CERN LIBRARIES, GENEVAX

RARmERmIRA s g

SC00001063
8.4.3 User Defined Analysis Attributes

The support for user defined attributes and for efficient selection of data from an ODBMS
is based on the tagDB model. The HepODBMS package in LHC++ currently provides two
prototype implementations of tag classes, the so-called “GenericTag” and “ConcreteTag”.
Both implementations share a common interface to the interactive visualisation framework
(a set of IRIS Explorer modules) allowing the end user to produce interactively
distributions on sub-selected data.

Generic tags are aimed at not too large collections owned by single end users. They provide
a simple user interface for creation of tag quantities and eliminate the inconvenience for the
end user to formally define a new persistent class when the set of user quantities changes.
Generic tags may contain attributes of type float, double, short, long, char. Additional
attributes may be added after the initial definition. This flexibility makes the generic tag
especially useful during the first development phase of an analysis, when the set of
quantities used in the analysis tends to change more frequently. Although they carry a slight
performance penalty with respect to concrete tags, they are more convenient for end users
and avoid many of the schema handling issues, described in section 8.8 on page 58.
Concrete tags do have their own schema and are oriented towards large, shared collections,
such as collaboration-wide or work group-wide event collections.

Both implementations share a common interface, which is entirely decoupled from the
physical storage model. This permits the implementation of different clustering strategies,
such as attribute-based clustering - as in column-wise Ntuples - without affecting the user
interface.

In the LHC++ model, before one can start to visualise data, one has define and fill a
collection of tags, as shown below. In this example, the generic tags are used.

// create a new tag collection
GenericTag simTag{“simulation tag”);

// define all attributes of my tags
TagAttribute<long> evtNo{simTag, "event number”);
TagAttribute<float> et {simTag, "Et particlel");
TagAttribute<float> theta{simTag, "theta particlel");
TagAttribute<short> pid (gimTag,”id particlel™);

Figure 14 - Creation and Definition of a New Event Tag

These tags are then filled in a typical event loop, as shown below. It is important to note
that the tag attributes are handled just like normal C++ variables, adhering to the ODMG
philosophy'.

"' The programmer should perceive the binding as a single language for expressing both programming and database operations, not two
languages with arbitrary boundaries between them [23].

RD45: A Persistent Object Manager For HEP

while {(evt = geant->nextEvent())

{
simTag.newTag () ; // create a new tag
et = evt->getPart(l) .et;

theta
pid

evt->getPart (1) .theta;
evt->getPart (1) .pdg_code;

Figure 15 - Filling a Previously Defined Tag

As has been described above, a fundamental feature of this strategy is the ease in which the
full event data can be accessed. This is a significant piece of new functionality that was not
possible using PAW+Ntuples.

while (atlasTags->next())

{
if (et > 4.5 && sin{(theta) > .5) // for selected events..
{ // . fill histograms from the tag.
cout << “event: “ << eventNo << endl:
etHisto->fill (et) :
thetaHisto->fill (theta);
// « but also using data from the event.
nTracks = atlasTags->event->tracking->trackList.size();
nTracksHisto->fill (nTracks) ;
}
}

Figure 16 - Accessing the Event Data from the Tag

Having populated a collection of tags - typically, but not necessarily, performed in batch,
these data can then be visualised using IRIS Explorer.

As described above, IRIS Explorer is a modular tool-kit. An application can be built
visually, or can be predefined, out of the basic building blocks, referred to as modules.
These modules can be those that are provided with the system, HEP-specific modules, or
those from other IRIS Explorer user communities.

A simple application, or map, to provide similar functionality to that offered by PAW’s
Ntuple "Plot" and "Project” commands, requires three separate modules. The first module,
a database browser, allows a user to select a previously defined collection of tags. Data are
then "passed"” to a second module, where further cuts are made, and further data can be
derived, or associated data retrieved from the database. Finally, the needed quantities are
stored in a histogram, for subsequent visualisation. In fact, the data do not flow from cne

M

Status Report to the LCB, April 1998

module to another - the Objectivity/DB object identifier (OID) is passed between modules,
using shared memory or TCP/IP sockets, depending on the nodes on which the modules are
run - minimising data copies.

Browser Selector Histogram Fill

Figure 17 - Interactive Analysis using Explorable Collections of Tags

8.5 Data Analysis - a Physicist’s Perceptive

A paper presented at the 1996 HepVIS workshop on data analysis and visualisation in
HEP'? identified many of the key problems of today’s systems and attempted to define
requirements for a future analysis environment. From a physicist’s point of view, the
requirements were seen as:

Correctness,
Homogeneity,
Consistency,
Fault tolerance,
Ease of use.

Although it cannot be claimed that the use of an ODBMS addresses all of these issues, it
can certainly have a major impact on the issue of homogeneity. In today’s environment,
there are a wide variety of data formats in common use. Even when the underlying system
is the same, there can be significant difficulties in accessing the data stored using different
packages. ZEBRA alone has both "sequential” (FZ) and "random access" (RZ) formats,
although both of these have their own variations (FZ native or exchange file format, binary
or ASCII data etc.). In addition, the many packages built on top of ZEBRA (DBL3,
FATMEN, HEPDB, HBOOK, OPCAL etc.) have inconsistent interfaces. It is not possible
to "make a link" (ZEBRA terminology) between data in say a ZEBRA FZ file, associated
calibration constants stored in HEPDB, histograms stored in an HBOOK file and data
stored in an Ntuple (even if in the same HBOOK file as the histograms). Attempting to
scale such "confusion” to data volumes several orders of magnitude greatly is clearly
unlikely to succeed.

On the other hand, an ODBMS permits all of the above data to be stored in a consistent
manner, even if physically located in separate containers and/or databases on different
servers. The user is exposed to the logical, not physical, view.

12 See http://www.cern.ch/Physics/Workshops/hepvisthepvis96/papers. html.

33

RD45: A Persistent Object Manager For HEP

8.6 Experience at ZEUS

Like many existing experiments, the ZEUS collaboration at DESY uses an event directory -
in their case based on ADAMO - to speed up event selections. A standard program, called
EAZE, is provided to access the event data. Users have to provide 3 user-routines and
control cards. Each event has an associated header, which includes the run and event
number, and the offset within the mini-DST file to the event. In addition, there are a total
of 128 bits for event selection.

Experience has shown that the use of individual bits is somewhat inflexible. As a result, the
cuts implied by a given bit tend to be rather loose, and hence many jobs read more events
than are required, and perform a tighter cut in their program. The ability to perform
selections based upon variables, rather than bits, would clearly help, but at the cost of
increased storage.

To test these ideas, ZEUS built a prototype "tag database", based upon Objectivity/DB. The
system design goals included:

e It should be easy to add new variables to those already stored in the database,
¢ It should be simple to change these variables (number, meaning, value),
* The interface between the C++ and Fortran code should be transparent to the users.

The main difference seen by the users is in the control cards used to steer the standard
analysis job, EAZE. Examples of steering cards for selection of events from the ADAMO-
based event directory and the Objectivity/DB tag database are shown below. As these
examples show, the new data card format is more comprehensible. In addition, as the
selection of data can be more precise, less data is read, resulting in improved performance.
As shown in the table below, a job reading some 2750 events from a total of 45000 runs
over 7 times faster using the tagDB implementation.

C
ZEUSIO-INFI /zeus/data/mini95/r011539.z

ZEUSIO-INFI /zeus/data/mini95/r012208.z
C

ZeuslO-10PT DRIVER=IE.,ZED

C

ZeusIO-ZCLASS .and. b9

ZeuslIO-ZCLASS .and. b10

Figure 18 - Example of EAZE Control Cards Without TagDB

56

Status Report to the LCB, April 1998

ZeusIO-INFI ZeusEventStore

ZeusIO-Run ((RunNR=>11539)AND(RunNr=<12208))
C

ZeuslO-10PT DRIVER=0OBJY

C

ZeusIO-Variable (

ZeusIO-Variable (Ee>5) and

ZeusIO-Variable ((Zvtx>-50)and(Zvtx<50))and
ZeuslO-Variable ((Eminpz>35)and(Eminpz<65))and
ZeusIO-Variable (Y)jb>0.04)

ZeuslO-Variable)

Figure 19 - Example of Control Cards Using TagDB

User Time (seconds) System Time (seconds)
ZED (old system) 2756.5 91.7
ZES (new system) 362.7 32.0

Table 4 - Performance Comparison: Run 12075, ET > 30

A number of other tools are provided by the system, include a standard program to generate
an Ntuple. This can be run as shown below.

o zessel -f sel.txt -n test.rz -v # Produce an Ntuple in the file "test.rz” using the control
cards in the file "sel.txt"

ZeusIO-Run (RunNr=11543)
C

ZeusIO-Bit (DST27)

C

ZeuslO-Variable (Yjb>0.7)

Figure 20 - control cards (sel.txt) for above Ntuple extraction

Currently, all of the data from 19935 are stored in the database, occupying some 14GB of
disk space. 92 physics variables are stored per event, and some 10-30% of analyses are
performed using the new system. A second phase is currently under study, whereby some
200 variables would be stored per event. This would include data from 1994 until the
present, and require some 150-200GB of disk space.

Future plans include storing the physics data itself in Objectivity/DB, rather than just the
tags. At this stage, physics analyses directly from C++ would be supported.

37

RD45: A Persistent Object Manager For HEP

8.7 NA4S8

NA48 is an experiment at the CERN SPS that studies CP violation. It has recently initiated
a project with similar goals to that of the ZEUS experiment, described above. In other
words, they plan to implement a database using Objectivity/DB to optimise access to
physics data. So far, some 20TB of data have been acquired. This will increase to by a
further 100TB by the end of the year 2000. Although these data will not be stored in a
database, the volume involved dictates that efficient access is required. In particular, it is
essential that only the needed data is cached to disk and read into memory. Although the
initial proposal calls for a query language slightly different from that employed by ZEUS,
and uses bit information to minimise the storage requirements, it is likely that there will be
cross-fertilisation between the two projects, and that a common strategy will be evolved.

Burst.microCompactBurstMetalnfo bit {5..10] as integer within [-10..10]

(event.microCompareEventData bit [1..8] as integer within [0..100]) AND
({(event.microCompactEventData bit 20=true) OR
(event.microCompactEventData bit 21=true))

Figure 21 - Examples of a Possible Query Language for NA48

8.8 Schema Handling Issues

Before an object can be stored in an ODMG-compliant database, its definition or schema
must be defined. This is done using in the Object Definition Language or, in the case of
Objectivity/DB, using Objectivity’s DDL, and is shown schematically in the figure below.
(For a more detailed description, see [11].)

58

Status Report to the LCB, April 1998

ooL
Schema
Code

Application
Source
Code

DDOL Processar

Schema
Source
Code

Schama
Header

¥

G+ Compiler

Objectivty
Library

Objectivity
Fedearatad
Database

Figure 22 - Database Development Procedure

In the current version of Objectivity/DB, each persistent-capable C++ class is given a type
number, which is allocated sequentially. In other words, the type number given to a specific
persistent-capable class depends on the order in which the corresponding DDL file is
processed. In the current C++ binding this type number is placed as a class variable in the
generated code for each persistent class. During the startup phase of an application this
number is used to associate the application class with the schema definition for this class
stored in the federated database. Maintaining the type-numbering scheme of an application
(or library) in agreement with the target federated database schema is therefore an essential
requirement to allow the correct functioning of Objectivity/DB.

8.8.1 Schema Consistency between Separated Federations

In a single developer environment, the Objectivity schema pre-processor does guarantee the
synchronisation of type numbers, since type number allocation and schema generation is
performed against a single federated database. In a larger scale development project with

RD45: A Persistent Object Manager For HEP

many software packages and many distributed developers, the constraint to use a single
federated database is not practical.

Any schema change performed does require write access to the federated database file for
the developer. In order to keep the risk of interference with other users of the federation
minimal, we assume that any development will be done against a separate development
federation. Only the deployment of stable, released packages should be done against the
shared production federation.

To allow developers to set-up private development federations, the development
environment must provide a mechanism to create federations containing a copy of the
production schema using the same type numbering scheme. This allows the use of
production versions of binary libraries of other packages against their development
federation. It also simplifies the preparation of input data needed for program testing. One
can simply copy test data from the production federation into a database, which is then
attached to the development federation.

To simplify the preparation of the development federation schema we have requested a
tool, which directly exchanges (parts of) the schema information between two separate
federations, without the need to repeat the schema pre-processin g step. This functionality
will be provided in one of next releases of Objectivity/DB.

8.8.2 Named Schema

To remove the type number coupling between different packages introduced by the
sequential type number atlocation Objectivity/DB provides the so-called "named schema”
feature. This feature allows to divide the type number space of a federated database into
named subsets, by specifying the -schema [name] when running the DDL processor.
Each of these named schemata is reserving a range of 64K type numbers, permitting the
individual developer to reorganise the schema within a package without compromising the
type numbering of other packages. Some 16 schema names have been allocated for the
various LHC++ packages (HepODBMS, HistOOgrams, CLHEP, Geant-4 etc.). The named
schema feature has been successfully used to de-couple the development of the different
LHC++ packages. We recommend that each experiment register additional named
schemata for all experiment specific packages that define persistent classes.

8.8.3 Private User Schema

Requirements for private user schema include the following:

It should be possible to provide one "named schema”, as described above per user.
Such a "named schema" should be allocated on demand.

It should support the use of the same class name by multiple users without interference.
It should be semantically sufficient to implement private end user schema.

Although not a hard requirement, an implementation that kept the user schema in a separate
file outside of the central federated database would be preferred, for security reasons.

60

Status Report to the LCB, April 1998

8.8.4 Dynamic Schema Binding

As discussed above, the static binding of C++ application classes to database schema,
using type numbers compiled into binary librartes and applications, has some
disadvantages. It complicates the development of federation-independent class-libraries
and requires a rather complicated schema preparation procedure if the number of database
developers and packages becomes large.

The Java binding to Objectivity/DB provides a more flexible solution. In this case the
binding of application classes to the federation schema is done at application runtime using
the class name. Using this dynamic binding technique the same application or library can
be used against different federations independent of the sequence in which the schema has
been defined. We expect that a similar implementation for the C++ binding would greatly
simplify the development cycle. A more dynamic schema binding has therefore been
requested as a longer-term solution (see section 12.4 on page 94.)

8.8.5 Conclusions on Schema Handling

A strategy for handling both developers’ and end-users’ schema has been developed and
tested. Although received too late for inclusion in this report, new developments in
Obijectivity/DB for schema exchange and for run-time access to schema appear to largely
meet our requirements. Further enhancements in this area are expected from
Objectivity/DB and will be discussed at future RD45 workshops.

8.9 Conclusions

The use of an ODBMS as the basis for a consistent, experiment-wide, data management
scheme has clear advantages, which have already been demonstrated in production in a
number of experiments. These advantages address a number of the requirements, such as
homogeneity and ease of use, listed in the CMS Computing Technical Proposal [28].
Further developments of the interactive data analysis environment are clearly required and
are already underway. Enhancements to the way that schema are handled, particularly for
large projects, where the schema must be shared between multiple federations, have been
requested. More prototyping of collections and naming schemes needs to be performed, for
which realistic use cases are required. We believe that these activities are best covered as
part of the production services that are currently being established.

Additional research needs to be performed in order to understand issues related to the
distributed environment of HEP, including data import/export, networking issues, the
possible use of technologies such as mobile Java agents, and so forth.

61

RDA45: A Persistent Object Manager For HEP

9 Milestone 3

The third milestone set at the March 1997 review of the RD45 project was as follows:

"Demonstrate the feasibility of using an ODBMS and MSS at data rates sufficient for
ATLAS and CMS 1997 test-beam requirements."

Since this milestone was set, ATLAS postponed their plans to evaluate Objectivity/DB in a
test beam environment until 1998, and hence we only report below on the experience
gained in CMS., Furthermore, as the data volumes planned for CMS were of the order of
100GB, it was agreed that these tests would concentrate on the use of Objectivity/DB alone
and not address its integration with a mass storage system. Finally, the data rates involved
in the CMS test beam activities were rather modest - well below 1MB/second - and hence
did not pose any difficulty to Objectivity/DB. Thus, the main challenge posed by the CMS
test beam activities was a production demonstration of the overall LHC++ environment,
from data taking to analysis - a somewhat different focus to that described in the milestone
above.

In addition to the CMS test beam activities, we describe progress on the interface between
Objectivity/DB and HPSS, including performance and functionality tests. Plans for test
beam activities in 1998 are also included.

9.1 ODBMS - MSS Interface

The need for an interface between the object manager layer and a mass storage system was
identified as part of RD45’s activities during its first year and is described in [11] and [12].
In summary, although one can expect significant advances in disk capacity/unit price
between now and the startup of LHC, it is unlikely that one will be able to afford, or even
manage, disk farms capable of storing the entire LHC data volume - a total of some 100PB.
More reasonably, one could expect to cache some tens to hundreds of TB of active data on
disk, whilst keeping the bulk of the data on cheaper storage media.

Objectivity/DB and HPSS are emerging as the de-facto standard solutions for the HEP
community in their respective areas. Plans to use both of these systems in production exist
at BNL, CERN and SLAC. As a community, we have requested an interface between these
two products, as described in section 6.2 on page 26.

We describe below tests of the prototype version of the interface between Objectivity/DB

and HPSS and discuss possible enhancements for the production version of this interface,
scheduled for delivery by the end of 1998.

62

Status Report to the LCB, April 1998

9.2 The Objectivity/DB - HPSS Interface

9.2.1 Introduction to HPSS

The High Performance Storage System (HPSS) is a software system that provides
hierarchical storage management and services for very large storage environments. HPSS is
the result of a collaborative effort by leading US Government supercomputer laboratories
and industry to address very real, very urgent high-end storage requirements. HPSS is
offered commercially by IBM Global Government Industry, Houston, Texas and is built
upon the IEEE Reference Model for Open Storage Systems Interconnection, more
commonly known by its previous name of IEEE MSS Reference Model, shown below.

ommurnfcation, Location & Name Services

Mover(s)

Source Sink

5
o3
g
3
=1
20
v I i
S
g
Y

Request low ——w= ARernate Request Flow - —-—— - -

Figure 23 - The IEEE Reference Model for Open Storage Systems Interconnection

HPSS is designed to be scalable in terms of data capacity (up to the level of petabytes),
data transfer rates (gigabytes per second), number of files (billions), maximum file size (2%
bytes), and geographic distribution of both software components and storage devices.

HPSS achieves these scalability features by supporting both direct- attached and network-
attached disk and tape storage devices from multiple vendors, as well as by enabling
distributed, parallel I/O through software striping.

HPSS is currently in production at a number of sites, including Maui High Performance
Computing Center, Cornell Theory Center, Sandia National Laboratory, Caltech, Fermilab,
Lawrence Livermore and Lawrence Berkeley National Laboratories, University of

63

RD45: A Persistent Object Manager For HEP

Washington, Los Alamos National Laboratory, San Diego SuperComputing Center, Oak
Ridge National Laboratory, NASA Langley Research Center, Rechenzentrum der
Universitit Stuttgart, SLAC and CERN.

As such, it has clearly established itself as the mass storage system of choice for sites with
high-end requirements. A long list of enhancements are planned, which can be viewed at
the HPSS web-site”,

9.2.2 Control and Data Flow in HPSS

The figure below (page 65) shows the flow of control and data of a read operation for a file
stored in HPSS-managed storage. HPSS consists of the following software components:

¢ Name Server (NS)
* Maps file name to an HPSS object (bitfile, directory or link)
¢ Name Server database is stored by Encina SFS.
e Bitfile Server (BFS)
® Provides abstraction of logical bitfiles,
* Supports random access by address and length
e Storage Server (S8S)
® Maps storage segment (SSEG) references into virtual and physical volumes.
¢ Schedules mounting.
¢ Mover MVR) .
¢ Transfers data from source device to sink device
* Physical Volume Library (PVL)
® Manages all HPSS physical volumes.
* Maps physical volumes to cartridges.
s Physical Volume Repository (PVR)
® Manages all cartridges

In the following diagram, the first step is performed upon file open. Should the file be disk
resident, a read request will execute steps 2, 3, 4 and 7. In the case that the file is offline,
steps 5 and 6 are performed, followed by the normal read loop.

'3 hitp:/twww.sdsc.edushpss/.

64

Status Report to the LCB, April 1998

AMS 1) Resolve Name
HPPS P Name Server
Imerface
2) Read File
7) Transfer Data Bitfile Server
3) Read SSEG
. Storage
Mover nl 4) Read Device Server
5 Mount
Physical 6) Mount Physical
g — Volume i Volume
Repository Library
Tape
.~/
«—)p DataFlow

4—>» Control

Figure 24 - Control and Data Flow in HPSS

9.2.3 The Objectivity/DB - HPSS Interface

As described in section 6.2 on page 26, an interface between Objectivity/DB and HPSS has
been requested by a number of HEP laboratories. A prototype of such an interface has been
produced for IBM AIX systems - the only system on which HPSS is currently officially
supported. This interface combines the Objectivity/DB server with the HPSS client, and
was built by Andy Hanuchevsky/SLAC and Urs Bertschinger/Objectivity. The prototype

consists of two parts:

1. A linkable version of the Objectivity/DB server,

RD45: A Persistent Object Manager For HEP

2. A library that interfaces the I/O services expected by Objectivity/DB with the
equivalent HPSS functionality.

By providing the interface in this way, end-user sites are able to optimise the I/O layer, or
even substitute a different mass storage system, provided that a compatible interface is
written. Objectivity/DB applications will be unaware that the associated data resides in
HPSS managed storage. When an object is accessed, it will be returned immediately if the
corresponding database is already disk resident. If not, the client wiil block on the implicit
database open whilst the server, through HPSS, causes the necessary file to be reloaded
from tape.

The current interface, which permits one block to be read at a time, is likely to be sub-
optimal, but was provided for convenience. A better strategy would be to read mulitiple
blocks at a time, and hence minimise the interaction with the HPSS server. However, the
performance implications of the current prototype are not yet well understood, and it is
expected that stress testing over the coming months will suggest areas where improvements
are required.

Areas where enhancements are expected include:

* Handling of the RPC timeout in Objectivity/DB. The current version of Objectivity/DB
has a single timeout value for all RPCs. Although this value can be changed, the default
value of 25 seconds is too short to cater for the case when a database resides on tape,
particularly if there are limited resources (tape drive contention, Stage-out in progress
etc.),

* A means of passing "hints" between client and server, such as an indication as to which
pages might be read shortly,

* A means of specifying the HPSS "class-of-service" parameter when creating new
databases.

9.2.4 The Objectivity/DB - HPSS Installation at CERN

In the current HPSS test configuration at CERN, the various HPSS components are
distributed across multiple systems. For example, the tape mover(s), disk mover(s) and
HPSS nameserver all run on different systems. In addition, an IBM system is currently
being used to evaluate the Objectivity/DB - HPSS prototype interface. As such, this system
runs both the Objectivity/DB server (AMS) and the HPSS disk mover, together with the
rest of the environment required by HPSS, such as DCE. It is anticipated that one and
eventually several/many disk servers will be run for each experiment, each supporting a
few hundred GB of disk space managed by HPSS and the Obijectivity/DB server.

66

Status Report to the LCB, April 1998

European Lab for Particle Physics (CERN)

Objectnity Disk Mover,
Objectivity

X
—W
ollision
went D
ol lision
vent Daty

General User IF,
Disk Mover

=2 BTK Tape Miovers

STK Silos

Figure 25 - Objectivity/DB - HPSS Configuration at CERN

9.2.5 The Objectivity/DB - HPSS Configuration at SLAC (BaBar)

Unlike at CERN, SLAC currently plans to run the various HPSS components and the
Objectivity/DB server on a single, powerful system. Although such a scenario has the
advantage of reducing the network overhead involved in the inter-module communication,
it is inherently a less scalable scenario, but nevertheless well-suited to the environment at
SLAC, where the system will be used to support a single experiment (BaBar).

HPSS
Disk & Tapes

Data Mover

Network

Clients Switch
{Cisco 5500)

Figure 26 - Objectivity/DB - HPSS Configuration at SLAC

67

RD45: A Persistent Object Manager For HEP

9.2.6 Functionality Tests

The basic functionality required of the proof-of-concept prototype, as described in section
6.2.1 on page 26, have been demonstrated. It should be noted, however, that as HPSS uses
DCE security, the Objectivity/DB server has to have the appropriate DCE credentials. As
such, the familiar problem of token expiry must be handled.

[rshpssO1] ~ dce_login # Acquire DCE token

Enter Principal Name: mnowak

Enter Password:

[rshpssO1] ~ % cd ~/objectivity/bin # Directory containing modules linked with HPSS API
[rshpssO1] ~/objectivity/bin % .foostartams # Start the modified AMS

Objectivity/DB (TM) Start AMS Utility, Version 4.0.10
Copyright (c) Objectivity, Inc 1989, 1996. All rights reserved.

The AMS has been started (process ID = 52260).

Figure 27 - Starting the HPSS version of the Objectivity/DB server

Once the modified version of the Objectivity/DB server has been started, standard
Objectivity/DB tools or applications can be used. For example, the oonewdb tool is used
below to create a new database in the federation "BIG", whose bootfile is also given below.

fcernsp] ~/amstest % more BIG
00oFDNumber=1452
0ooLFDNumber=65535
ooPageSize=8192
ooLockServerName=rsobjy01
ooFDDBHost=f-rsobjy01
ooFDDBFileName=/0bjy01/BIG.FDDB
ooJNLHost=rsobjy01
ooJNLPath=/0bjy01

Figure 28 - Bootfile for the "BIG" Federation

68

Status Report to the LCB, April 1998

[cernsp] ~/amstest % oonewdb -db test5 -host f-rshpss01 -filepath . BIG

Objectivity/DB (TM) Create Database Utility, Version 4.0.2
Copyright (¢) Objectivity, Inc 1992, 1996. All rights reserved.

Created Database test5 [DBID = 16].

Figure 29 - Creating a New Database in HPSS-managed Storage

[cernsp] ~/amstest %oodumpcatalog BIG

Objectivity/DB (TM) List Database Files Utility, Version 4.0.2
Copyright (c) Objectivity, Inc 1990, 1996. All rights reserved.

FD Name =BIG

FDID =1452

FD File = f-rsobjy0l::/objy01/BIG.FDDB
Boot File = rsobjy01::/0bjy01/BIG

Jnl Dir = rsobjy01::/0bjy01

Lock Host = rsobjy0l

DB Name =test5
DBID =16
DB Image = f-rshpss01::./test5.BIG.DB

Figure 30 - Output of codumpcatalog

Tests have also been made of access to tape-resident databases. To perform these tests, a
federation of two databases was created. Using HPSS administration commands, the two
database files were forced to tape. A simple application was then run against the federation.
When the application attempted to access the databases in question, they were transparently
recalled to disk by HPSS, during which time the application was blocked. As soon as they
were disk-resident, the application continued as normal.

09

RD45: A Persistent Object Manager For HEP

1) All modules running on the same host

/ HPSS Server

Objy Application

AMS/HPSS Interface

HPSS

2) AMS running on a remote host

Z Remote Host

HPSS Server

HPSS

HPSS Server

AMS/HPSS Interface

Objy Application HPSS
Network
- Protocol
AMS/HPSS Interface —p
3} AMS running on HPSS server (or mover)
Remote Host /
Objy Application
1y App Objectivity
Network
Protocol

HPSS

70

Status Report to the LCB, April 1998

Figure 31 - Tested Objectivity/DB - HPSS Configurations

HPSS Server HPSS Server
HPSS HPSS
[E NN RN
AMS/HPSS Interfagd AMS/HPSS Interfaf®

FDB Disk Server

A

AMS

FDB Catalog & .

On-Line Databases Chc_em .
Objectivity
Application

Lock Server Host

Lock Server

Figure 32 - Objectivity/DB - HPSS Configuration

9.3 Trace of Objectivity/DB 1/0 Operations

The modified Objectivity/DB server permits us to introduce additional code at the /O
level. For example, this permits an interface to an alternative MSS to be built, provides an
exit for access control, and permits I/O operations to be traced.

In the following figure, an application first initialises the federation and opens a database
for write access.

RD45: A Persistent Object Manager For HEP

Start of the transaction

oofs: opening file /user/test.DB...

oofs: Reading pages (8192 bytes), from page
ocofs: Reading bages (8192 bytes), from page
cofs: Reading pages (8192 bytes), from page
oofs: Reading pages (8192 bytes), from page
oofs: Reading pages (8192 bytes), from page /user/test.DB. ..
oofs: Reading pages (8192 bytes), from page /user/test.DB...
ocfs: Reading pages (8192 bytes), from page 13 /user/test.DB...
oofs: Reading pages (8192 bytes), from page 0 /user/test.DB...
ocfs: Reading pages (8192 bytes), from page 1 /user/test.DB...
ocfs: Reading pages (B192 bytes), from page 3 /user/test.DB...
cofs: Reading pages {8192 bytes), from page 59 /user/test.DRB...
oofs: Reading pages {8192 bytes, from page 3168 /user/test.DB...

/user/test .DB. ..
/user/test.DB...
/user/test.DB...
/user/test .DE...

RN R PV o s B e]

N S R gy

Figure 33 - Trace of opening a Database for Write Access

As a second step, the application loops, creating objects of 100KB. Initially, no 1/O is
performed as the objects are stored in the client cache. Once the cache limit has been
reached, data is written to disk. As the objects are large, the I/O is performed in muitiple
transfers. The first object appears to use a free database page, whereas the second and
subsequent objects are written to adjacent pages in a regular pattern. In the case of objects
larger than a single database page, the last page contains the page map for the object and is
hence written separately.

Cache is full, 3 objects are forced to disk:
(first updating some internal information)

oofs: Reading 1 pages (8192 bytes), from page 0 /user/test.DE...
cofs: Writing 1 pages (8192 bytes), from page 0 /user/test.DE...
oofs: synching /user/test.DB...

(writing data)
first object:

oofs: Writing 8 pages ({65536 bytes), from page 3169 /user/test.DB...
oofs: Writing 1 pages (8192 bytes), from page 3177 /user/test.DB...
oofs: Writing 1 pages (8192 bytes}, from page 2778 /user/test.DB...
oofs: Writing 2 pages (16384 bytes), from page 3178 /user/test.DE...
cofs: Writing 1 pages (8192 bytes), from page 3180 /user/test.DB...

second object:
oofs: Writing 8 pages (65536 bytes), from page 3181 /user/test.DB...
oofs: Writing 4 pages (32768 bytes), from page 3189 fuser/test.DB...
cofs: Writing 1 pages (8192 bytes), from page 3193 /user/test.DB...
third object:
oofs: Writing 8 pages (65536 bytes), from page 3194 /user/test.DB...

cofs: Writing 4 pages (32768 bytes), from page 3202 /user/test.DB...
cofs: Writing 1 pages (8192 bytes), from page 3206/user/test.DB. ..

72

Status Report to the LCB, April 1998

Figure 34 - I/0 Log

Finally, at transaction commit time, the remaining objects in the client cached are flushed
to disk and a sync operation performed.

Commit of the transaction, flushing the cache:

oofs: Reading 1 pages (8192 bytes), from page 6 /user/test.DB...
oofs: synching /user/test.DB...

oofs: Reading 1 pages (8192 bytes), from page 0 /user/test.DB. ..
oofs: Writing 1 pages (8192 bytes),from page 0 /user/test.DB...
oofs: synching /user/test.DB...

ocofs: Writing rages (8192 bytes}, from page 3428 /user/test.DB...
cofs: Writing pages (65536 bytes), from page 3415 /user/test.DB...
cofs: Writing pages (32768 bytes), from page 3423 /user/test.DB...
cofs: Writing pages (8192 bytes), from page 2427 /user/test.DB...
cofs: Writing pages {65536 bytes), from page 3207 /user/test.DB...
ocofs: Writing pages (32768 bytes), from page 3215 /user/test.DB...

1= e ol SR e I

oofs: Writing 1 pages (8192 bytes), from page 3414 /user/test.DB...
cofs: Reading 1 pages {8192 bytes), from page 59 /user/test.DB...
oofs: Writing 1 pages (8192 bytes), from page 59 /user/test.DB...
oofs: synching /user/test.DB...

ocfs: closing file /user/test.DB...

Figure 35 - Transaction Commit Log

9.3.1 Performance Measurements

In the following figure, we show the performance of HPSS using the so-called "simple
APT" as a function of blocksize. This API closely resembles the POSIX filesystem
interface. In other words, for each POSIX I/O call, there is a corresponding HPSS function.
As the figure shows, HPSS works most efficiently for very large blocksizes - between 1
and 10 MB. Unfortunately, databases typically transfer much smaller amounts of data. In
the case of Objectivity/DB, this is a database page, which is limited to a maximum of
64KB. Thus, unless large data volumes were cached on the server side, which brings with
it problems with respect to data integrity, such an interface is unlikely to deliver the
required performance.

73

RDA5: A Persistent Object Manager For HEP

— time/call[s]

HPSS "simple API" performance ‘— Data Rate[MB/s]

6

|
A

N\
\\

1 10 100 1000 10000
Block Size [KB]

100000

74

Figure 36 - HPSS Write Performance as a Function of Block Size

Status Report to the LCB, April 1998

_ '— Data Rate[MB/
HPSS "simple API" read performance _ﬂ,;;caﬁ[:][°

6

|]
/N
|]
)
/S

1. /

1 10 100 1000 10000 100000
Block Size [KB]

Figure 37 - HPSS Read Performance as a Function of Block Size

In the current prototype, each I/O request to a database residing in HPSS-managed storage
involves a significant overhead. Before a data block is transferred, the HPSS client, in this
case the Objectivity/DB server, must first contact the HPSS nameserver to obtain the
"bitfile ID" of the corresponding file. Having obtained the bitfile ID, it must then
communicate with the bitfile server and the data mover to read/write the data. This
communication overhead results in a significant performance degradation that suggests that
the current interface could not, as anticipated, be used in production.

9.3.2 Alternative Interfaces
We list below the possible interfaces between Objectivity/DB and HPSS.

Via the HPSS NFS interface,

Using a future HPSS interface to DFS or DMIG,

Using the "simple API" (the current interface),

Using the "advanced API" (permits multiple blocks to be requested),
Using a DB-faulting mechanism ("staging").

75

RD45: A Persistent Object Manager For HEP

The HPSS-NFS option and the "simple API" both suffer from poor performance and can be
ruled out for production systems. The future interface to DFS or DMIG can also be ruled
out as a short-term alternative,

The "advanced API" permits clients to transfer multiple blocks without the additional
control information being passed to the nameserver and bitfile server. However, in a
random-access environment, it is hard to predict which blocks will be read in the future.
Furthermore, it is essential that any optimisation does not compromise data integrity. For
example, any cached data must be kept consistent across muitiple Objectivity/DB server
processes or threads. Although the Objectivity/DB client, or rather client application, may
have more information about which blocks are likely to be requested in the future, e.g. via
the object identifiers in the current event collection, it is unclear whether the use of HPSS
for small data transfers is desirable.

An alternative solution wouid be to use HPSS as a conventional staging system and let
Objectivity/DB read/write directly to standard Unix filesystems. This would avoid the
performance overheads associated with reading/writing to HPSS-managed disk storage, but
would require some space management of the disk pools. However, the existing CERN
tape staging software already provides such a capability and is currently being interfaced to
HPSS. This can be implemented using the interfaces developed for the Objectivity/DB -
HPSS proof of concept prototype and is currently considered the most viable short term
solution.

9.3.3 Conclusions on MSS Interface

It is clear that this area needs a significant amount of further study and will be the subject
of much attention during the coming year. The activities planned in this area include
workshops between IT/ASD and PDP groups and Objectivity experts, visits to SLAC to
coordinate activities and compare results and possible implementations, follow-up
meetings with Objectivity and the HPSS consortium and so on. The target for a production-
quality interface remains the end of 1998 and is scheduled for inclusion in Objectivity/DB
V6.0. The use of an interface to a staging system reduces the amount of work required on
the Objectivity side, although it is expected that enhancements, such as the ability to pass
"hints” from client to server, will be requested in the future.

76

Status Report to the LCB, April 1998

9.4 CMS Test Beam Experiences

9.4.1 Introduction

A prototype analysis chain was developed in CMS to test Objectivity/DB and other LHC++
components. This software was tested in the H2 test beam for a period of approximately 2
months (August 6" - September 29™). After a few days of running in, the system operated
unattended without major problems. A federation of over 60GB was created, with a total of
1250 database files.

This software was also used in the X5 tracker test beam. In this case, a federation of some
25GB in 200 databases was created.

9.4.2 The H2 Test-Beam

The prototype analysis chain tested in the H2 test-beam consisted of the following
components:

¢ Online event data recording:
e DAQware (ODBMS un-aware),
¢ Objectivity/DB formatter (Objy-dependent),
e Control system (could use ODBMS),
¢ CDR {Dependent on Objy Fault Tolerant Option).
Asynchronous data recording (Objy dependent)
Offline Data processing
» Reconstruction framework (ODBMS-based),
¢ Interface to simulation,
o "User" persistent classes (Objy dependent)

¢ Interactive Analysis Environment
e Data Browser (Objy dependent)
¢ HistOOgrams (ODBMS-based)
e HistOOgram visualise (ODBMS-aware).

RD45: A Persistent Object Manager For HEP

— .
Fo0a ™ - o .
met) | Setlp | [S41UP / OnlineEvent "y s/ Worker
: P LR - .
™ Y =~ (impl} (mpty H———— Gimpl) [
o T Y 0.1 1 /bvsnt - '
id_ o \ o~
’,1\/ . —_— e
/ ReadQutUnit - RawDataServero. .1
{ / I ’ —
\ P \ (met) 5 /DAQSlmuIaE?
— - . impl. f
/ GenericRO\U\- 1E/; P {impl.})
N } 0.1 "
W - rau servarp

—_—
\j[_\ TestBea;‘\
‘-/’/ FlawData Event Event J
enerncHaw avent
Data

eve awEvent \ T
\\ \,V/— o.n FlawEvem onr
L / [ReadOutUnit : RO f/ |
memPers

i

1 TBECollection
! Run ™ (/
r L
s / /Q\J T — J
/T\meSlamp e~
/ﬁ Log T / Collect\cmj
\ o - 4 -
| . i -
(N -

Figure 38 - CMS H2 Test Beam Raw Data Class Diagram

Container Comalner Container

Physical
Clustering

SRR

Figure 39 - CMS H2 Test Beam Clustering

7

Status Report to the LCB, April 1998

1SlowAP !
3 i

Wk W N e e

~ CalibbB ™
-,“(repﬁca)‘ t“’j‘ =

Figure 40 - Test Beam Configuration

After a few days of running in, the system ran essentially unattended without major
problems. The only manual operation was to change the output disk every 9GB. Although
the system was CPU-bound on object and association creation, a federation of over 60GB
(1250 database files) was created and a first analysis performed. The software was reused
in the XS test beam, described below, and is to form part of the common framework
developed in 1998.

A number of further developments are planned for 1998, including:

Versioning,

Event deep-copy/move,
Reclustering,

"User" versioning,
"User" persistent objects.

A framework for batch analysis of test-beam events was developed, which allowed:

e selection of the input event collection,
s detector reconstruction,
e the storage of selected events in a user collection.

RD45: A Persistent Object Manager For HEP

Histogramming is based on the new histOOgram classes from LHC++. User-friendly
management of persistent histograms and the usage of generic tags as a potential Ntuple
replacement are yet to be tested.

These test-beam activities also allowed testing of development and test federations, based

upon the production federation. This was performed using a small script which built a new
federation from a reference federation containing the schema, plus a copy of some sample

databases from the H2 federation.

9.4.3 The X5B Test-Beam

The CMS X5 OO project is described in detailed in [35]. In commeon with the H2 OO
project, described above, the goal was to create a general framework that could be used in
all CMS test-beam areas. This was to include the complete chain from data acquisition to
analysis, and hence tested many of the elements of the overall LHC++ strategy.

The X5 Analysis Tool consists of the following components:

* Online (Data Recording)
o DAQ/Conversion of ZEBRA files,
e Objectivity/DB reformatter,
o Central Data Recording,
¢ Online Monitoring/Data Quality.
¢ Offline (Data Processing)
e Simulation Framework (Interface to GEANT-4)
* Analysis and Reconstruction Framework
¢ Interactive Analysis Tools
¢ HistOOgrams,
¢ HistOOgram Visualiser (HepExplorer/HepInventor)

The Objectivity/DB reformatter performs the following operations:

Gets the data from the ZEBRA server, using the proxy pattern [36],
Creates the databases and containers,

Creates the event structure,

Populates the databases.

9.4.4 Conclusions on CMS Test Beam Activities

The resuits from both of these test-beam activities are considered successful by the CMS
collaboration. A number of enhancements have been identified for the future, including a
scheme for user-friendly management of histograms, and the adoption of the event-tag
concept, as an "Ntuple-replacement"”. Both of these issues are being addressed in the
context of LHC++ on the timescale of the 1998 test-beam runs.

80

Status Report to the LCB, April 1998

9.5 Requirements for 1998 and Beyond

9.5.1 COMPASS

The COMPASS collaboration expects to begin full data taking in the year 2000, with a
preliminary run in 1999. The expected aggregate figure for the raw-events sample is 300TB
per year.

These data will be processed in parallel with the data acquisition. In this stage the
following main steps will be performed for all events: consistency checks of the data
sample, a full reconstruction of the tracking systems (and momentum measurement in the
two spectrometers), and part of the particle identification. The event information will be
combined with the output of calibration runs {(as alignment files) and with monitoring data.
All the data, both from physics and test triggers, and monitor data from the slow-control
system, will be stored in the same federated database. The output of this first processing
stage will be some 60TB new information (DST). Typically one full reprocessing stage can
be foreseen. The number of physicists involved in this stage will be relatively small - of the
order of 10.

Different DST sub-samples will be extracted using only the DST information; these data
will be stored on disk, requiring from 3 up to 20TB of disk space, depending on the physics
programme. Some 50 concurrent users and many passes through the data are expected.

Due to the aggregate size of the data and the complexity of the analyses, the integration
between the database technology and data mining tools is of primary interest for Compass.

9.6 Conclusions

The use of Objectivity/DB in a test-beam activity has been successfully demonstrated,
although the data rates involved were clearly much lower than expected at the LHC or for
NA45 and COMPASS. Further tests are planned during 1998, including data rates of
around 3-4MB/second for NA45.

A proof-of-concept interface between Objectivity/DB and HPSS has been successfully
demonstrated and all of the requirements for this version have been met. However, it
appears unlikely that the current interface can satisty the requirements for the production
version, particularly in the area of data rates. Current thinking suggests that a simple
staging interface is the most appropriate short-term solution to address these performance
problems, and such an interface will be developed and tested shortly.

81

RD45: A Persistent Object Manager For HEP

10 Extensions to ODMG-compliant Databases

Although the language bindings defined by the Object Database Management Group offer a
significant amount of functionality, it is clear that a general purpose standard cannot - by
definition - address the specific needs of a given community. Examples include distributed
database administration tools - where database administration is in any case outside the
scope of the ODMG - site management tools and application-specific extensions.

In order to facilitate the use of and ODBMS in the HEP environment, a small amount of
HEP-specific code has been developed. This code largely falls into two categories:

* Helper classes, distributed in the HepODBMS part of the overall LHC++ framework,
* Specific modules for the IRIS Explorer analysis and visualisation package.

These elements are described in more detail betow and in the LHC++ web pages’*.

A good introduction to C++ programming using ODMG-compliant databases can be found
in [33]. The standard itself is described in [23].

10.1 HepODBMS Extensions

In order to facilitate the development and support of persistent applications, a small
number of helper classes have been developed. These classes, which are distributed as a set
of class libraries as part of the overall LHC++ strategy, are referred to as HepODBMS.

The main goals of these classes are to:

* Minimise the dependence on given ODBMS implementation (vendor or release),
* Provide a higher-level interface to ODBMS.
e Minimise the effort involved in porting existing applications that require persistence.

10.2 HepExplorer Modules

HEPExplorer is a set of HEP-specific IRIS Explorer modules, developed in the context of
LHC++, which help a physicist set up an environment to analyse experimental data,
produce histograms, fit models and prepare data presentation plots using the IRIS Explorer
framework. IRIS Explorer itself is a toolkit for visualisation of scientific data, built on top
of industry standards such as OpenGL [30] and OpenInventor [31].

HEPExplorer consists of extensions to IRIS Explorer as follows:

4 gee http-/fwwwinfo.cern.ch/asd/Thc++/index.htm).

82

Status Report to the LCB, April 1998

¢ HEP-specific modules. Some modules allow for the retrieval, manipulation, fitting and
display of histograms stored in an Objectivity/DB database, while other modules allow
histograms to be produced out of existing event data.

¢ Maps'®. These HEP-specific maps implement simple analysis-related tasks, such as
visualise and fit a histogram, produce histograms out of tag data etc.

&
CRpSEsEr S g SR e AR A b AR AN

Figure 41 - Prototype of a Database Browser in IRIS Explorer

Figure 42 - Prototype Persistent Histogram Browser

1% In IRIS Explorer terminclogy, a map is an application built out of the basic IRIS Explorer building blocks, or modules. Maps can be
built out of modules from a variety of sources, such as standard, public domain and HEP-specific modules.

RDA45: A Persistent Object Manager For HEP

10.3 Calibration Database Prototypes

ODBMS-based calibration databases have been developed both in BaBar and CMS. The
basic functionality offered by the two systems is similar, and allows information to be
retrieved based upon a "validity time". Calibrations that are stored in the database have a
start and end validity time, as shown in the diagram below. The information that is
typically stored in such a database includes:

Electronics calibrations,

Detector alignments,
Trigger/Online/Detector configuration,
Reconstruction adjustable parameters.

* 0 »

Status Report to the LCB, April 1998

| 1 1 i !
| 1 | I i
1 1 1 1 I
| 1 1 1 I
1 } 1 i 1
1 1 1 i L}
1 1 1 i 1

Item 1

J !
t 1
1 1
F 1
1 4
I F
| 1
1 I
1 4
1 1
1 1

Item 2

Events ‘I ‘l ‘ ‘ ‘I

Time >

Figure 44 - Calibration Validity Time

It is often the case that improved calibrations are found later, often for a sub-interval of the
initial calibration validity range. Thus, one typically retrieves the most recently-inserted
constants for the time instant specified.

Insertion
Path #——@ time

1 i 1 i
1 H 1 i
Item 1 . : " '
1 i 1 1
1 i 1 ‘
1 t 1
i 1
1 I
t 1
t 1
f 1
i £ 1 1
Item 2 1 1 i] 1
1 1 i 1 i
1 1 f I i
' 1 i 1 1
Events ‘ ‘ ‘ ‘ ‘

Time >

Figure 45 - Multiple Calibrations

85

RDA45: A Persistent Object Manager For HEP

10.4 Database Administration Issues

Although the ODMG standard defines a number of language bindings, it does not attempt
to define database administration tools or interfaces. Databases such as Objectivity/DB
provide both command-line tools and the equivalent programming language interfaces.
However, these are typically not well adapted to the fully distributed environment. Hence, a
tool for monitoring and administrating an Objectivity/DB federated database has been
developed.

A first version of such as tool, named DRO_TOQOL, has been built using the
Objectivity/DB Java binding. Using this tool, the database administrator is able to observe,
control, and manage the basic federated database functionality as well as the autonomous
partition and data replication options.

The functionality of this tool is divided in three major groups:
1. configuration,

2. control,

3. statistics.

The configuration group is handles the functionality of the autonomous partition and data

replication options. In other words, it allows administrators to create or delete partitions,
replicate database images, vary partitions on/offline, resynchronise images and so on.

86

Status Report to the LCB, April 1998

FDDE CATALOG

02AP
"
AP Name = javatest
0N-LINE
AF File = localhost::c:\fddb_javatest)javatest.FDB

Boot File = gold::c:\yfddb_javatestilavatest
Jnl Dir = localhost::c:\fddb javatest
Lock Host = localhostc
DB Name = testJava.DB
Contained in = javatesat
DE ID =COM. objy.pm. ooId@2
DB Image Weight =1

DE Image File localhast:i:c:\fddb_Jjavateatite:
Number of replicas= 3
Nuunber of containers= 2

Figure 46 - The Data Replication Management Tool

The control group allows an administrator to monitor and control the database servers. This
is performed using the ObjectSpace Voyager product'®, which is also used to permit the
tool to run both as a stand-alone application and as an applet in a web browser.

The statistics group offers the possibility to run a number of tests to check data transfer
throughput of a given autonomous partition.

1S To quote ObjectSpace, "Voyager is the first ever 100% Java agent-enhanced Object Request Broker (ORB). It combines the power of
mobile autonomous agents and remote method invocation with complete CORBA support and comes complete with distributed services
such as directory, persistence, and publish subscribe multicast.”

87

RDA45: A Persistent Object Manager For HEP

Slatestics [Tmn:.ﬁ"Huur]

Statistics from the javi FDDB

1158,
7D EAW ,.VJ\TM E» J‘h [’I Mh’l |l
:965 5 PRI | /Uw W”U ngﬂ. ”'W" UV ll Mf\’ M W
: VAR Ll 110 ey
o

1z2:02 13 14 15 18 ” 1 16:36

Figure 47 - Performance Statistics from the Management Tool

We note that the current version is very much a prototype, and was initially built as a test of
the beta release of the Java binding. Once the Java binding has been officially released, we
would expect to design a more powerful tool, based upon the requirements of the
experiments and institutes involved. We also plan to evaluate any tools released with future
versions of Objectivity/DB, including Java-based data browers, such as the Hudson
package, developed by the distributors of Objectivity/DB in Germany'’.

17 See hup://www micram.de/ot/products/hudson/diver. him for further details.

Status Report to the LCB, April 1998

11 Tests of the Objectivity/DB Java Binding

11.1 Introduction

Along with many other ODBMS vendors, Objectivity announced a Java binding to their
database product during the past year. Although not scheduled for release until February-
March 1998, we have made a number of tests of the beta version of the binding, including
tests of language heterogeneity, i.e. the possibility to access persistent C++ objects from
Java applications and vice-versa.

The Java binding offers us the possibility for tools such as those described above but also
opens to us many ways to build flexible distributed architectures. Under the assumption
that both C++ and Java analysis applications might exist in the future, it is important to
understand any constraints imposed by the database binding and issues such as shared,
cross-language schema.

11.2 Impact on application development

As opposed to the C++ binding which relies on the application checking on the status code
returned by any database operations, the Java binding uses exception handling. In addition,
it supports garbage collection of objects that are no longer reachable.

Persistent Java objects can be clustered in two types of containers:

1. Garbage-Collectable containers: used to store directed graphs of objects that represent
composite objects. Applications do not need to delete objects that cease to be part of
the graph.

2. Non garbage-collectable containers: used to store objects that are not necessarily
connected to others.

In a mixed-language environment, it is clearly necessary to use features, such as non-
garbage collected containers, which are supported by all languages concerned.

The Java binding also provides a number of clustering classes. Two types of clustering are
supported:

1. Explicit clustering: calling the cluster method. As in C++ binding, an object can be
clustered close to another object, in a container or in a database.

2. Implicit clustering: every transaction has a clustering strategy that performs implicit
clustering for objects that are made persistent within that transaction. A user-defined
clustering strategy can be provided, such as where an object is assigned to a random
container in a pool of containers maintained by the database that contains the object.

0y

RD45: A Persistent Object Manager For HEP

As opposed to the C++ binding, where the schema of persistent capable classes must first
be defined, the Java binding permits the definition and creation of persistent classes at
runtime. The type number allocation is therefore necessarily dynamic, solving the schema
handling problems described in section 8.8.

The following figure shows the comparison in application development between the two
bindings:

- compile and link persistent - DDL Schema File
and non persistent java classes DDL

ﬂ processor

- Classes added to FDDB catalog

- Runtime: the schema is - Schema files are generated
generated automatically when
the application creates u
persistent objects or registers - compile and link application with
the class. The persistent schema Files
objects are stored in DB. ﬂ

- Runtime: application stores
persistent objects in DB

Figure 48 - Schema Definition in C++ and Java

11.3 Impact on DB/types

As mentioned in the Object Database Standard ODMG 2.0, the Java Binding does not
introduce new constructs specific to the database: the binding is perceived as part of the
Java language according to the following principle.

"The ODMG Java Binding is based on one fundamental principle: the programmer should
perceive the binding as a single language for expressing both database and programming
operations, not two separate languages with arbitrary boundaries between them. " [23]

Even though the binding fully accomplishes this requirement from the standard, mixed-
language applications still need to take into account the fact that not all types in Java have a
one to one mapping to those in C++.

90

Status Report to the LCB, April 1998

In the beta version of the binding, the oojVarray is not correctly mapped to 1ts C++
equivalent, ooVarray. This should be corrected in the production release. In addition, there
is currently no mapping between e.g. STL-based collection classes in C++ and Java
collections. We understand that this issue will be addressed in a future release of
Objectivity/DB.

11.4 Tests of Java Agents

The use of Java offers a number of interesting opportunities that extend the traditional
client-server architecture of Objectivity/DB. Not only can multi-tier applications be readily
implemented, but the use of Java agents provides a simple mechanism whereby the query
can be moved to the data, execute and then move the results back to the host from which
the user issued the query. For example, one could communicate from an applet activated
from a Web browser to a server that in turn communicates with the database. The applet
itself would not need to be linked against Objectivity/DB, nor would this software need to
be installed on the client computer.

11.5 Summary

The recently announced Java binding to Objectivity/DB appears to be well suited to the
development of tools for database management and configuration. The potential offered by
mobile Java agents and Java’s in-built network support is clearly worthy of detailed
investigation. Our main requirement with respect to the Java binding is that of full inter-
language operability with C++, which in turn requires a convenient mapping of the data
types of the two languages.

91

RD435: A Persistent Object Manager For HEP

12 Objectivity/DB Enhancement Requests

Our experience with Objectivity/DB has, as predicted, resulted in a number of
enhancement requests. These requests are fed-back to Objectivity by means of the regular
RD45 workshops and the Objectivity user meetings. The list of outstanding enhancements
is regularly reviewed, enabling us to follow up on these issues. A number of key
enhancements have already been addressed, such as the need for STL-based persistent
collection classes. Others are being worked on, such as an interface between
Objectivity/DB and HPSS. It is our understanding that our main enhancement requests will
all be addressed on an appropriate timescale; most, if not all, should be delivered in time
for BaBar/COMPASS production in 1999. Clearly, we will continue to come up with new
requirements, which we will prioritise and feedback to Objectivity. The main enhancement
requests are discussed in more detail below.

12.1 Support for STL-based Collection Classes

Previous versions of Objectivity/DB supported - in common with a number of other
ODBMS products - a persistent version of the Rogue Wave Tools.i++ collection classes.
However, with the emergence of the STL, the need for STL-compliant persistent
collections became clear. Such collections have been added to the C++ binding of version
2.0 of the ODMG specification. We therefore requested that Objectivity support such
collection classes and suggested that no further releases of their persistent version of the
Rogue Wave classes were required. As of the 5.0 release of Objectivity/DB, STIL-based
collection classes, using the ObjectSpace implementation, are supported as part of the
product. The previous Rogue Wave classes have been dropped.

12.2 ODBMS to MSS Coupling

Although, as described in [12], there is reason to be optimistic concerning the evolution of
storage capacity versus cost, it is still unlikely that multi-PB disk farms will be either
affordable or practical at the time of LHC startup. To solve this problem, the RD45
collaboration has studied a number of possible ways whereby an ODBMS, and
Objectivity/DB in particular, could be interfaced to a Mass Storage System. The MSS of
choice at CERN for the foreseeable future is the High Performance Storage Server, HPSS.
A training course on HPSS was held at CERN during October 1996, to which an
Objectivity engineer participated. As a result of this course, a proposal for integrating the
Objectivity/DB server (AMS) to HPSS via the HPSS client API was made. This proposal
was further discussed between members of the HEP community, representatives of the
HPSS consortium and Objectivity at a meeting at Objectivity’s headquarters in May 1997.
As a result of this meeting, Objectivity committed to producing a proof-of-concept
prototype by the time of SuperComputing 97, held in San Jose in November 1997, The
requirements for the prototype were as follows:

92

Status Report to the LCB, April 1998

¢ The Objectivity - HPSS proof-of-concept prototype should provide transparent client
access to a federation stored in HPSS-managed storage,

s The prototype should demonstrate client-transparent migration/staging of databases
to/from tertiary storage,

o A demonstration of sequential and random read & write access and creation/deletion of
databases should be made,

e A demonstration of access from Unix and NT clients should be performed.

Production requirements for the Objectivity/DB - HPSS coupling (see section 6.2.2 on
page 26) come from a number of experiments, including BaBar at SLAC, NA45 and
COMPASS at CERN, and of course the LHC experiments themselves. However, it is the
timescales of the pre-LHC experiments that dictate when a production version must be
ready. We have requested that a product be shipped no later than Q4 1998 - it being
understood that extensive testing would be performed at a number of HEP sites during the
latter half of 1998.

12.3 Architectural Changes to Support VLDBs

The current architecture of Objectivity/DB comprises:

e A federation, which consists of up to 2'® - 1 distributed databases, sharing consistent
schema and permitting transparent cross-database references,

» Databases, which today map to files, which are in turn made up of 2'* _ 1 containers,

e Containers, composed of up to 2'° - 1 logical pages,

e Pages, on which the objects themselves are stored (up to 2'% slots).

The database page size is a constant for the entire federation, and is limited to 2! bytes.

Theoretically, this architecture permits federations of up to 10'"° bytes. However, a number
of practical limitations mean that such sizes will never be achieved. The most important
limitation is that of the filesize. Here we feel that 100GB per database (file) is probably an
upper limit - today 1-10GB is perhaps more reasonable. As a rule-of-thumb, we feel that it
should be possible to migrate/recall a complete file (database) in 10? - 10° seconds. A file
of 100GB would require an overall, if parallelised, I/O bandwidth of 1GB/second to reload
in 100 seconds, whereas a 10GB file would require only 10MB/second to reload in 1000
seconds.

Using a maximum file/database size of 100GB - derived from the practical limits given
above - federations of 6.5PB are then possible. This would not, however, be sufficient to
store all data from a single LHC experiment. We have therefore asked for architectural
changes that permit 100PB federations, without imposing arbitrary constraints, such as
requiring containers or databases to be full to reach this limit.

RDA45: A Persistent Object Manager For HEP

12.4 Schema Handling Enhancements

Enhancements to the way in which the schema for persistent C++ classes are handled are
required such that it is easy and transparent to develop applications across multiple
federations. In other words, the developer should be able to build an application using a test
federation, and not the production federation of a given experiment. This would require, for
example, that no type numbers are hard-coded into the header files produced by the DDL
processor. An acceptable solution would be to adopt a similar mechanism to that employed
in the Java binding, where the type number of determined at run-time. Such changes should
be compatible with currently supported features, such as support for named schema, classes
of the same name, but in different named schema and for schema evolution.

12.5 Access Control Support

In the current version of Objectivity/DB, access control, based on client credentials, is not
supported. It is a requirement that such support be added to a future version of
Objectivity/DB. Such access control must work consistently across the entire federation, be
supported by both language bindings and tools and support both role-based (e.g. DBA) and
user-based activities. Given the difficulty of implementing a consistent authentification
scheme on all relevant nodes in a federation, exits, e.g. at database open time, where site-
specific code may be called would be a valid, if not preferred, solution.

12.6 ODMG Compliance

The C++ binding of Objectivity/DB is not fully ODMG-compliant in a number of areas.
For example, the ODMG specifies methods d_activate() and d_deactivate(), which are
called when an object enters or leaves scope. It is a requirement that fully ODMG-
compliant bindings be provided for all of the languages of interest to HEP (C++, Java),
although vendor extensions, for the purpose of performance, are acceptable if clearly
marked as such. The Objectivity/DB documentation and training material should be based
on the corresponding ODMG language binding.

12.7 Support for the Linux Operating System

Interest in running a version of Unix on cheap commodity processors - i.e. Intel Pentium
and similar - has grown considerably over the past two years. The Linux operating system
has clearly emerged as the preferred Unix for PCs within the HEP community. This has
resulted in a number of informal requests to Objectivity to include Linux in the list of
supported platforms. At the time of writing, it is our understanding that Objectivity will
provide support for Linux in a future release for a wel-defined operating system and
compiler combination, such as Red Hat 4.1 and g++ 2.7.2.

94

Status Report to the LCB, April 1998

13 Standards Activities

In the context of RD45, CERN has associate membership of the Object Management
Group (OMG) and is a reviewer member of the Object Database Management Group
(ODMG). CERN is also represented in the IEEE Computer Society Executive Committee
on Mass Storage, which is the body to which the various standards sub-groups report. As in
previous years, CERN has only participated actively in the ODMG.

13.1 ODMG-related Activities

During the past year, the ODMG released V2.0 of its book, defining the object model for
object databases and the various language bindings. This version of the standard is viewed
as being a significant improvement over previous versions. The main changes are:

e The adoption of STL collection classes,
¢ A new Java binding.

The release version 2.0 marked a turning point in the ODMG. The working groups, which
previously met 8 times per year, now meet less frequently: as little as three times a year for
the C++ working group. Effort will continue on issues such as Java, but many of the other
bindings can now be considered more or less stable. Other changes are being discussed,
such as a broadening of the ODMG charter to include persistent objects for relational
mappings and application servers, rather than just object databases.

Although most of the ODMG meetings are held in the US, a meeting was held in July 1997
in Annecy. It was at this meeting that the priorities for post-V2.0 work were discussed. Of
the enhancements proposed by the voting members'®, the main priorities, from the CERN
point of view, were:

e Support for int64 type,

e Collection classes for the Java binding, based on the ObjectSpace generic collection
library for Java (JGL) collection classes,

e Support for distributed databases in the ODMG model,

s A proposal for changes to the Java Virtual Machine (JVM) to be submitted to JavaSoft,

¢ Support for typed collections {templates) for the Java binding.

Given the reduction in ODMG activities, it is felt that CERN should reduce its
participation accordingly, attending approximately 1 meeting per year, rather than 2 out of
4, as has been the case so far. However, it should be noted that the benefits of involvement
in the ODMG go beyond the possibility of influencing the standard itself. Firstly, they
allow us to have access to information concerning new ODMG features before they appear

'¥ Under ODMG rules, voting members are those that ship a commercial ODBMS, or have implemented or announced implementation
of one of the ODMG bindings. Although this latter clause - a recent revision - would theoretically permit CERN to acquire voting
rights, we would then be required to devote significantly more resources to ODMG activities than can currently be envisaged.

RDA45: A Persistent Object Manager For HEP

in the published standard, which allows us to put pressure on the suppliers to implement
the new features in a timely manner. In addition, the ODMG meetings offer an excellent
opportunity to meet developers from the various database vendors and also allow the work
at CERN to be more widely exposed. For example, the joint ODMG/JavaSoft press release
concerning the ODMG binding for Java contained statements from many database vendors,
but only a single end-user site, namely CERN.

96

Status Report to the LCB, April 1998

14 General Database Activities

In addition to the work-items related to the LCB milestones and recommendations, the
following activities are worthy of note.

14.1 Objectivity/DB Workshops

As in previous years, we have held a series of RD45 workshops at CERN. These have been
well attended by members of experiments both at CERN and outside, and also by people
from other (non-HEP) ODBMS-based projects. These workshops have been extremely
useful for discussing and sharing ideas and experiences between different groups, and for
feeding back information on enhancement requests to Objectivity. However, as the number
of participants has grown, the workshops have evolved from informal working sessions to
more formal presentations. We have therefore started a series of mini-workshops, focussed
on very specific issues. The first such workshop, discussing event collections and related
issues, took place at CERN from February 19-25 1998,

14.2 Objectivity/DB User Meeting

As in previous years, an Objectivity/DB Developers’ Conference was held in Santa Clara in
May 1997. This conference, which offers an excellent opportunity to meet other
developers, e.g. working on the MOTOROLA Iridium'® project or the Sloan Digital Sky
Survey™®, and Objectivity engineers. As in the past, a paper on RD45 was presented, giving
both a brief status of the project and a list of the main outstanding enhancement requests.
At the conference, Objectivity announced their plans to support an interface to the HPSS
system, which had only formally been requested a few days previously, at a joint meeting
between various HEP laboratories and representatives from the HPSS consortium and

- Objectivity.

14.3 Licensing Issues

Based on larger volumes, we have now been able to obtain even better discounts than in the
past. Similar discounts are also available for other HEP laboratories, several of which have
acquired licenses for their own research programme (BNL, DESY, KEK, SLAC etc.) It has
recently been agreed that the funding of license acquisition and associated maintenance
costs for CERN experiments and collaborating institutes will be handled by the annual
COCOTIME allocation of computing infrastructure. Experiments will be asked to estimate
their requirements for the coming year and the necessary funds provided centrally through
CERN. An amendment to the CERN contract with Objectivity has been negotiated, such
that licenses may float across all institutes collaborating in the CERN research programme,
within the limit of the total number of licenses available. The possibility of unlimited usage
on the CERN site is being investigated.

'% See the Motorola Web site or http:/www.mot.com/General/Events/Interactive Telecom/satcom/Eridium_html,
% See hitp:/fwww-sdss.fnal gov:8000/,

RDA5: A Persistent Object Manager For HEP

14.4 Objectivity/DB Support

During the past year, Objectivity introduced Web-based access to their support team. This
allows registered users - a few people per experiment and members of the TT/ASD group -
to query the internal problem database and see much more detailed information on the
status of problem reports than was previously possible. This web site complements the
standard e-mail support and the on-site consultancy organised principally via the RD45
workshops.

98

Status Report to the LCB, April 1998

15 Other Database Developments

The Object Database market continued to evolve over the past 12 months. Of the events
that have occurred, we believe the following to be of most significance:

e The size of the market is estimated to have grown to $150-$200M. The growth rate is
estimated to be 45% - exceeding the growth rate of the RDBMS vendors. Should this
rate remain constant, then the total market will exceed $1B in around 2001/2002.

e The emergence of the ODMG Java binding for Object Databases, and compliant
bindings from a number of vendors.

e O, was taken over by the US-based Unidata. Unidata itself was subsequently taken over
by VMARK?', a competitor of Unidata. Both Unidata and VMARK have traditionally
competed in the RDBMS market. It appears that they will follow the strategy of
offering a "universal server”, in common with other RDBMS vendors. The new
company is now called Ardent Software®.

e POET has forged strategic links with both Microsoft and Novell. Their product now
has a number of features that only work on Microsoft platforms (NT, 95) and rumours
continue to circulate that they will be acquired by Microsoft.

» Computer Associates delivered its "Jasmine” ODBMS product, based upon work by
Fujitsuw/ICL. This is considered important in that it is the first time that a large software
company implicitly acknowledges the importance of the ODBMS market.

o Objectivity refocussed on its "core business”.

During the second half of 1996 and 1997, Objectivity was apparently gearing up to go
public. This manifested itself by a rapid increase in personnel and a new management
structure. At the same time, a new division, AZIZA, was formed. The AZIZA diviston
focussed on an Objectivity/DB-based web management tool of the same name. Although
this tool had many interesting features in its own right and had the additional benefit of
stress-testing many of the newer features in Objectivity/DB, it appeared to be diverting too
many resources from the base product. During the second half of the year, the company
split off the AZIZA division and restructured to focus on its database product. We believe
that this restructuring was both important for CERN/HEP and necessary for the company.
We have seen a marked improvement in response to our requests for enhancements since
the change - the company policy is now clearly to focus on the high-end and become the
Object Database of choice for this market segment. Clearly, the company will have a
challenging year or two ahead, to truly establish itself as the leader in this market. Here,
Objectivity as a company understand that satisfying the requirements of the HEP
community - such as for an interface to HPSS - give them a significant advantage over their
competitors.

21 See, for example, the letter to customers available via http://www.vmark.com/merger/customer. html.
%2 See hitp://www.ardentsoftware_.com.

99

RD45: A Persistent Object Manager For HEP

16 Use Of Objectivity/DB in HEP

We list below the experiments that are currently using or testin g Objectivity/DB-based
solutions.

16.1 AMS

The Alpha Magnetic Spectrometer™ is an experiment that will take data first on the NASA
space shuttle - launch date May 1998 - and later on the International Space Station. The
physics goals of the experiment are to perform an antimatter and dark matter search. The
AMS collaboration has been using Objectivity/DB in test and plan to use it to store their
production data, slow control parameters and NASA auxiliary data.

16.2 ALEPH

The Aleph collaboration has recently started an exercise whereby their mini-DST will be
copied from its existing ADAMO-based format to Objectivity/DB. The purpose of the
exercise is to gain experience with more "modern" analysis tools, i.e. those currently
proposed as part of the LHC++ strategy.

16.3 ALICE

The ALICE offline team is currently focussing on GEANT-4. At the time being, it has no
explicit activities in the context of RD45. During 1998, it will begin to study
Objectivity/DB-based solution, but again only in the context of GEANT-4,

16.4 ATLAS

The ATLAS collaboration is developing a number of prototype applications using
Objectivity/DB in both on- and off-line communities. These include providing access to
GEANT-3 simulation data stored in Objectivity/DB and will naturally evolve to storing the
hits, digits, etc. from ATLAS GEANT-4 simulation and the results of the reconstruction in
Objectivity/DB. In addition, attempts are being made to store the detector description in
Objectivity/DB, and to develop various online applications, such as a run booking system
and calibration database on top of the system.

16.5 BaBar

The BaBar experiment at SLAC, due to start taking data in 1999, plan to use a combination
of Objectivity/DB and HPSS in which to store their data. They currently expect to record
some 200TB of data per year, all of which will be stored as persistent objects in an

2 See http:/fhpl3tril.cern.cl/ for more details.

100

Status Report to the LCB, April 1998

Objectivity/DB federated database. The majority of the associated storage would be
managed by HPSS.

16.6 BELLE

The Belle experiment at KEK starts taking data in fall of 1998 and plans to use
Objectivity/DB to store the detector constants. They also hope to store mini/micro DST
using Objectivity for rapid data analysis. Future mass storage plans are currently being
developed in conjunction with the KEK computing centre.

16.7 CDF

The CDF Collaboration is currently evaluating Objectivity/DB as a possible data
management system for their RUN-II, which is expected to begin in 2000 and collect about
450 TB of data within a two year period. Prototype databases containing the RUN-I data
have been created, and valuable experience has been gained in the area of optimisation of
the database parameters depending on the data model used. The data modet proposed for
RUN-II is similar to that of ATLAS or Babar, with all data (or, initially, just the
reconstructed information) stored as persistent objects in an Objectivity/DB federated
database. It is anticipated that an HSM (HPSS is proposed at present) will be used to
manage the tape storage. An interface between Objectivity/DB objects and the currently
used YBOS (TRYBOS) records has been developed and tested, as many reconstruction
algorithms will still be FORTRAN based. At present, a prototype database that realises this
new data model is being developed. The CDF Collaboration is expected to make the final
decision in May 1998.

16.8 CHORUS

The CHORUS collaboration is using Objectivity/DB for an online emulsion scanning
database. There are plans to use the same application at a number of collaborating
institutes. As a by-product of this activity, they will also evaluate Objectivity/DB as a
potential solution for the proposed TOSCA experiment.

16.9 CMS

The CMS collaboration is using Objectivity/DB for a number of prototype applications,
including the test beam activities, discussed earlier in this report. As with ATLAS, the
current baseline assumption is that the event and associated data will be stored as persistent
objects in an object database, combined with a mass storage system. Currently, it is
assumed that this will be Objectivity/DB together with HPSS.

16.10 COMPASS

The COMPASS collaboration plans to use Objectivity/DB to store all of its experimental
data (300TB raw data per year). In the framework of the prototyping of the COMPASS

1!

RD45: A Persistent Object Manager For HEP

computing farm, a test at full data rate (35 MB/s) will be performed at the end of 1998.
Data from the central data recording will be sent to a federated database and the integration
with HPSS will be also tested.

16.11 LHCb

The LHCb collaboration are currently writing their technical proposal and notes. During
the current year, the main emphasis will be on GEANT-4 related issues, including the
design of the geometry database, the implementation of GEANT-4 within LHCb and
designing high-level event classes. General topics for 1998 include event collections,
replication and remote access to data and C++ and Objectivity/DB training.

16.12 LEP Data Archive

A project has recently been proposed™ whereby existing LEP data would be archived for a
period of some 30 years. Over such a long period of time, it is assumed that little of today’s
computing environment would remain. In particular, it has been assumed that the current
CERN Program Library, existing operating systems and the Fortran programming language
will not longer exist. It is estimated that a few TB of data per experiment will need to be
converted and stored, giving a total data volume of perhaps 20TB. It is currently assumed
that the data will be stored in Objectivity/DB and that a demonstration of an analysis
against the database made.

16.13 NA45

NA45 have been using Objectivity/DB in production since early 1996. A number of
production runs have been performed, with a total data volume of some 30GB. For 1998,
their plans are to make tests of Objectivity/DB together with central data recording and
HPSS, in preparation for their 1999 data taking run, where some 30-50TB of data are
expected.

16.14 NA4S8

NA48 have a detector configuration management application based on Objectivity/DB.
Recently, a new project has been initiated to optimise access to physics data by storing
compact micro-DST information and perhaps more in Objectivity/DB. This project is
similar in conception to that undertaken by ZEUS.

16.15 RHIC Experiments

The RHIC experiments at Brookhaven plan to adopt a common strategy for their data
storage. The current plan is that this will be based, as at other laboratories, on a
combination of Objectivity/DB and HPSS. Experiments involved include BRAHMS,

™ See http://wwwinfo.cern ch/s/sticklan/www/archive/ for more details,

102

Status Report to the LCB, April 1998

PHENIX, PHOBOS and STAR. Data volumes for both PHENIX and STAR are expected
to be around 200-300TB/year.

16.16 ZEUS

The ZEUS experiment has built a tag database on Objectivity/DB, which has been used in
production since the end of 1997. This database has been built from the physics data in the
ADAMO [24] database. The new system offers considerably more flexibility than was
possible in the past. For example, instead of selecting on a combination of 128 bits, the
definition of which changed with time, the user is now able to select using a more
meaningful predicate string. In addition, predefined "named” samples can be defined,
convenient for frequently used samples. The new system has proved popular with the
physicists, not least as it offers improved performance - a direct result of reading only the
required data.

103

RDA45: A Persistent Object Manager For HEP

17 Future Activities

17.1 Executive Summary

In the original RD45 project proposal (CERN/DRDC 94-50), three phases were
anticipated. The first phase, which lasted approximately 6 months and at the end of which
time an interim status report was made to the LCRB, was devoted to obtaining a better
understanding of the problem and a preliminary list of requirements. These requirements
are listed in the status report for the first year [11]. This was followed by a second stage, in
which detailed prototyping and performance comparisons were undertaken [4] [5] [6] [7].
It is the opinion of the RD45 collaboration that both of these two phases have now been
completed. Furthermore, we believe that the project has achicved its stated goals of
identitying a solution to the object persistence problems of the LHC experiments. We
suggest that the project now enter the third phase foreseen at the time of the project
proposal, namely that of implementation. This phase is expected to consist of two
elements:

1. Production services, based upon the possible solutions evaluated durin g phase 2 of the
project, i.e. Objectivity/DB, HPSS and the HepODBMS class libraries,

2. Further R&D into areas where questions still rernain. The list of such issues is currently
being compiled together with the LHC experiments.

17.2 Introduction

The LCB/RD45 project has been studying issues related to the problems of object
persistency since 1995. As an LCB project, the focus has clearly been on the needs of the
LHC experiments. As described in the various RD45 status reports, a strategy has been
built up, in close collaboration with the experiments, based on the use of two commercial
components - namely Objectivity/DB and HPSS - with a small number of HEP-specific
extensions. This strategy has been adopted by a number of pre-LHC experiments, including
COMPASS and NA45 at CERN, BaBar at SLAC and the RHIC experiments at
Brookhaven. In addition, there are numerous projects, both at CERN and outside, based
upon Objectivity/DB alone. These include activities in CHORUS, NA45, NA48 and the
LEP experiments. Finally, as agreed at the 1997 COCOTIME review, there is a need for
production Objectivity/DB federations in 1998 for both ATLAS and CMS: systems on
which to run these services are being acquired now by IT/PDP.

In summary, there are many requests for general-purpose production services at CERN,
based upon Objectivity/DB. We discuss below how these services could be established and
how the research issues related to the object persistency services for the LHC experiments
could be addressed.

104

Status Report to the LCB, April 1998

17.3 Production Services

We propose that IT division begin to offer data management services, based upon
Objectivity/DB and HPSS. IT/ASD group offer ODBMS services, similar to the current
services based on ORACLE for RDBMS applications. IT/PDP would be responsible for
1ssues related to HPSS and the data servers on which the Objectivity/DB server and HPSS
client would run. Clearly, a detailed service definition needs to be drawn up by IT/ASD and
PDP groups. For the purposes of this document, we focus on those issues that will be
handled by I'T/ASD group.

IT/ASD group would:

® Acquire and install the Objectivity/DB software on the central services at CERN, e.g.
AFS and NICE,

e Handle license management, software distribution, documentation and related issues,

¢ Provide user-support and consultancy services to users and experiments building and/or
deploying applications based upon Objectivity/DB,

* Provide both user guides and reference manuals for any applications or tools that are
developed, such as the existing DBA tools, the HepODBMS class library and the
prototype calibration database,

¢ Implement a problem tracking system, in common with the rest of LHC++,

¢ Organise e-mail distribution lists of the distribution of general information and for
detailed discussions (e.g. the event collection discussion list),

e Continue to organise regular, video-conferenced meetings and workshops with the user
community to understand their requirements,

e Report on an annual basis to the LCB and other bodies (FOCUS, HEP-CCC, CHEP
etc.) on the status of these services,

e Ensure consistency between Objectivity/DB-based services and those based upon other
components of LHC++,

¢ Provide and support HEP-specific extensions as required, such as the HepODBMS
class library, database browsers for use with IRIS Explorer and stand-alone, database
configuration and management tools etc.,

¢ Liase with Objectivity concerning release schedule, bug fixes and enhancement
requests,

e Participate in Objectivity/DB User Group meetings.

17.4 Research Activities

We believe that the RD45 project has attained its primary goal of identifying a solution to
the problem object persistency. Clearly, there are many issues that still need to be pursued,
such as the outstanding list of enhancement requests, including the production version of
the Objectivity/DB - HPSS interface. In addition, there are many associated issues that
have not yet been addressed, such as methods of optimising data access and management in

105

RDA45: A Persistent Object Manager For HEP

a fully-distributed environment, the impact on networking costs, new technologies such as
agents, and so forth. Furthermore, neither Objectivity/DB nor HPSS have yet proven
themselves in production environments with data volumes of the order of many hundreds
of TB. In this respect, we anticipate that much will be learnt from the experiences of high-
data volume, pre-LHC experiments such as BaBar, COMPASS, CDF, D0, PHENIX, STAR
and others.

Many of these issues are best addressed as part of the general Objectivity/DB services, such
as those proposed. Others require further research and development, but perhaps on
somewhat longer timescales than in the past.

17.5 Summary

We believe that the RD45 project will have attained its primary goal of identifying a
solution to the problem of providing object persistence services for event and other data for
the LHC experiments by the time of the April 1998 LCB review. We recommend the
setting up of production, ODBMS-based services, using the technologies and solutions
identified in this work. Further investigation into topics identified by the LHC experiments
and/or the LCB would continue to be addressed on a timescale compatible with the needs
of the experiments and of the available resources.

106

Status Report to the LCB, April 1998

18 Proposed Milestones for 1998-1999

As described above, we believe that the main research phase of the RD45 project, namely
to research into and propose solutions to the "object persistency” problems of the LHC
experiments, to have been completed. A logical next phase would be the setting up and
running of production services for general CERN use. Even though this phase would be
labelled as "production”, there would clearly be on-going developments, continued
discussion with Objectivity on enhancement requests, further prototyping of ODBMS-
based applications and class libraries and so forth.

The key achievements of the RD45 project over the past years have been as follows:

1995: evaluation of ODMG ODL, ODBMS+MSS prognosis, proposal of ODBMS+MSS
as “solution”

1996: impact of using an ODBMS, evaluation of ODBMS features, performance
comparison, risk analysis

1997: demonstration of ODBMS in data-taking, simulation, reconstruction and analysis
scenarios up to 1TB

We see the natural evolution of this trend as being:

1998: together with IT/PDP group, set up production services up to 10TB
1999: production usage by BaBar, BELLE, COMPASS, NA45, BRAHMS, PHENIX,
PHOBOS, STAR, ZEUS ...

Over the past years, the fraction of RD45's activities devoted to production-related work
has increased significantly. There are now several experiments at CERN using
Objectivity/DB in production, and both NA45 and COMPASS intend to use it, together
with HPSS, for their production runs in 1999. Preparing for these runs will be an important
component of the activities of the coming year. However, we believe that these are best
covered outside of an R&D project, e.g. as part of a standard service offered by IT division,
in collaboration with the experiments.

We therefore suggest the following activities for the next 18 months:

1. Provide, together with FT/PDP group, production data management services based on
Objectivity/DB and HPSS with sufficient capacity to solve the requirements of ATLAS
and CMS test-beam and simulation needs, and COMPASS and NA45 tests for their *99
data-taking runs.

2. Develop and provide appropriate database administration tools, (meta-)data browsers
and data import/export facilities, as required for the above.

3. Develop and provide production versions of the HepODBMS class libraries, including
reference and end-user guides.

RD45: A Persistent Object Manager For HEP

4. Continue research, based on input and use cases from the LHC collaborations, in the
following areas to provide results in time for the next versions of the ATLAS and CMS
Computing Technical Proposals (2™ half of 1999):
¢ Database usage over a wide area network,
¢ Clustering/reclustering strategies,

e Interface to MSS.

108

Status Report to the LCB, April 1998

19 Conclusions

The RD45 project was approved in 1995 to investigate and propose solutions to the
problems of handling the persistent objects of the LHC experiments: event data, calibration
data, histograms and so forth. Strong emphasis has been placed on the potential use of
standards-conforming, widely-used (commodity) solutions. At an early stage of the project,
a potential solution, based upon an Object Database Management Group (ODMG)-
compliant Object Database (ODBMS), coupled with a Mass Storage System (MSS) built
according to the IEEE Computer Societies Reference Model for Mass Storage Systems,
was identified. This potential solution has been the primary focus of our activities, although
we have continued to monitor and evaluate alternatives. The preferred components of this
solution are built on top of Objectivity/DB and HPSS, coupled with a small quantity of
HEP-specific code. This solution has adopted in part (i.e. Objectivity/DB only) or in its
entirety by a growing number of experiments at CERN and outside. Objectivity/DB is used
for production purposes by several experiments and will. together with HPSS, form the
basis of the event storage for many of the experiments that are due to start taking data in or
around 1999.

The manpower savings that have been possible by adopting such a solution are already
significant. In addition, the functionality provided is much greater than that offered by
previous, HEP-specific solutions. The combination of these factors will help us to cope
with the much greater volumes of data that we will have to deal with, with increased
flexibility, whilst remaining within foreseen man-power constraints.

109

RD45: A Persistent Object Manager For HEP

20 Previous Milestones and Recommendations

We list below the milestones and recommendations from previous reviews of the RD45
project.

20.1 Milestones at the end of the first year (1996)

1. Identify and analyse the impact of using an ODBMS for event data on the Object
Model, the physical organisation of the data, coding guidelines and the use of third
party class libraries.

2. Investigate and report on ways that Objectivity/DB features for replication, schema
evolution and object versions can be used to solve data management problems typical
of the HEP environment

3. Make an evaluation of the effectiveness of an ODBMS and MSS as the query and
access method for physics analysis. The evaluation should include performance
comparisons with PAW and Ntuples.

20.2 Initial Milestones and Recommendations (1995)

RDA45 (P59) should be approved for an initial period of one year. The following milestones

should be reached by the end of the first year.

1. A requirements specification for the management of persistent objects typical of HEP
data together with criteria for evaluating potential implementations.

2. Anevaluation of the suitability of ODMG'’s Object Definition Language for specifying

an object model describing HEP event data.

3. Starting from such a model, the development of a prototype using commercial
ODBMSs that conform to the ODMG standard. The functionality and performance of
the ODBMSs should be evaluated.

It should be noted that the milestones concentrate on event data. Studies or prototypes
based on other HEP data should not be excluded, especially if they are valuable to gain
experience in the initial months.

1i0

Status Report to the LCB, April 1998

21 Glossary

ADAMO - a system, developed in the ALEPH collaboration, based on the Entity-
Relationship (ER) model.

ADSM - A storage management product from IBM

AFS - the Andrew (distributed) filesystem

CASE - Computer Aided Software Engineering

CORBA - the Common Object Request Broker Architecture, from the OMG
CORE - Centrally Operated Risc Environment

CWN - Column-wise Ntuple

CTP - Computing Technical Proposal

DFS - the OSF/DCE distributed filesystem, based upon AFS
DMIG - the Data Management Interface Group

EDMS - Engineering Data Management System

GB - 10° bytes

HPSS - High Performance Storage System - a high-end mass storage system developed by
a consortium consisting of end-user sites and commercial companies

IEEE - the Institute of Electrical and Electronics Engineers
KB - 2'* (1024) bytes - normally referred to as 10° bytes
LCB - LHC Computing Board

LCRB - LHC Computing Review Board

LIGHT - Life Cycle Global Hypertext

MB - 10° bytes

MSS - a Mass Storage System

NES - the Network Filesystem, developed by Sun
ODBMS - an Object Database Management System

ODMG - the Object Database Management Group, a group of database vendors and users
that develop standards of ODBMSs

OID - Object Identifier

OMG - the Object Management Group

OOQFS - the Objectivity/DB Open FileSystem

OQL - the Object Query Language defined by the ODMG
ORB - an Object Request Broker

i

RD45: A Persistent Object Manager For HEP

OSM - Open Storage Manager: a commercial MSS

PAW - the Physics Analysis Workstation

PETASERVE - an MSS based upon OSM

PB - 1015bytes

RWN - Row-wise Ntuple

SHORE - Scalable Heterogeneous Object REpository

SQL. - Standard Query Language: the language used for issuing queries against databases
SSSWG - the Storage System Standards Working Group

STL - the Standard Template Library: part of the draft C++ standard albeit in a modified
form

TB - 10" bytes

TOOLS . H++ - a former de-facto standard container/collection class library, largely made
redundant by the collections provided in the standard C++ library

VLDB - Very Large Database

VLM - Very Large Memory

VMLDB - Very Many Large Databases

XBSA - the draft X/Open Backup Services Application Program Interface

12

Status Report to the LCB, April 1998

22 References

[1] RD45 - A Persistent Object Manager for HEP, LCB Status Report, March 1998,
CERN/LHCC 98-11

[2] Using an Object Database and Mass Storage System for Physics Production [to be
completed.]

[3] RD45 Project Execution Plan, 1997-1998, April 1997, CERN/LCB 97-10

[4] RD45 - A Persistent Object Manager for HEP, LCB Status Report, March 1997,
CERN/LHCC 97-6

[S] Obiject Databases and their Impact on Storage-Related Aspects of HEP Computing,
the RD45 collaboration, CERN/LHCC 97-7

[6] Object Database Features and HEP Data Management, the RD45 collaboration,
CERN/LHCC 97/8

[7] Using and Object Database and Mass Storage System for Physics Analysis, the RD45
collaboration, CERN/LHCC 97-9

[8] Where are Object Databases Heading? CERN/RD45/1996/4
[9] Why Objectivity/DB? CERN/RD45/1996/6
[10] Objectivity/DB Database Administration Issues. CERN/RD45/1996/7

[11] RDA45 - A Persistent Object Manager for HEP, LCRB Status Report, March 1996,
CERN/LHCC 96-15

[12] Object Databases and Mass Storage Systems: The Prognosis, the RD45 collaboration,
CERN/LHCC 96-17

(13] Object Data Management. R.G.G. Cattell, Addison Wesley, ISBN 0-201-54748-1
[14] DBMS Needs Assessment for Objects, Barry and Associates (release 3)

[15] The Object-Oriented Database System Manifesto M. Atkinson, F. Bancilhon, D.
DeWitt, K. Dittrich, D. Maier, and S. Zdonik. In Proceedings of the First International
Conference on Deductive and Object-Oriented Databases, pages 223-40, Kyoto,
Japan, December 1989. Also appears in [20].

[16] Object Oriented Databases: Technology, Applications and Products. Bindu R. Rao,
McGraw Hill, ISBN 0-07-051279-5

[17] Object Databases - The Essentials, Mary E. S. Loomis, Addison Wesley, ISBN 0-201-
56341-X

{18]) An Evaluation of Object-Oriented Database Developments, Frank Manola, GTE
Laboratories Incorporated

[19] Modern Database Systems - The Object Model, Interoperability and Beyond, Won
Kim, Addison Wesley, ISBN 0-201-59098-0

113

RD45: A Persistent Object Manager For HEP

[20] Objets et Bases de Données - le SGBD O,, Michel Adiba, Christine Collet, Hermes,
ISBN 2-86601-368-9

[21] Object Management Group. The Common Object Request Broker: Architecture and
Specification, Revision 1.1, OMG TC Document 91.12.1, 1991.

[22] Object Management Group. Persistent Object Service Specification, Revision 1.0,
OMG Document numbers 94-1-1 and 94-10-7.

[23]) The Object Database Standard, ODMG-93, Edited by R.G.G.Cattell, ISBN 1-55860-
302-6, Morgan Kaufmann.

[24] ADAMO Reference Manual, CERN ECP

[25] HBOOK - Statistical Analysis and Histogramming Package - CERN Program Library
Long Writeup, Y250

[26] PAW - the Physics Analysis Workshop - CERN Program Library Long Writeup,
Q121

[27] ATLAS Computing Technical Proposal, CERN/LHCC 96-43
[28] CMS Computing Technical Proposal, CERN/LHCC 96-45

[29] HEPDB - A Distributed Database Management System, CERN Program Library Long
Writeup Q180

[30] OpenGL Reference Manual, ISBN 0-201-63276-4, Addison Wesley, 1992.
{31] Openknventor Reference Manual, ISBN 0-201-62491-5, Addison Wesley, 1994,
[32] IRIS Explorer User Guide, ISBN 1-85206-110-3, 1995.

[33] C++ Object Databases - Programming with the ODMG Standard, David Jordan,
Addison Wesley, ISBN 0-201-63488-0, 1998

[34] The CMS H2 Object Oriented Reconstruction Project.

[35] The CMS X5 Object Oriented Reconstruction Project,
http://emsdoc.cern.ch/~lucia/tbeam/O0 stalf/x5o0.html.

[36] Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm,
Johnson, Vlissides, htp://consult.cern.ch/bogks/0201633612.

[37] STL Tutorial and Reference Guide: C++ Programming with the Standard Template
Library, David R. Musser, Atul Saini, Addison Wesley, ISBN 0-201-63398-1

[38] Object Databases in Practice, Prentice Hall, ISBN 0-13-899725-X.

114

