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Abstract

The aim of this paper is to improve a theorem of J�anos Koll�ar using a di�erent method.

For a given smooth Complex projective threefold X of general type, suppose the plurigenus

Pk(X) � 2, Koll�ar proved that the (11k + 5)-canonical map is birational. Here we show

that either the (7k + 3)-canonical map or the (7k + 5)-canonical map is birational and the

(13k + 6)-canonical map is stably birational onto its image. If Pk(X) � 3, then the m-

canonical map is birational for m � 10k+8. In particular, �12 is birational when pg(X) � 2

and �11 is birational when pg(X) � 3.
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Introduction

Let X be a smooth projective 3-fold of general type de�ned over C and denote by �m the

m-canonical map of X, which is the rational map associated with the linear system jmKX j.

Let Pk(X) := h0(X;OX(kKX)) for any positive integer k, we usually call Pk(X) the k-th

plurigenus of X which is a birational invariant. For a given positive integer m0, we say that

�m0
is stably birational if �m is birational onto its image for all m � m0. Since the Kodaira

dimension kod(X) = 3, �m is birational for m� 0. In this paper, we consider the following

Problem. Suppose Pk(X) � 2, for which value m0(k), does jm0(k)KX j de�ne a stably

birational map onto its image?

In 1986, Koll�ar ([5, Corollary 4.8]) �rst gave an e�ective result and proved that the

(11k+5)-canonical map is birational if Pk(X) � 2. However, his method cannot tell whether

�m is still birational for all m > 11k+5. On the other hand, it seems to us that the number

11k + 5 is not the optimal one. This paper aims to present a better result as the following

Main Theorem. Let X be a nonsingular projective threefold of general type and suppose

Pk(X) � 2, then

(i) either �7k+3 or �7k+5 is birational onto its image;

(ii) �13k+6 is stably birational onto its image;

(iii) �10k+8 is stably birational providing that Pk(X) � 3.

In particular, if pg(X) � 2, then �m is birational for all m � 12; if pg(X) � 3, then �m is

birational for all m � 11.

Noting that the main obstacle which prevents Koll�ar's method from getting a better

bound is the case when X admits a rational pencil of certain surfaces of general type, we

mainly study this situation in an alternative way. First we build some birationality criteria

for adjoint systems on a surface of general type, then we reduce the problem to the surface

case while �nding suitable divisors on the threefold whose restrictions to the surface satisfy

those criteria. The Kawamata-Viehweg vanishing theorem plays a key role throughout our

argument.

De�nition. Let X be a normal projective variety and D be a Weil divisor on X. Denote

by �jDj the natural rational map de�ned by the linear system jDj. jDj is called base point

free if it has neither �xed components nor base points.

If jLj is a linear system on X without �xed components and h0(X;L) � 2, we mean a

general irreducible element S of jLj as follows:

(1) if dim�jLj(X) � 2, then S is a general member of jLj.

(2) if dim�jLj(X) = 1, then L is linearly equivalent to a union of distinct reduced irre-

ducible divisors of the same type. Explicitly, L �lin

P
Si. We mean S a general Si.

X is called minimal if the canonical divisor KX is nef, i.e. KX �C � 0 for all proper curve

C � X.

X is said to be of general type if the Kodaira dimension kod(X) = dim(X).

X is said to have only terminal singularities according to Reid ([7]) if the following two

conditions hold:

(i) for some integer r � 1, rKX is Cartier;

(ii) for some resolution f : Y �! X, KY = f�(KX) +
P
aiEi for 0 < ai 2 Q for all i,

where the Ei vary all the exceptional divisors on Y .
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1. Preparation

Throughout our argument, the Kawamata-Viehweg vanishing theorem is always employed

as a much more e�ective tool. We use it in the following form.

Vanishing Theorem. ( [3] or [10]) Let X be a nonsingular complete variety, D 2 Div(X)


Q . Assume the following two conditions:

(1) D is nef and big;

(2) the fractional part of D has supports with only normal crossings.

Then Hi(X;OX(pDq + KX)) = 0 for i > 0, where pDq is the round-up of D, i.e. the

minimum integral divisor with pDq�D � 0.

Another important principle that is tacitly used throughout the text is due to Tankeev

([9]). Explicitly, on a smooth projective variety X, if we have a base point free system

jM j and an e�ective divisor D, we want to study the birationality of the map �jD+M j.

Now let S be a general irreducible element of jM j, then S is a smooth divisor on X by

Bertini's theorem. Suppose we have known that �jD+M j can distinguish general irreducible

elements and that �jD+M j

��
S
is birational, then Tankeev's principle implies the birationality

of �jD+M j.

Lemma 1.1. ( [8, Corollary 2]) Let S be a nonsingular algebraic surface, L be a nef divisor

on S, L2
� 10 and let � be a map de�ned by jL+KS j. If � is not birational, then S contains

a base point free pencil E0 with L � E0 = 1 or L �E0 = 2.

Lemma 1.2. Let S be a nonsingular projective surface of general type, suppose L is a

divisor with h0(S;L) � 2, then h0(S;KS + L) � 2: In particular, if �(OS) � 3, then

h0(S;KS + L) � 4.

Proof. Taking a general irreducible element C in the moving part of jLj, then C is a nef

divisor, C � L and C is a curve of genus � 2. By R-R on the surface S, we have

h0(S;KS + L) � h0(S;KS + C) �
1

2
(KS � C + C2) + �(OS):

It is easy to get the result. �

Lemma 1.3. Let S be a nonsingular projective surface of general type, L be a nef divisor,

L2
� 3 and dim�jLj(S) = 2, then jKS + 2Lj gives a birational map.

Proof. We have (2L)2 � 12. If �jKS+2Lj is not birational, then according to Lemma 1.1,

there is a base point free pencilE0 such that 2L�E0
� 2, i.e. L�E0 = 1. Since dim�jLj(S) = 2

and E0 is a curve of genus � 2, we see that L � E0
� 2, a contradiction. �

Lemma 1.4. Let S be a nonsingular projective surface of general type, Li is a divisor on

S such that dim�jLij(S) � i for i = 1; 2, then jKS + 2L2 + L1j gives a birational map.

Proof. Modulo blowing-ups, we can suppose that the jLij be base point free for i = 1; 2.

This means that L2 is nef and big and that L1 is nef.

If the system jL2j gives a birational map, then so does jKS +2L2+L1j, because KS +L1

is e�ective by Lemma 1.2.

Otherwise, we have L2
2 � 2. Now we have (2L2+L1)

2
� 12. If jKS +2L2 +L1j does not

give a birational map, then, by Lemma 1.1, there is a free pencil E0 on S such that

(2L2 + L1) � E
0
� 2:
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This means L2 � E
0 = 1. Note that E0 is a curve of genus � 2 and jL2j gives a generically

�nite map. The Riemann-Roch theorem on the curve E0 derives that deg(L2jE0) � 2. We

have derived a contradiction. �

Lemma 1.5. Let X be a nonsingular projective 3-fold of general type. Suppose Li is a

divisor on X such that dim�jLij(X) � i for i = 1; 2; 3, then jKX + 2L3 +L2 +L1j gives a

birational map.

Proof. Take a birational modi�cation � : X 0
�! X, according to Hironaka, such that the

j��(Li)j are all base point free for i > 0. On X 0, we can study the system jKX0 +2��(L3)+

��(L2) + ��(L1)j. Let Mi be the moving part of j�
�(Li)j, we have

jKX0 + 2M3 +M2 +M1j � jKX0 + 2��(L3) + ��(L2) + ��(L1)j:

Therefore, for simplicity, we can suppose from the beginning that the jLij are base point

free on X. So L3 is nef and big under this assumption.

Step 1. Verifying that KX + 2L3 + L2 is e�ective.

We have dim�jL2j
(X) � 2. So a general member S 2 jL2j is a nonsingular projective

surface of general type. Using the vanishing theorem to the exact sequence

0 �! OX(KX + 2L3) �! OX(KX + 2L3 + S) �! OS(KS + 2L3jS) �! 0;

we get the surjective map

H0(X;KX + 2L3 + S) �! H0(S;KS + 2L3jS) �! 0:

From Lemma 1.2, we know KS + 2L3jS is e�ective, so is KX + 2L3 + L2.

Step 2. Reduction to surface case.

Taking a 1-dimensional sub-system of jL1j, then this system de�nes a rational map onto

P1. Taking further blowing-up if necessary, we can also suppose that this system de�nes a

morphism f : X �! P1. Taking the Stein factorization of f , one obtains a derived �bration

g : X �! C. A general �bre of f can be written as a disjoint union
P
Fi. Let F be a

general �bre of g, then it is a nonsingular projective surface of general type and we have

F � L1. Now considering the system jKX + 2L3 + L2 +
P
Fij, it can distinguish general

�bres of g because of KX + 2L3 + L2 is e�ective and 2L3 + L2 is nef and big. Using the

vanishing theorem again, we have

jKX + 2L3 + L2 +
X

Fij
��
F
= jKF + 2L0

3 + L0

2j;

where L0
3 := L3jF and L0

2 := L2jF . Lemma 1.4 shows that the right system gives a birational

map, so does jKX + 2L3 + L2 + L1j. The proof is completed. �

Lemma 1.6. Let X be a nonsingular variety of dimension n, D 2 Div(X)
Q be a Q-divisor

on X. Then we have the following:

(i) if S is a smooth irreducible divisor on X, then pDqjS � pDjSq;

(ii) if � : X 0
�! X is a birational morphism, then ��(pDq) � p��(D)q.

Proof. We can write D as G+
Pt

i=1 aiEi, where G is a divisor, the Ei are e�ective divisors

for each i and 0 < ai < 1, 8 i. So we only have to prove the lemma for e�ective Q-divisors.

That is easy to check. �
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Lemma 1.7. Let X be a nonsingular projective threefold of general type. Let D be a divisor

on X with h0(X;D) � 2 and suppose jDj has no �xed components. Denote by F a general

irreducible element of jDj. If L is another divisor such that dim�jLj(F ) � 1, then mKX +

L+D is e�ective and dim�jmKX+L+Dj(F ) � 1 for all m � 2:

Proof. According to the 3-dimensional MMP ([4] and [6]), X has a minimal model X0 which

is normal projective with only Q-factorial terminal singularities. Let � : X 9 9 KX0 be the

contraction which is a rational map. Take a common resolution X 0 with �0 : X 0
�! X and

� : X 0
�! X0 such that � = � � �0 and that

(1) both j�0
�
(L)j and j�0

�
(D)j have no base points (they may have �xed components);

(2) ��(KX0
) has supports with only normal crossings.

This is possible because of Hironaka's big theorem. Since �0
�
(mKX +L+D) � mKX0 +

�0
�
(L) + �0

�
(D) and

�0�OX0(mKX0 + �0
�
(L) + �0

�
(D)) = OX(mKX + L+D) = �0��

0�
OX(mKX + L+D);

then h0
�
X 0; �0

�
(mKX + L+D)

�
= h0

�
X 0;mKX0 + �0

�
(L) + �0

�
(D)

�
; so

�j�0�(mKX+L+D)j and �jmK
X0+�0�(L)+�0�(D)j

have the same behavior. Let S be a general irreducible element of the moving part of

j�0
�
(D)j, then dim�j�0�(L)j(S) � 1 by assumption. Therefore it is su�cient to show

dim�jmKX0+�0�(L)+�0�(D)j(S) � 1

for m � 2. Let H be the moving part of j�0
�
(L)j, then H is nef since jHj is base point free.

We have

jKX0 + p(m� 1)��KX0
q+H + Sj � jmKX0 + �0

�
(L) + �0

�
(D)j:

The Kawamata-Viehweg vanishing theorem gives

jKX0 + p(m� 1)��KX0
q+H + Sj

��
S

=
�� KS + p(m� 1)��KX0

qjS +M
��� jKS + pBq +M j;

where B := (m� 1)��KX0
jS is nef and big on S and M := HjS . From the assumption, we

have h0(S;M) � 2. Choosing a 1-dimensional sub-system jCj in jM j, modulo blowing-ups,

we can suppose jCj be base point free. Also from the vanishing theorem, we have

jKS + pBq + Cj
��
C
= jKC +Dj;

where D := pBqjC is a divisor on the curve C with positive degree since D � pBjCq by

Lemma 1.6(i). Because g(C) � 2, we have h0(KC +D) � 2. This means jKC +Dj gives a

generically �nite map and

dim�jKS+pBq+Cj(C) = 1

thus KX0 + p(m� 1)��KX0
q+ �0

�
(L) + �0

�
(D) is e�ective and the image of S through the

map de�ned by this divisor is at least 1. The proof is completed. �



6

2. Proof of the main theorem

2.1 Basic formula. LetX be a nonsingular projective threefold, f : X �! C be a �bration

onto a nonsingular curve C. From the spectral sequence:

E
p;q
2 := Hp(C;Rqf�!X)) En := Hn(X;!X);

we get by direct calculation that

h2(X;OX) = h1(C; f�!X) + h0(C;R1f�!X);

q(X) := h1(X;OX) = b+ h1(C;R1f�!X);

where b denotes the genus of C.

2.2 Review of Koll�ar's technique. Let X be a smooth projective 3-fold of general type

and suppose Pk(X) � 2. Choose a 1-dimensional sub-system of jkKX j and replace X by a

birational model X 0 where this pencil de�nes a morphism g : X 0
�! P1. (For simplicity, we

can suppose X 0 = X.) Let S be a general irreducible element of this pencil, then a general

�bre of g is a disjoint union of some surfaces with the same type as S and S is a smooth

projective surface of general type. Let t = k(2p + 1) + p. Then H0(!tX) = H0(P1; g�!
t
X)

and we have an injection O(1) ,! g�!
k
X , and hence an injection O(2p + 1) ,! g�!

k(2p+1)
X .

This gives an injection

O(2p+ 1)
 g�!
p
X ,! g�!

t
X ;

where O(2p + 1) 
 g�!
p
X = O(1)
 g�!

p
X=P1

. Now it is well-known that g�!
p
X=P1

is a sum

of line bundles of non-negative degree on P1. If p � 5, the local sections of g�!
p
X give a

birational map for S, and all these extend to global sections of O(2p+1)
 g�!
p
X . Moreover

its sections separate the �bres from each other, hence �t is a birational map for X.

From the above method, according to [1] and [11], we have

(1) �5k+2 is generically �nite for X if S is not a surface with pg(S) = q(S) = 0 and

K2
S0

= 1, where S0 is the minimal model of S. Otherwise, we have at least dim�5k+2(X) � 2;

(2) �7k+3 is birational for X if S is not a surface with

(K2
S0
; pg(S)) = (1; 2) or (2; 3):

2.3 Proof of the main theorem. According to the 3-dimensional MMP, we can suppose

X is a minimal model with at worst Q-factorial terminal singularities. This means that KX

is a nef and big Q-divisor. We begin from a minimal model in order to make use of the

Kawamata-Viehweg vanishing theorem.

Theorem 2.3.1. Let X be a nonsingular projective 3-fold of general type and suppose

Pk(X) � 2, then either �7k+3 or �7k+5 is birational.

Proof. Suppose X is a minimal model with at worst Q-factorial terminal singularities.

Choose a 1-dimensional sub-system � of jkKX j and take a birational modi�cation � : X 0
�!

X such that

(i) X 0 is nonsingular;

(ii) ��� gives a morphism;

(iii) the fractional part of ��(KX) has supports with only normal crossings.
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This is possible because of Hironaka's big theorem. Set g1 := �� � � and let X 0
f1
�!

W1
s1
�! P1 be the Stein factorization of g1. Denote b := g(W1), the geometric genus of the

curve W1.

If b > 0, then the moving part of � is base point free. Let
P
Si be the moving part of

�, then
P
Si � kKX and a general Si is a smooth projective surface of general type, since

the singularities on X are isolated. Using Kawamata's vanishing theorem ([4]) to Q-Cartier

Weil divisors on minimal threefoldX, we see that j(a+1)KX+
P
Sij can distinguish general

Si for a > 0 and

H0(X; (a+ 1)KX +
X

Si) �! �H0(Si; (a+ 1)KSi)

is surjective. Therefore it is obvious that �m is e�ective whenever m � k + 2, generically

�nite whenever m � 2k + 2, birational whenever m � 2k + 4.

So, from now on, we can suppose that b = 0. We have a �bration f1 : X 0
�! P1. Let

F be a general �bre of f1. By virtue of 2.2(2), we can suppose that F is a surface with

invariants (K2
F0
; pg(F )) = (1; 2) or (2; 3), where F0 is the minimal model of F . F is the

moving part of ��� and F �Q ��(kKX). We automatically have q(F ) = 0. First we study

the system jKX0 + pk��(KX)q+F j: For a general �bre F , the vanishing theorem gives that

jKX0 + pk��(KX)q+ F j
��
F
=
�� KF + pk��(KX)qjF

��;

where pk��(KX)qjF is e�ective. This means that (2k+1)KX0 is e�ective and dim�2k+1(F ) �

1. By Lemma 1.7, we see that mKX0 is e�ective and dim�m(F ) � 1 for m � 3k + 3.

Actually, we have dim�3k+2(F ) = 2. In fact, we have

jKX0 + p(2k + 1)��(KX)q+ F j
��
F
�
�� KF +M2k+1jF

��;

where M2k+1 is the moving part of jp(2k + 1)��KXqj. It is easy to check that
�� KF +

M2k+1jF

�� gives a generically �nite map because q(F ) = 0 and pg(F ) > 0. Thus

dim�jK
X0+p(2k+1)��(KX)q+F j(F ) � 2:

We have jKX0 + p2(3k + 2)��(KX)q + F j � j(7k + 5)KX0j: KX0 + p2(3k + 2)��(KX)q is

e�ective by the above argument. So jKX0 +p2(3k + 2)��(KX)q+F j can distinguish general

�bre F . On the other hand, the Kawamata-Viehweg vanishing theorem gives

jKX0 + p2(3k + 2)��(KX)q+ F j
��
F
=
�� KF + p2(3k + 2)��(KX)qjF

��
� jKF + 2L3k+2j;

where L3k+2 :=M3k+2jF . It is su�cient to show that jKF +2L3k+2j gives a birational map

for F . We have already known that jL3k+2j gives a generically �nite map for F . Excluding

the �xed components of jL3k+2j, we can suppose that jL3k+2j are moving on the surface F .

So L3k+2 is nef. If jL3k+2j gives a birational map, then so does jKF + 2L3k+2j. Otherwise,

L2
3k+2 � 2(h0(F;L3k+2)� 2):
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Considering the following three natural maps

H0(X 0;M3k+2)
�
�! H0(F;L3k+2)

H0(X 0;KX0 + p(2k + 1)��(KX)q+ F )
�
�! H0(F;KF + p(2k + 1)��(KX)qjF ) �! 0

H0
�
X 0; (3k + 2)KX0

� 

�! H0

�
F; (3k + 2)KF

�

where � is surjective by the Kawamata-Viehweg vanishing theorem. We see that

dimC

�
im(�)

�
= dimC

�
im(
)

�
� dimC

�
im(�)

�
= h0(F;KF +D2k+1)

where D2k+1 := p(2k + 1)��(KX)qjF and h0(F;D2k+1) � 2. So h0(F;KF + D2k+1) � 4,

according to Lemma 1.2, because we have �(OF ) � 3 in this case. Thus

L2
3k+2 � 2

�
h0(F;L3k+2)� 2

�
� 2

�
dimC

�
im(�)

�
� 2

�
� 4

and then jKF + 2L3k+2j gives a birational map by Lemma 1.3. So �7k+5 is birational.

Finally, for all m � 10k + 7, set t := m � 7k � 5 � 3k + 2, then dim�t(F ) � 1. In

particular, tKX0 is e�ective. So �m is birational for all m � 10k + 7 in this case. �

Corollary 2.3.1. Let X be an irregular nonsingular 3-fold of general type, suppose Pk(X) �

2, then �7k+3 is birational. Therefore at least �143 is birational according to Koll�ar and

Fletcher.

Proof. In the proof of the last theorem, if b > 0, then �m is birational for m � 2k + 4. If

b = 0, we can use the formula of q(X) to the �bration f1 : X 0
�! P1. When q(X) > 0,

then we must have q(F ) > 0. Then �j3KF j is birational for the �bre F , so is �j(7k+3)KX j by

2.2(2). Moreover, we have P20(X) � 2 for any irregular 3-fold of general type according to

Koll�ar ([5]) and Fletcher ([2]). Thus �143 is birational. �

Theorem 2.3.2. Let X be a nonsingular projective threefold of general type and suppose

Pk(X) � 2, then �m is birational for m � 13k + 6.

Proof. SupposeX be a minimal model with at worst Q-factorial terminal singularities. Make

a birational modi�cation � : X 0
�! X such that:

(i) X 0 is nonsingular;

(ii) jkKX0 j gives a morphism;

(iii) the fractional part of ��(KX) has supports with only normal crossings.

Set g := �jkKX j � � and W 0 := �jkKX j(X). Let X 0 f
�!W

s
�! W 0 be the Stein factoriza-

tion of g.

We would like to formulate our proof through two steps as follows.

Case 1. dim�k(X) � 2.

Set kKX0 �lin Mk + Zk, where Mk is the moving part and Zk is the �xed part. Then a

general member S 2 jMkj is an irreducible nonsingular projective surface of general type.

Write KX0 = ��(KX) +
P
aiEi, where the Ei are exceptional divisors for �, 0 < ai 2 Q for

each i. Obviously, p��(KX)q � KX0 . Because h0(X 0; p��(kKX)q) = h0(X 0; kKX0), we can

see that Mk is actually also the moving part of jp��(kKX)qj. Thus we have

��(kKX) �Q Mk +
X

biEi;
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where 0 � bi 2 Q for each i.

We claim that mKX0 is always e�ective for m � 2k + 1. In fact, for any t 2 Z+, we

consider the system

jKX0 + p��((t+ k)KX)q+ Sj:

It is a sub-system of j(2k + t + 1)KX0 j. By the Kawamata-Viehweg vanishing theorem, we

have a surjective map

H0(X 0;KX0 + p��((t+ k)KX)q+ S) �! H0(S;KS + p��((t+ k)KX)qjS) �! 0:

Noting that p��((t+ k)KX)q � p��(tKX)q +Mk, also by Lemma 1.6(i), it is su�cient to

show that KS + p��(tKX)jSq +MkjS is e�ective. When t = 0, then h0(S;KS +MkjS) � 2

by Lemma 1.2, because h0(S;MkjS) � 2. When t > 0, choose a 1-dimensional sub-system

jCj in the moving part of
�� MkjS

��. Modulo blowing-ups, we can suppose jCj is free from

base points and then C is nef and C � MkjS . We have g(C) � 2. Because ��(tKX)jS is

a nef and big Q-divisor on S, by the Kawamata-Viehweg vanishing theorem, we also get a

surjective map

H0(S;KS + p��(tKX)jSq+ C) �! H0(C;KC +D) �! 0;

whereD := p��(tKX)jSq
��
C
is a divisor on C with positive degree. Thus h0(C;KC+D) � 2.

This leads to the e�ectiveness of (2k + t+ 1)KX0 . Moreover, actually we have proved that

dim�m(S) � 1 for m � 2k + 1.

Now we prove that �3k+1 is generically �nite. Considering the system

jKX0 + p2k��(KX)q+Mkj;

as we have shown in the above that (2k+ 1)KX0 is e�ective, so jKX0 + p2k��(KX)q+Mkj

can distinguish general S. By the Kawamata-Viehweg vanishing theorem, we have

jKX0 + p2k��(KX)q+ Sj
��
S
=
�� KS + p2k��(KX)qjS

�� :
We have �� KS + p2k��(KX)qjS

����� KS + pk��(KX)jSq+MkjS

�� :
Noting that h0(S;MkjS) � 2, KS + pk��(KX)jSq � KS + MkjS , which is also e�ective

by Lemma 1.2, and k��(KX)jS is a nef and big Q-divisor on S, it is easy to verify that�� KS+pk��(KX)jSq+MkjS

�� gives a generically �nite map. In fact, choose a 1-dimensional

sub-system jCj in the moving part of
�� MkjS

��. For the same reason, we can suppose jCj is

free from base points.
�� KS + pk��(KX)jSq+ C

�� can distinguish general C, and we have

jKS + pk��(KX)jSq+ Cj
��
C
= jKC +Dj;

where D is a divisor on C with positive degree. Because g(C) � 2, thus h0(KC + D) � 2

and jKC +Dj gives a generically �nite map.

Finally, we want to show that �m is birational for m � 9k+ 4. Let t := m� 7k� 3, then

t � 2k+ 1. Denote by M3k+1 the moving part of j(3k+ 1)KX0 j and by Mt the moving part

of jtKX0 j. We have

jKX0 + p(t+ 6k + 2)��(KX)q+Mkj � jmKX0 j:
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Because t+ 6k + 3 > 2k + 1, KX0 + p(t+ 6k + 2)��(KX)q is e�ective, thus the left system

in the above can distinguish general S. Furthermore, the vanishing theorem gives

jKX0 + p(t+ 6k + 2)��(KX)q+Mkj
��
S
= jKS + Lj;

where L := p(t+ 6k + 2)��(KX)q
��
S
� 2M3k+1jS +MtjS . By Lemma 1.4, jKS + Lj gives a

birational map, so does jmKX0 j.

Case 2. dim�k(X) = 1.

In this case, W is a nonsingular curve of genus b. Let F be a general �bre of f , then F

is an irreducible smooth projective surface of general type. We have Mk �lin

P
Fi, where

the Fi are �bres of f for each i.

By a parallel argument as in the proof of Theorem 2.3.1, we see that �m is birational for

m � 2k+4 if b > 0. And if b = 0 while F is a surface with the invariants
�
K2
F0
; pg(F )

�
= (1; 2)

or (2; 3), then �m is birational for m � 10k + 7.

Otherwise, we use Koll�ar's method. From 2.2, we know that �7k+3 is birational and

dim�5k+2(X) � 2. Thus, by Lemma 1.7, mKX0 is e�ective for m � 6k + 4. Since we have

jKX0 + p(5k + 2)��(KX)q+ F j
��
F
= jKF +Dj where D := p(5k + 2)��(KX)q

��
F
is e�ective

and h0(F;D) � 2, we see that KF +D is e�ective and thus (6k+ 3)KX0 is e�ective. So �m
is birational for m � 13k + 6, which means that �13k+6 is stably birational. �

Theorem 2.3.3. Let X be a nonsingular projective threefold of general type and suppose

Pk(X) � 3, then �m is birational for all m � 10k + 8.

Proof. When dim�k(X) � 2, we know from Case 1 of Theorem 2.3.2 that �m is birational

for m � 9k + 4. When jkKX j is composed of a pencil, from the proof of Theorem 2.3.1, we

see that �k will derive a �bration f : X 0
�! W onto a nonsingular curve. If b := g(W ) > 0,

then �m is birational for m � 2k + 4.

The remained case is the one when b = 0. We have an injection O(2) ,! f�!
k
X0 . So, for

each p > 0, we have

O(1)
 f�!
p

X0=P1
= O(2p+ 1)
 f�!

p
X0 ,! f�!

k(p+1)+p
X0 :

Thus Koll�ar's method implies that �6k+5 is birational, �4k+3 is generically �nite and that

dim�3k+2(X) � 2. Now using our method, we can see that mKX0 is e�ective for m � 4k+4

by Lemma 1.7. Since (4k+3)KX0 is also e�ective, thus �m is birational for m � 10k+8. �

Corollary 2.3.2. Let X be a nonsingular projective threefold of general type and suppose

pg(X) � 3, then �m is birational for m � 11.

Proof. Keep the same notations as in the proof of Theorem 2.3.2. When dim�1(X) � 2, we

set L3 := 4KX0 , L2 = L1 := KX0 . Then jL3j gives a generically �nite map by virtue of Case

1, Theorem 2.3.2. Using Lemma 1.5, we see that jKX0 + 2L3 + L2 + L1j gives a birational

map. Thus �11 is birational.

When dim�1(X) = 1, we see from the proof of Theorem 2.3.3 that �11 is also bira-

tional. �

Theorem 2.3.1, Theorem 2.3.2, Theorem 2.3.3 and Corollary 2.3.2 imply the main theo-

rem.
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3. Open problems

3.1. Let X be a nonsingular projective variety of general type of dimension n. We de�ne

k0(X) := minfkj Pk(X) � 2g;

ks(X) := minfkj �m is birational for m � kg;

�s(X) :=
ks(X)
k0(X)

, which is called the relative pluricanonical stability of X. Obviously,

�s(X) is a birational invariant.

�s(n) := supf�s(X)j X is a n-fold of general typeg, which is called the n-th relative

pluricanonical stability.

It is well-known that �s(1) = 3 and �s(2) = 5 ([1]). From the main theorem, we have

�s(3) � 16. What is the exact value of �s(3)? It is also interesting to study �s(n) for n � 4,

even if we don't know whether we should have �s(n) < +1.

3.2. We would like to ask a very natural question which never happens in surface case.

Question. Does there exist a smooth projective threefold X of general type and two positive

integers k1 < k2 such that �k1 is birational while �k2 is not birational?

Of course, it may happen for some threefold that Pk1 > Pk2 even if k1 < k2. But we have

not found any counter example yet to the above question.
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