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ABSTRACT

A brief review of applications of parafermionic oscillators and parafermionic al-
gebras in molecular, nuclear, and superintegrable systems is given first. Subse-
quently two new applications are described in more detailed: i) The mapping of
spinors with J = p/2 onto polynomial algebras, which are proved to be generalized
parafermionic algebras of order p. 11) An extension of the Jaynes-Cummings model
of quantum optics for the case of a (p-l— 1 )-level atom interacting with an one-mode
electromagnetic field.

1. Introduction

In addition to fermions {particles which have the characteristic property that only
one of them can occupy each quantum state) and bosons (particles of which infinitely
many 1dentical to each other can occupy the same gquantum state), parafermions
of order p (with p being a positive integer) have been introduced 2| having the
characteristic property that at most p identical particles of this kind can be found
in the same quantum state. Ordinary fermions clearly correspond to parafermions
with p = 1, since only one fermion can occupy each quantum state according to the
Pauli principle. While fermions obey the Fermi-Dirac statistics and bosons obey the
Bose-Einstein statistics ", parafermions are assumed to obey an intermediate kind of
statistics, called parascatistics **®°. For the description of systems of parafermions,
parafermionic algebras * and generalized deformed parafermionic oscillators © have
been introduced, the latter being related to the notion of the generalized deformed
oscillator 7®. The propertics of parafermions and parabosons, as well as the paras-
tatistics and the field theories associated with them. have been the subject of many
recent investigations #!911121314 The relations between parafermionic algebras and
other algebras {finite W algebras Wy 1 and W) 1647, sug(2) algebras 13192021} have
been studied in 2223,

Furthermore, parafermionic oscillators and parafermionic algebras find applica-
tions in the description of several physical systems. Known examples include:

t) The generalized deformed oscillators used for the description of the Morse po-
tential **?* which have the form of parafermionic oscillators with the order p of the
parafermions being related to the inverse of the anharmonicity constant. A similar




generalized deformed oscillator has also been introduced % for the modified Poschl-
Teller potential. These vscillators have been used for the description of the vibrational
spectra of diatomic 7 and polvatomic 2* molecules.

i) The generalized deformed oscillators used for the exact description of fermion
pairs of zero angular momentum in a single-7 nuclear shell . Again in this case the
oscillators are parafermionic ones, the order p of the parafermions being related to
the size (degeneracy) of the single-j shell.

iif) The generalized deformed parafermionic oscillators corresponding to 2? the
isotropic harmonic oscillator in a 2-dimensional curved space with constant curvaturz
4999 to the Kepler problem in a 2-dimensional curved space with constant curva-
ture 3% to the Fokas-Lagerstrom potential **!, to the Smorodinsky-Winternitz
potential *®32 to the Holt potential 3933,

In the present work we are going to deal with two new applications of parafermionic
techniques to physical systems:

1) The description of spinors with ; = p/2 by polynomial algebras which are
generalized parafermionic algebras of order p. This will be carried out in detail in
sections 2-5.

i1) The extension of the Jaynes-Cummings model 4% which describes the inter-
action between a two-level atom (described by « fermion) and a one-mode electromag-
netic field (described by a boson), to the case o an atom with p+ 1 levels (described
by a parafermion of order p) coupled with the electromagnetic field (described by a
boson). This will be briefly described in sec. 6.

2. Spinors and polynomial algebras

The study of systems of many spins is of interest in many branches of physics.
This study is in many cases facilitated through boson mapping procedures {see % for a
comprehensive review). Some well-known examples are the Holstein-Primakoff map-
ping of the spinor algebra onto the harmonic oscillator algebra 37 and the Schwinger
mapping of Lie algebras (or of ¢g-deformed algebras) onto the usual (or onto the g-
deformed) oscillator algebyas 383940,

Parafermions and parabosons have also been involved in mapping studies. A map-
ping of the spinor algebra onto a parafermionic algebra has been discussed in 2,
Mappings of so(2n), sp(2n,R), and other Lie algebras onto parafermionic and para-
bosonic algebras have been studied in **!, while parabosonic mappings of osp(m,n)
superalgebras have been given in 4443,

Recently ** the algebras of the operators of a single spinor with fixed spin value j
have been mapped onto polynomial algebras, which constitute a quite recent subject
of investigations in physics ®**%4¢ I polynomial algebras the commutator of two
generators does not result in a linear combination of generators, as in the case of the
usual Lie algebras, but rather into a combination of polynoinials of the generators.
The mappings of ref. ! connect the class of spinor algebras to the class of polynomial
algebras.

In the present study we show that the polynomial algebras of ref. **, which are




connected to the single spinor algebras, are indeed examples of either parafermionic
algebras 4% or generalized pavafermionic algebras “*2. As a resull, a mapping of
the single spinor algebras with j = p/2 onto parafermionic algebras of order p (or
generalized parafermionic algebras of order p) is established.

The consequences of these findings are twofold:

1) A connection between parafermionic algebras and polynomial algebras is estab-
lished, yielding new results of mathematical nature. For example, it is proved that
the number operator for a single parafermion can be written as a combination of
monomials of the ladder operators.

i1) The single parafermionic algebra is consistently imbeded into a many parafer-
mion algebra *. Then a system of spinors can be viewed as a system of parafermions.
obeving intermediate statistics. The practical consequences of this assumption on the
study of the statistics of systems of many spinors, with spin greater than 1/2, remain
to be seen. The situation is analogous to the case of a system of many ¢-deformed
oscillators (or quons) obeying fractional statistics 478,

3. Parafermionic algebras

Let us start by defining the algebra AE‘?}? corrcsponding to n parafermions of order

p. This algebra is generated by n parafermionic generators b;, b:r, wherez = 1,2,...,n,
satistying the friinear commutation relations:
My, b0 ] = bembly  [Mig, byn] = —8mbs, (1)
where Mg 15 an operator defined by:
Ve = 2 (180,60 4 po 2
4K,;—2[k,e+Pk£- (2)

From this definition it is clear that eq. (1) is a trilinear relation, i.e. a relation relating

three of the operators bj,bi. Finally the definition of the parafermionic algebra is
completed by the relation:

[, [b5, b)) = |8, [8E, 01| = 0. (3)

Fach parafermion separately is characterized by the ladder operators bf and b, and
the number operator M;;. The basic assumption is that the parafermionic creation
and annihilation operators are nilpotent ones:

(B = (61" =0, (4)

In ref. ® it is proved that the single parafermionic algebra is a generalized oscillator
algebra 7. satisfying the following relations (for simplicity we omit the parafermion
indices):

(M7 = b, (M, b] = b, (5)




Bh={M=M(p+1-M), b =[M+1]=(M+1)(p-M), (6)

MM -1)(M-2)..(M-p)=0. (7)
The definition (2) - or equivalently eq. {6) - imply the commutation relation:
(b, 6] = 2(M — p/2). (8)

The above relation combined with (5) suggests the use of the parafermions as spinors
of spin p/2
Sy = bl S b, S o (M-p/2). (9)

In most publications no special commutation relations are considered for a collec-
tion of spinors. Usually the operators corresponding to different half-integer (integer)
spinors are assumed to anticommute (commute). In contrast, in the present paper
the use of the trilinear commutation relations is suggested for the many spinor prob-

lem. Another interesting point is that the following relation is usually not taken into

consideration:
p/2

I G-k =0

k=-p/2

It is worth noticing that in the case of parafermions the commutation relation (8)
1s some how trivial because it is inherent in the definition of the number operator (2).
This relation switches the trilinear commutation relations to ordinary commutation
relations, where two operators are involved. In contrast, in the case of parabosons
this construction is not trivial. because anticommutation relations are involved in the

definition of the number operator®,

4. Spinors and parafermionic =lgebras

We start now examining in detail the connection between spinors with j = p/2
and paraferrnions of order p.

The p = 1 parafermions coincide with the ordinary fermtons, i.e. the usual spin
1/2 spinors 9.

For spinors with j = 1 Chaichian and Demichev ** use the following mapping

Sy o V2a!, S_ & \2a, (10)

where
a® = at’ =0, (11)
aal + at’a® = 1. (12)

Using the above two relations we can define the number operator N

N=1- [a,aT] = ata +aa?. (13)



This number operator satisfies the linear commutation relations:

[;\'_uw = qa'. (N.a] = —a.

J

The sell-contained commutation relations for the p = 2 parafermions are given in
ref. * {eqs (5.13) to (5.20) }

» = =0, (14)
bb'h = 28, (15)
BO? 4+ B = 20 (16)

The set of relations {14)-(16) imply the following defiuition of the number operator
M:

M:%([b*,b]m). (17)

The set of relations (11)-(12) imply relations {14)-(16) after taking into consid-
cration the correspondence:

1 L1
a ﬁb, a 7 b, (18)
For example one can easily see the following:

i) Eq. {14) occurs trivially from eq. (11).

ii) Eq. {13) is obtained by multiplying eq. (12) by @ on the right and using eq.
(11).

1i1) Eq. (16) 1s obtained by multiplying eq. (12) by @ on the left and using eq.
(11) and (12).

In ref. ® the parafermionic algebira (14)-(17). was shown to be equivalent to the
deformed oscillator algebra 7, which is defined by relations (4)-(7), for p = 2. This
deformed oscillator algebra satisfies in addition the relations {11) to (13). Therefore
the Chaichian - Demichev polynomial algebra (11)-(13), the p = 2 parafermionic
algebra (14)-{17) and the deformed oscillator algebra (4)-(7) are equivalent.

Relations {12) and (13) indicate that aa® and N can be expressed as a linear

combination of monomials (aT)‘c a*. This is the reason the algebra described by eqs
(12)-(13) is called in ** a “polynomial” algebra.

What we have just seen is that the polynomial algebra (11)-(13) is in fact the p = 2
parafermionic algebra (14)-(17). The new result which arises from this discussion is
that the parafermionic algebra can be written as a polynomial algebra through the
r.h.s of eq. (13). It seems that this fact has been ignored, while the *dual” relation,
giving b'h or bb' as polynomial functions of the number operator,

f

-

3

o= M3-M), b'=(M+1)2-M),

s known 683



For spinors with j = 3/2 Chaichian and Demichev ' use the following mapping

Sy e V3at, 5. = 3a (193
where
o =a" =0, (20)
aat =1 + %afa - %atzaz - §a73a3, (21)
[a,aT] =1- %N, (22)
N=gaa+ é—a*za2 +at’a?, (23)

These relations are the analogues of egs. (11)-(13) for the j = 3/2 case.
The complicated self-consistent commutation relations for the p = 3 parafermionic
algebra are given in Appendix B of ref. *. After long but straightforward calculations

the p = 3 parafermionic relations are deduced from the above eqs (21)-(23) by taking
into account the correspondence:

1
a=-—=b a'=—=b" 24
7 (24)
Therefore the polynomial algebra {21)-(23) is in fact the p = 3 parafermionic algebra.
The new result which again arises from this discussion is that the parafermionic

algebra can be written as a polynomial algebra through eq. (23), while the “dual”
relation

bb=M(1— M), b =(M+1)3-M),
1s again already known &,
Stimulated by the above results we can show the following proposition:

Proposition 1 The j = p/2 spincr algebra {S1,S,) is mapped onto the p-parafer-
mionic algebra {b%,b, M} which is a polynomial algebra given by the relations:

[M, 1] = bf,

(M. B = b,
P+l — (bT)P“ =0, o
bb=M(pr1-M), (23)

bbt = (M +1)(p — M),
M =5 ([oh8] +p).

where the number operator M is given by the following polynomial relation

b2
_ C Tk k
M=% L (26)
k=1




and the coefficients oy, ¢y, .

of cqualions:

where

p(ly =1
pl2) =2
o(p) = p

plz) = o _Tl2)

This 1s true because we can see that

b6 = (M - 0)

. I'(M)

£=0

TT(M—k)

..y can be determined from the solution of the systomn

To the best of our knowledge the fact that the number operator of a parafermionic
algebra can be written as a combination of monomials, i.e. eq. (26), was not previ-
ously known in the context of parafermionic algebras. It has been derived in another

context by Chaichian and Demichev

44

, without reference to parafermions. The ana-

Iytic calculation of the coefficients ¢x seems to be a complicated task. In Table 1 the
coethients up to p = 5 are explicitly given.

Table 1: Coefficients appearing in eq. (26).

pla o C3 C4 s
[
201 1 —— e
31 12 1 - -
401 1/3 1/3 1/9  —-
501 1/4 1/6 19/96 23/48

In ref. ** an alternative to the parafermionic algebra was also used for constructing
a mapping of the spinor algebra. This alternative is characterized by the relations:

(a!)"" = (o)™ =0,
aal + afa? = 1,

(28)

This algebra is a generalized parafermionic algebra ®* corresponding to the structure

function:

@ta= BN) = Np+1 - N) (fi + AN+ [N,

aet = ®(N +1). (29)




In this case eq. (28) imposes the constraint:

p-1
(N =N+ 1)+ JToN -k =1. (30)
k=0
After soiving the system:
o{0)=1 ¢(1)=1
g(l)y=1 ®(2) =1
o(2)=1 =><{ $(3) =1 (31)
olp—1) =1 d(p) =1
we can find the values of the parameters fi, fa,..., f,. Their values up to p = 6 are

reported in Table 2.

Table 2: Coefficients appearing in eq. (29).

P| i f2 f3 f4 fs

1 1 - —— —— -~
2 1/2 -— — —— ——
31 7/12 -1/3 1/12 —-— -
41 5/12 —5/24 1/24 - ——
51 157/360 —11/30 29/180 —1/30 1/360
61 7/20 —49/180 T7/720 —7/360 1/720

Thus we have shown the following progosit:on:
Proposition 2 The polynomial algebra (28) is a generalized deformed parafermionic
algebra, characterized by the structure function (29), where the coefficients are chosen
so that eq. (30) is satisfied.

5. Discussion

In summary, it has been shown that the single spinor algebra with j = p/2. which
is a polynomial algebra as shown in ref. **, is the single parafermionic algebra of order
p. Iurthermore, the parafermionic algebras can be considered as polynomial algebras,
their diagonal number operator M being able to be written as a combination of
monomials of the ladder operators. The general problem of finding an expression of
the number operator M;; as a combination of monomials of the ladder operators is
still open. A similar problem exists in quonic algebras 50515253,

The realization that the single spinor algebra is a single parafermionic algebra can
have nontrivial consequences in the study of the many indistinguishable spinor prob-
lern. Usually a many spinor system is considered as a many fermion or many boson




model, depending on the individual spin being half integer or integer. In this case
the system obeys the Fermi- Dirac statistics or the Bose -Einstein statistics, respec-
tivelv. In contrast. a many parafermion system obevs more complicated fractional-like
statistics . Consequently the acceptanee that the one spinor algebra is described by
a polynomial algebra. which as we have proved is in fact the parafermionic algebra.
opens the question whether the many spinor system can be considered as a many
parafermion model rather than a many fermion (or boson) model and to what extend

its associated statistics is the Fermi-Dirac (or Bose-Einstein) or the more complicated
fractional statistics 2.

6. Parafermionic extension of the Jaynes—Cummings model

The Jaynes-Cummings model (JCM) 3*3% is a simple model describing the inter-
action of a two-level atom with a single-mode bosonic field. The success of this model
is due to its simplicity and solubility. The two-level atom is simulated by an ordinary
fermion. It has two possible states, with only one fermion being able to occupy each
state. Multiphoton generalizations of the JCM have also been developed, in which
the fermionic operators describing the two-level atom are coupled to combinations of
bosonic operators representing the multiphoton system. It has been shown recently 34
that all these variants of the two-level JCM possess an underlying symmetry structure
resembling a generalized Schwinger realization of su{2). Furthermore, a generalization
dealing with a fermion interacting with a paraboson has been introduced 3.

In the above mentioned generalizations of the JCM the part of the Hamiltonian
describing the photon field is generalized, while the part of the Hamiltonian describ-
ing the two-level atom remains intact. In this section we study a generalization of
the JCM in a different direction: we conserve the single-mode bosonic field in the
Hamiltonian, but we generalize the part of the Hamiltonian describing the atom. In-
stead of a fermion coupled to the photon field, we use a parafermion. In this way we
obtain a parafermionic generalization of the JCM, dealing with a parafermion of order
p interacting with a one-mode field. This model can be thought of as simulating a
(p+ L)-level atom interacting with a one-mode electromagnetic field. The underlying
syminetry algebra turns out to be a generalized deformed su(2) algebra corresponding
to a Schwinger realization in terms of a parafermion and a boson.

The original Jaynes-Cummings model (JCM) ** refers to the Hamiltonian of a
system having a bosonic sector (electromagnetic field) and a fermionic sector (two-
level atomn), as well as a term corresponding to the coupling of the bosonic and
fermionic sectors:

1
H = Hbos + err -+ H[er—bos = W (N + 5) + QM + q (bTa + (ITb) y (32)

where a,a!, N and b, b, M are the bosonic and fermionic anmhilation, creation, and




number operators, satisfving the algebraic relations:

Bosonic sector Fermionic sector
[(V.a'] =d [M, 6] = b
[V.a] = ~a M b= —b
afa=N bb=M (33)
aat = N +1 t=1-M
(b = ("’ =0
MM-1)=0

The bosonic sector of the algebra corresponds to the electromagnetic field, while the
fermionic one simuiates the two-level atomic system. Since the fermion corresponds
to the nilpotent operator &, which satisfies the relation * = 0, there can be no more
than two fermions in each site.

There are several variations of the two-level JC model (see ** and references
therein). All two-level models conserve the fermionic sector of the model, but the
bosonic sector is replaced either by complicated combinations of the bosonic oper-
ators or by parabosonic or g-deformed operators. The common feature of all these
models is their solubility, due to the nilpotency of the fermion’s operators b, bt, which
has as a consequence that all these models can be treated by manipulations of 2 by
2 matrices. This property allows the construction of “generalized” JC models, i.e.

abstract models which can be solved for any form of the “deformed” bosonic sector
56

35

The fermionic operators are the most elementary examples of deformed oscilla-
tor algebras " satislving the nilpotency condition (4). From this point of view the
JC Hamiltonian (34) is in fact the interaction Hamiltonian of the most elementary
nilpotent field with one usual boson.

An extension of the JC model can be cunstricted through the replacement of
the fermionic sector of the Hamiltonian (32) by a parafermionic one. The relevant
Hamiltonian reads

1
I = Hyos + Hpt + Huosopt = w (N + 5) + E{(M)+g (bTa + a*b) . (34)

The above Hamiltonian has a parafermionic sector linearly coupled to a bosonic sec-
tor. The parafermionic sector is described by the “parafermionic” algebra of eqs (5) -
(7). This algebra corresponds © to the ordinary parafermionic algebra used in paras-
tatistics. From the physical point of view it describes a particle {parafermion) having
p +1 possible states. The energy of each state is given by the function £ (M), which
is a polynomial of degree p

E(M)=a,+aM +a,M*+ .+ apM?. (33)

The Fock space has p+ 1 elements [0),]1),...,|p), on which the operators of the




algebra act in the following way

M = /Mo ¥ 1] My + 1)
b ‘;1][,1’) = 3/ {.‘"Ipf] JMpr - 1} . {36)

M |“'1']pf) = J‘prf IA""Ipf> s

where by definition
el =2(p+1-2). (37)
Each state [k) (with k = 0,1,...,p) is an eigenstate of the energy operator (35),
corresponding to the eigenvalue F{k). The operator b' causes the transition from a
state [k) to the following excited one {k + 1), while the operator b forces the system to

go to the previous energy state |k — 1). We assume a descending ordering of energy
ergenstates:

E(0) > E(1) > ... > E(p). (38)

Starting from here one can prove the following:
1) One can construct a deformed u(2) algebra, generated by the operators

gy = ath, J_ = ab!

Jo=L(N M), L=1(N+M). (39)

It 15 clear that this algebra possesses a Schwinger realization in terms of one parafer-
mion and one boson. One can see that this is the symmetry algebra of the extended
JCM 57,

i1} The representation theory of the above-mentioned deformed su(2) algebra can
be constructed 5.

111) Mean values as well as time averaged mean values of physically interesting
quantities (number of emnitted photons, “angular momentum” projection Jy) can then
be calculated in a straightforward way °7.

The proposed formalism permits the numerical study of the revivals and collapses
in a multi-level laser system. This is the subject of an ongoing project.

A straightforward extension of this study will be the use of multimode electro-
magnetic fields as in the two-level case studied by Yu et al. 5%,
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