two wij's for each T axd one for
each D, there are 2T + D = N - 4 of the wij's. With the
addition of N - 3 each of t, and 8, there are 3N - 10 altogether,
as required.

If we consider the foregoing definition of angles in
more abstract terms, we are led to a generalization. The
rotations through angles ej and wij are carried out in the
rest frame of Qj' The reason we chose to rotate was simply
that a rotation kept us in the rest frame of Qj’ i.e. the
little group of Qj is 0(3)‘for this case. The most general
rotation depends on three Euler angles, say (u;, 95, vj),
where p. and v. refer to z rotations. Had we Qsed this full

J J

rotation in place of (wi 6.) in the sequence of Fig. 2.7,

(3) ~ (1)

!
we see that each 6f the 9, z boosts would have ‘been
preceded by a z rotation of uj and followed Ly a z rotation

of vy Since z boosts commute with z rotations, the channel
invariants would actually depend only on the sum A + uj = aij;
So our choice of angles is completely'general.

We are generally interested in performing the above
analysis for timelike Qj. The partial wave analysis on the
rotation Rz(uj)Ry(ej)Rz(vji then gives the angular momentum |
in the tj channel and a Reggz‘pole is naturally supposed to
lead to the behavior (cosej) J. However, the real beauty

of the Toller analysis is that it can be performed for any Qj’



2-15

1 ral, in place of the rotation R_(p.)R_(6.)R_(v.

n gene , in p z(uJ) y( J) z( J):

there should appear a transformation in the little group of Qj’
Thus, for spacelike Qj’ instead of the rest frame, we could

work in the Breit frame for which

| (2.21)
QR = (o0, 0,0 ;/:1_:;), |

and the rotation would be replaced by the 0(2,1) transformation
Rz(uj)Bx(gj)Rz(vj), which preserves Qj' These are the variables
used by Bali, Chew, and Pignotti (1967). Of course the
vertex z boosts qk(i) > 03 would need modification in some
cases, since some of them would relate Breit frames to rest frames.
From time to time we will refer to the 0(2,1) analysis éince
it gives a convenient means of obtaining a convenient set of
indépendent variables in the physical region tj < 0.

Whether one begins with an 0(3) or 0(2,1) parametrization,
as long as the Regge limit is defined as cosej + © Or coshz;j +> o,

the channel~invariant prescription for the Regge limit is the

same.
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2.4. vRapidity Variables

It is well known that the major contribution to cross
sections for pérticle production a + b + Cq co- + S in the
(ab) c.m. system is confined to small transverse momentum
(Ipy]< 0.5 Gev). Since the multi-Regge limits for the 2 + n
process also respect this restriction, it is convenient to
choose §a and Eb along the z axis and parametrize the momenta

by their rapidity y and transverse momenta EL = (px, py)

Pi = (Wi coshys, Pri, Pyi, Winimhy:) (2.22)

P;- The tranéverse

where i = a,b, 1, ... , n for p_,, P, P,

energy w; is given by

. 2 : . '
2 2 " -

In rapidity variables, the the Lorentz invariant volume element is
4 1 , v
a 2 ‘
-—Ez = ’( F1 d? , (2.24)

and & ncrentz bocst along the z axis is a traaslaticn Yy v ¥

+ const. Sometimes it is convenient to pick the lab frame

for target a:

?“ = (wm,, 0,0 0)

ek o Ak, )

where the total rapidity ¥ » » as s + o,

Y
Se (P“*Fb)": mg + vy # 2marycoshY ~mar €. (2.20)

As s + » the longitudinal phase space for the outgoing . particles

(c;) extends from Y=Y, = 0, to ViR Yp = Y (DeTar, 1971).

Now we may define Regge limits for a + b + cl+ vee *+ Ch*
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For simplicity consider first the single Regge limit
a+b *,A + B where A is the group of particles (°1'°2' "‘ch
on the left (see Fig. 2.9) and B is the group on the right
(cm+1,.'..,cn ). According to the rule (i) in Sec. 2.2.2 above,
all channel invariants overlapping the line a must becéme asymptotic.

All others remain fixed. Since
(2.27)

- (P ¥ ?j)"-.- ot e m'."_z'r-:; EJ +w‘w, M(\:;-tﬁ))

we see that the cluster A must be separated from cluster B

by a large gap in rapidity which grdws like Y as shown in

Fig. 2.10. Moreover, the relative spacing of particles within

a cluster is fixed. It is readily verified that all overlapping

invariants must grow with fixed ratios. S
The generalization to multi-Regge limits of the chain

type shown in Fig. 2:11 is obvious. There is a large rapidity

gap separating each cluster. The rapidity plot is not so

useful for describing helicity asymptotic limits or branching

multi-Reggzs limits as ih Fig. 2.4. However, it is éxtremely

useful for inclusive processes (Sec. 6).



3. ‘The Five-Particle Anplitude

We proceed with a systematic analysis of the five-
particle amplitude. It is the simplest of the muitiparticlé
amplitudes, yet illustrates almost all of the essential complica-.

tions.

3;1}>“Sihg1e ReggévLi@itl

Consider the amplitude of Fig. 3.1. 1In the physical
region for aa' -+ b'cc' the partial-wave expansion in the tl
channel is

o % 5 (AW, -9 t.t
e a'J: A 2 [ e S (3.')
oo, t) =2 I dleme)ealhi%

‘7|go )‘.J.

As(tu el,

This resembles the partial-wave expansion of a four-particle

amplitude with one external particle(the quasi-particle &G') with a
spectrum of helicities A. So let us suppose for the moment ‘
that the discussion of Sec; 1.2 carries through, and a factorizable

pSle in :cmplax‘Jl at al(tl) leads to the asymptotic behavior
~

| () o iy |
Ag ~ P[-d.(‘e‘)]ﬁ.(t‘)(mec)d {“e | Ry tob), 5o |

or equivalently!

: &, ¢) ~ ’ B ‘
Ay ~ M- ] f(8) () )R“"” o,thh), G

where Rl is the Fourier transform of R(mlz).
We can then proceed to write the asymptotic behavior
(3.3) in terms of the invariants just as we did with the

four-point function. R T oL

-



From (2.6) we see that as cosel +
S, 2 Salt ~ - Sap’ oL Coa 6, — «

(3.
2P sa,'éld me‘ -5 2 4)

$2 B Sac ™ = Sple ~ = Sac
52, ti, ta, $1/s,, fited. - (3.5)

We then rewrite (3.3) as

| (8 : :
AS‘ -~ r'[‘ 64(*:7]’5, (tt) (5')0" R("'/S’z) 52, tu tz)) (3:0)

where we have chosen as independent variables

5’) 52, 5:/5::., 6:, and t?.' / . (2.7)

Had we chosen to replace cosel with some overlapping invariant
besides Sy» the result would have been merely a redefinition
of R, If we analytically continue in ty and t, until they

are sufficiently negative, "the limit (3.5) is physical for

- -
the procass ac -~ ain’et,

When we then proceced to study the phase of (3.6), é
complication arises. The real axis singularities of Sac = S12
are mapped into the Sy plane and the (51/512) plane throﬁgh
the constraint that Wy, and therefore SIAHZ' be fixed.
Furthermore, the asymptotic singularities due to S, can
move off the real axis in s, as sl/s12 is varied. If we
consider all the singularities in the various channel invariants,
we find that they produce two classes of singularities in
sl[sce (3.5)]. One class remains on the real axis in the
asymptotic region. The channels which produce these are

56&'3, P Sa.'b')

i.e. all invariants that grow like'sl, and so overlap only

(3.38)

the line ay in Fig. 3.1. The other class lies asymptotically



on a line intersecting'the origin in Sys inclined@ at an angle to
the real axis given by arg (sl/slz) (see Fig. 3.2). Channels.

producing these are

Sac) Sac’s Sa’c, Sa’e’ (5.9
i.e. all invariants that grow like Sy27 and so overlap both

lines ay and a, in Fig. 3.1. Thereforé, for an arbitrary

choice of arg (§l/slz) there is a discontinuity in the asymptotic
phase associated with each of the four rays in Fig. 3.2.

From the single Regge expression alone, it is not possible

to divide the phase discontinuity into contributions from

each of the two classes of singularities. Even for aré(sl/slz)=0
the phase of (3.6) is not given by the simple signature factor

=1Ta,y + T

61 = e 1 for S, just above its cut because generally

there is a phase arising from the Sy2 cut, i.e. singularities
in 31/312'

The troublesome singularities in s;/s;, in R(s;/s;,,5,/t;,t),
which do not permit a compicte specification of the phase of
(3.56), courrespond to singularities in coswlz‘in (3.3). These
clearly arise from a divergence of the helicity sum in‘(3.2).
In retrospect we see that our anélogy between (3.1) and the
partial wave expansion of a four-particle amplitude w;th a
particle of helicity A is really suspect. When Jl beconmes
complex, one must deal with an infinite helicity sum, which
we have seen is divergent. This was a serious impediment
to early attempts to generalize the Regge analysis to multi-
particle amplitudes (Omnes and Alessandrini, 1964; Asimov,
Anselm, Gribov, Danilov, and Dyatlov, 1965; Drummond, 1967).
It now seems that the way to overcome it is to perform a
Sommerfeld-Watson transform in the_helicity A before performing
Sommerfeld-Watson transforms in angular momentum (Goddard

and White, 1971). Using this technique, White (1971, 1973)



has recently made considerable progress iﬁ the rigorous treatment
of Regge behavior of multi-particle amplitudes. | ;

We expect from the above discussion that the singﬁlarities
in sl/s12 in R(sl/slz,sz,tl,tz) are determined by the singularities
in the complex helicity plane. In Sec. 3.5 this will be verified.
However, we first wish to discuss the simpler case of the double-
.Regge limit of As, since the analysis can be carried considerably

further without explicitly introducing complex helicity.



3.2, ‘Double Ragge Limit
The double-Regge limit is obtained by taking cosO1
and cose2 to infinity, fixing Wyor tl' and tz. Using the notation
of Sec. 3.1 and referring to (2.9), we find that this limit
corresponds to taking '
5, = Salt ~ = Sab’ X 98 —> e (2.1)
S, = Splc? ~ —Spc % cn by =2
¢~ Sptct X ceo 8,008, > 00

S *F Sac &~ —3a’ ™ " ac
t, ts, n ~ /53 fixed,

where

b 3
2/E VG cnwg -t —ti t M (342)
)({.‘.'tl' Mbﬁ-) .

As for the partial wave analysis, carrying the projection

(3.1) one step further, we get

| 2 (00,)
A (t,8,, 0,4) - Z Tty o) e et) |
g\ )Y Ty ¢ . (3 13)
&_{J‘n;d‘?z)i 74 3).
As usual we suppose the Sommerfeld-Watson transformation carries
through and factorizable poles at J1 =aqa (tl), J2 = az(tz)

give the "double-Regge" asymptotlc behavior

-.“

~ [ e (¢, )] /s (t.)(me,) HE R Lt.,t,)¢ . (3.,‘*)' -
X (e 8) ) ),

. Re-expressing (3.13) in terms of channel invariants with the

replacements cose1 S, cose + 5,, We have

LALN) .
As ~ P U:)r[ al.h'-’.)] 5"6 ')R(t" taj ) % | g (3.15),

5 [ [-4tt)] /3,&)



With tl and tz sufficiently negative, this double Regge expression
is valid in the physical region for the process ac + a'b'c'.

The asymptotic phase of the amplitude is again determined by
knowing where the singularities appear in the channel invariants.
Qualitatively speaking, the structure is the same as in the

single Regge limit. However, as we shall see in ﬁhe next éection,

we can now specify the phase discontinuities across all cuts

in Fig. 3.2l
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3.3. Singularities, Signature, and Phases

It is rather surprising tﬁat with the relatively few
.assumptions listed in Sec. 1.4, it is possible to put strong
restrictions on the form of the double-Regge vertex in the
five-line amplitude (DeTar and Weis, 1971; Halliday, 1971).
As noted in Sec. 3.1, there are two classes of asymptotic
singularities in Sys and by the same'token, there are two
classes in S, These are shown in Fig. 3.3. We invoke assumption
(D) and require that the discontinuity across the singularity
due to channel a'b’', disca,b,As, not have itself a discontinuity
across the singularities due to channels b'c or bec', since
these channels overlap the channel a'b'. It may have é discon-
tinuity due to channels ac or ac', however, since these do
not overlap the channel a'b'. Sc the part of the amplitude

with a right~hard cut in s, may not have cuts in s, but may

1
have cuts in S12° We can get this part of the amplitude from

- a
(3.15) by requiring R(“lz) to have a term with a factor (nlz) 2
which cancels the s, cuts.and replaces them by allowed S12 cuts.

SC we can wirite the part of AS that contributes to disca.H A5 as
&L, -y ,7
o o, ., . - ’ 2 ?
(-3 (=5a) TV () + 5 TS 2, (),

(3.0)

]
ne a . e ags . .
where V2 an V2~ have no discontinuities in “12 as "12 is

rotated about its origin.* The singularities of the expression-

*This form of the amplitude must be modified for the case that
there are an odd number of pseudo-scalar particles in the
five-particle process, since the amplitude is analytic in
the channel invariants only after removing a factor

pP_.P pb'ppc'o'

euvpo au~a'v
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(3.16) are clearly contained in the set shown in Fig. 3.3, if
: a, -« a
we draw the cuts of (-sl) 1 2 and (-slz) 2 to the right in-

1 and S)g° If we choose the phase to be real and positive

when s1 and s

12 are negative, real analyticity for these terms

then requires V, and v! to be real functions of LIPY for tl,t2~

2 2
below their thresholds. In the physical region for ac =+ a‘b'ec’
. a,  ~ima, a,
the phase of this term is given by the factors (-s,,) = e s
: o . 12 12
1 - o, —1ﬂ(al - °2) a; - a2
and (-sl) = @ sy « To get the part

of Ag that contributes to discab,A5 one merely replaces (-sl)
by s; in the above expression and writes different V's. Since
ab' and a'b' are overlapping channels, this additive separation
éf left;and right-hand cuts iﬁ s, is required. To get the‘
parts thqt contribute to discb,c,A5 or discb,cAs, one inter-
changes 1 and 2 in the above expressions. The whole amplitude
is £he,sum cf these parts. The sets of allowable singularities
in A5 can be neatly summarized by means of the tree diagrams
shown in Fig. 3.4. This exhausts all of the possibilities,
since for general values of al(tl) and az(tz) it is not possible
to construct an‘asymptotic.term consistent with (3.15) that

hdas #either the ab, a'b, b'c, nor b'c' discontinuity. {A term

‘ é $ é
of the form (-slz) = (-sl) (-sz) (-nlz)

might be considered,

but then ul(tl) = Gz(tz), which. is not true for moving trajectories.]
If we introduce the assumption that the Regge trajectories

héve definite signature, we reduce the number of indeﬁendent

vertex functions V, V', since signature implies a symmetry

under interchanging a and a' and ¢ and c¢'. How do we define

signature for multiparticle amplitudes? Let us consider the

trajectory 0. We want the asymptotic amplitudes for the two

processes shown in Fig. 3.5 to be equal (opposite in sign).

if the trajectory has positive (negative) signature. The two

physical amplitudes are related by crossing, which is accomplished

by continuing the amplitudes from the physical region of the

first process to the physical region of the second. All channel



invariants overlapping the Regge line change signs during the
continuation. It is simplest to follow this continuation by
examining the asymptotic form for AS as we have done above,
term by term, and performing the appropriate change of phase
in each term.

In the physical region for the process on the left in

Fig. 3.5, the invariants s__, Sate? Satpt? and Spigr are all

ac
above their positive real axis cuts. Therefore, Sypr Sy and

s, are above their right-hand cuts. 1In the physical region

2

for the process on the right, the invariants s vy S

a'c Sab'? and

ac'’
Spree are all above their positive real axis cuts. Therefore

s and s, are below their left-hand cuts and s, remains unchanged.

12 1

These considerations, applied to the decomposition
of Ag described above for both Regge trajectories with signatures
T, = *1, T, = +1 result in the following expression for the
double-Regge asymptotic amplitude:* .

~ {3“.)/3 (t )f"( al\)l’"( -oy) * ) |
$ 10 YThs SV () ¢ s e g YV (a) ]

St 5 % s,.j‘av ()
Ata ¢ G/ (qn)]

S

(AR AL (307

crl S s Ve + )
- .
T | 57 Csa) Y, () * 5 (-50) Vde]}.
+ i 2 1 |

Introducing signature has reducéd the number of independent
dlscontlnulty-free functions V from elght to two. This expressioﬁ
can be represented dlagrammatlcally as in Flg. 3. 6 The flrst
dlagram corresponds to the first two terms of (3.17) wlth only
right hand cuts. The correspondence between diagrams with

crosses and the other terms of (3.17) can be found by associating
. l W N .

*We have suppressed the tl and t2 arguments of Y Vl' and Vz.
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terms multiplied by Tyr Ty and T T, A cross on a line indicates
that all invariants overlapping that line have right-hand cuts
changed to left-hand cuts and vice-versa.

'Traditionally signature for multi-~Regge amplitudes
has been discussed by assuming that a generalization of (1.8 )
exists,which expresses the full amplitude as a sum over signatured
amplitudes, which like Ar(s,t) in (1.13) have only right-hand
cuts in the energy variables. In the case of the five-particle
amplitude, there are three energy invariants, Syr Syr and Sya7
which can have either right-hand or left-hand cuts, making
altogether 23 = 8 possible combinations. However, simu}taneous
discontinuities in all three invariants are excluded by our
assumptions, thereby reducing the possible combinations to the
four discussed above. Nevertheless, in addition to the signatures
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