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Abstract. We present one- and two-jet inclusive cross sections for γ∗γ scattering
and virtual photoproduction in ep collisions. The hard cross sections are calculated
in next-to-leading order QCD. Soft and collinear singularities are extracted using the
phase-space-slicing method. The initial state singularity of the virtual photon depends
logarithmically its’ virtuality. This logarithm is large and has to be absorbed into
the parton distribution function of the virtual photon. We define for this purpose an
MS factorization scheme similar to the real photon case. We numerically study the
dependence of the inclusive cross sections on the transverse energies and rapidities of
the outgoing jets and on the photon virtuality. The ratio of the resolved to the direct
cross section in ep collisions is compared to ZEUS data.
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1 Introduction

The topic of this work is the structure of the virtual photon as it can be deter-
mined in jet production in high energy collisions. In particular, we will study
electron proton scattering as is explored at HERA and the scattering of virtual
on real photons as is possible at e+e− colliders.

In the parton model [1] a hadron is thought to consist of point-like particles
that can be identified mainly with the valence quarks. The valence quarks are
surrounded by a sea of virtual quarks and are bound by gluons. These parti-
cles obey the laws of Quantum Chromodynamics (QCD) which is a non-abelian
SU(3) gauge theory [2]. Hadrons are usually probed in high energy scattering ex-
periments. These experiments involve contributions from a wide range of scales.
An important property of QCD is its asymptotic freedom [3], which states that
the coupling between quarks and gluons vanishes for asymptotically small dis-
tances. Factorization theorems allow a separation of the short and the long dis-
tance contributions of the high energy scattering (for reviews on this subject see
[4, 5]). This permits the application of perturbative QCD to calculate the hard
part of the cross section. The contributions from long distances are parametrized
by the parton distribution functions (PDF’s).
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At the HERA collider at DESY, the scattering of leptons on protons pro-
duces jets with large transverse energies ET . The ZEUS and H1 collaborations
have observed an important fraction of events at small virtualities P 2 ' 0 of the
exchanged photon [6, 7]. The lepton is only weakly deflected in these so-called
photoproduction events, so that it escapes unobserved in the beam direction. The
momentum spread and the slight off-shellness of the photons that are radiated
by the lepton, is described by the Weizsäcker-Williams formula [8], where the
photons are assumed to be real (P 2 = 0). The exchange of the other electroweak
gauge boson, Z0, is largely suppressed for photoproduction and can be neglected.
The transverse energy ET serves as the large scale in photoproduction, which
allows a perturbative calculation of the hard part of the scattering. In leading
order (LO) two different processes can be identified in the hard cross section. In
the direct interaction, the photon couples as a point-like particle to the partons
from the proton, leading to the Compton scattering and the photon-gluon fusion
subprocesses. In the resolved interaction, the photon acts as a source of partons,
which can interact with the partons from the proton. The resolved photon is
described by the photon PDF. For quasi-real photons with virtuality P 2 ' 0 the
parton content is constrained reasonably well by data from deep-inelastic γ∗γ
scattering [9, 10]. Both LO processes produce two outgoing jets with large ET .
Studies of photoproduction events with two jets in the final state at HERA have
shown that both, the direct and the resolved processes are present for photons
with very small virtuality P 2 ' 0 [6, 7]. Comparisons between theoretical pre-
dictions for dijet photoproduction rates and the data from [6, 7] have been done
in [11, 12, 13].

For the comparison between the data on jet cross sections and the theoretical
predictions in [11, 12, 13], the hard part of the scattering has been calculated
in next-to-leading order (NLO) QCD. In NLO, one encounters inital and final
state singularities, due to collinear and soft radiation of partons in the initial or
final state. There are two reasons for performing NLO calculations, which are
far more cumbersome than the LO ones. First, one wishes to reduce the unphys-
ical scale dependences. Second, only in NLO can one sensibly implement a jet
algorithm, which is needed for a comparison between theory and experiment.
However, the above discussed distinction between direct and resolved photopro-
duction becomes ambiguous in NLO. When two-jet events are observed in an
experiment, a disposition of energy near the beam pipe of the detector in the
forward region of the photon can be attributed either to the photon remnant of
a resolved photon or to a collinear final state particle from the direct interaction.
The collinear particle in the NLO direct cross section produces a large contribu-
tion that has to be subtracted and combined with the LO resolved term. This
introduces a dependence of the photon PDF on the factorization scale Mγ . The
factorization scale determines the part of the NLO direct contribution, which
has to be absorbed into the resolved contribution. The Mγ dependences of the
remaining NLO direct and the LO resolved contribution coming from the pho-
ton PDF cancel to a large extent. This cancellation has been demonstrated and
analyzed numerically in [13, 14, 15] for real photoproduction (see [16] for related
work).

Information complementary to the ep collision experiments from HERA can
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be obtained from e+e− colliders. Assuming the two leptons to emit quasi-real
photons that are both described by the Weizsäcker-Williams approximation, one
effectively has γγ scattering. Both photons can be point-like or act as a source
of partons. Three cases can be distinguished, according to the different contribu-
tions to the cross section [17]. The interaction of a direct with a resolved photon
is denoted as the single resolved (SR) contribution. Interactions, where both
photons are resolved are called double-resolved (DR) contributions. These two
cases are also encountered in ep scattering, where the one resolved photon has to
be substituted by the proton. In addition to these possibilities, also both photons
can interact directly in γγ scattering, which gives the direct (D) contribution.
The region of high center of mass energies is of special interest for obtaining
information beyond the low ET region that is determined by soft physics. This
has been measured at LEP [18] and TRISTAN [19]. Comparison of the data in
[19] with theoretical predictions using similar methods as those employed in [14]
can be found in [13, 20, 21] for real photons.

Recently, data has been presented by the ZEUS [23] and the H1 [24] col-
laborations for electron-proton collisions involving photons with small, but not-
vanishing P 2 that allow a test of the virtual photon structure. So far, there
has only been one measurement of the virtual photon structure function from
the PLUTO collaboration at the PETRA e+e− collider [25]. In [26] we made a
comparison of theoretical NLO predictions for γ∗p inclusive jet production with
data from [23], by extending the methods used in [11, 12]. This extension will be
described in detail in this work. Some theoretical studies of inclusive γ∗p cross
sections in LO have been presented in [27, 28, 29]. We also include the case of
γ∗γ scattering that will become important at LEP2 [30], which is an extension
of the work from [20, 21].

Since the partonic subprocesses of ep and γ∗γ scattering are very similar, we
will take over the notation ’SR’ and ’DR’ from the γγ case to ep scattering to
simplify the discussion. In ep scattering, the SR component denotes the contri-
bution, where the virtual photon is directly interacting with the partons from
the proton, whereas in the DR component the resolved photon interacts with
the partons from the proton.

The extension from real to virtual photoproduction is done by taking the
Weizsäcker-Williams formula to describe the momentum spread of the virtual
photon, but keeping P 2 fixed, not integrating over the region of small P 2 and
not assuming P 2 = 0. This is described by the unintegrated Weizsäcker-Williams
formula. In the hard process, the matrix elements for finite P 2 have to be taken.
The matrix elements and the initial and final state singularities for the SR con-
tribution with P 2 6= 0 have been calculated in [31, 32] in connection with deep-
inelastic ep scattering (DIS) at HERA, where P 2 is large. Since we consider P 2

to be finite, the photon initial state singularities encountered in real photopro-
duction do not occur. Instead, when integrating over the phase-space of the final
state particles, a logarithm of the type ln(P 2/E2

T ) occurs. In DIS this logarithm
is small, since P 2 is of the order of E2

T , and thus has not to be considered sep-
arately. In virtual photoproduction though, P 2 is small and the logarithm gives
a large contribution. This large term has to be subtracted from the SR hard
cross section, where the virtual photon is direct, and combined with the resolved
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virtual photon from the DR contribution. This introduces a dependence of the
virtual photon PDF on the factorization scale Mγ , just as in the case of real
photons. The cancellation of the Mγ scale dependences of the NLO direct and
resolved contributions must hold also for virtual photoproduction with P 2 6= 0.
This has been worked out in [26] and will be studied numerically in this work.

The D contribution is needed for the direct interaction of one real and one
virtual photon in γ∗γ reactions. The initial and final state corrections for the D
contribution are calculated here for the first time. For the real photon, the singu-
larities are handled as discussed in [13, 21]. For the virtual photon, the procedure
is equivalent to the one described for the SR contribution in ep scattering.

The theoretical calculation of the resolved cross sections requires the parton
distribution functions of real and virtual photons. Several parametrizations of
the parton contents of the real photon are available in the literature by now
[33, 34, 35] and seem to be consistent with dijet production data in ep scattering
[13, 14]. For virtual photons theoretical models have been constructed that de-
scribe the evolution with the scale Q2 of the parton distributions and the input
distributions at scale Q0 with changing P 2 [27, 36, 37]. However, these virtual
photon PDF’s are not available in a form that parametrizes the Q2 evolution in
NLO. Only the LO parametrizations for the virtual photon are given in [36, 37].

The outline of this work is as follows. In section 2 we will discuss the general
structure of factorization and renormalization for NLO corrections. Section 3
contains a calculation of the LO and NLO partonic cross sections for the D, SR,
and DR contributions with a virtual photon. We recall the virtual corrections
to the Born cross sections and present the inital and final state singularities,
using the phase-space-slicing method. The DR contribution has been calculated
in [13] and will be considered only briefly. The parton distribution function of the
virtual photon is discussed in section 4. Section 5 contains numerical results for
inclusive single- and dijet production in ep scattering. Several numerical tests will
be presented and the available data is compared with our theoretical predictions.
Section 6 gives theoretical results for γ∗γ collisions with the kinematics of LEP2.
Finally we present a summary and an outlook in section 7. The appendix contains
the analytic results for virtual, initial, and final state corrections.

2 General Structure of the Hadronic Cross Sections

The key to using perturbative QCD is the idea of factorization. It states that
a cross section is a convolution of different factors that each depend only on
physics relevant at one momentum scale. In this section we explain how factor-
ization shows up in the hadronic cross sections we use in this work. Especially
we will discuss the divergences appearing in a NLO calculation of the pertur-
bative hard cross section and explain how these divergences are factorized and
absorbed by a redefinition of the PDF’s involved in each process. The general
procedure described in this section will be applied to the specific partonic NLO
cross sections that are calculated in section 3.
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2.1 Factorization of Hard and Soft Regions

The physical cross sections considered in this work have a general structure,
where the long-distance and short-distance parts are separated. The hadronic
cross section dσH of a process is given by a convolution of the hard cross section
dσab and the PDF’s fa/A(xa) and fb/B(xb):

dσH =
∑
a,b

∫
dxadxbfa/A(xa)dσabfb/B(xb) . (1)

In general, the PDF fi/A(x) of a hadron A gives the probability of finding a
parton i (quark or gluon) with momentum fraction x within the hadron. It cannot
be calculated perturbatively and has to be fixed by measurement. The partons
from the PDF are thought to interact in a hard process involving a large scale
that allows to make use of the asymptotic freedom of QCD [3], i.e. the vanishing
of the coupling between the partons for asymptotically small distances. For a
large scale µ, the QCD coupling constant g(µ) behaves as g(µ) ∼ 1/ ln(µ/ΛQCD)
and a perturbative expansion of the hard cross section in the strong coupling
constant can be applied. The hard process in (1) is described by the partonic
cross section

dσab =
1

2xaxbs
|Mab|2dPS(n) , (2)

where 2xaxbs is the flux factor, |Mab|2 are the partonic matrix elements and
dPS(n) represents the phase space of the n final state particles of the subprocess.
In the final state we are interested in jets for which suitable jet definitions have
to be defined in order to go from the partonic level to observable quantities. We
will come back to this in section 5. The general structure of the cross sections
discussed in this work is indicated in Fig. 1. For the case of ep scattering, A

A

B
xb

xa

        (pt)Jets

remnant A

remnant B

Fig. 1. Factorization of hard and soft processes in the hadronic cross section.

will be a lepton, that radiates a virtual photon and B will be a proton. The
remnant A will stem from the resolved virtual photon, whereas the remnant B
comes from the proton. In the case of γ∗γ scattering, A is a virtual and B a real
photon. They can both have a hadronic structure, leading to the remnants A
and B. The different subprocesses, encountered in these two cases are explained
in section 3.
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2.2 NLO Corrections

The matrix elements of the partonic cross section (2) can be calculated by sum-
ming up all Feynman diagrams to a given order. We will be interested in processes
with two initial and at least two final state particles. The calculation of the LO
contributions is straightforward. In NLO several difficulties are encountered. We
have to distinguish the virtual corrections to the 2 → 2 partonic processes, which
contain self energy and vertex corrections, and the real corrections, which stem
from the radiation of an additional real parton from the 2 → 2 processes, leading
to 2→ 3 processes. Both these contributions contain characteristic divergences.

As an example for a 2 → 3 process the Feynman diagrams for the amplitudes
of the Born subprocess qq̄ → qq̄ and the O(αs) correction containing a real gluon
emission are drawn in Fig. 2. We consider a parton with momentum pa emitted

k

pa

za

Fig. 2. Partonic cross section: Born graph and real gluon emission.

from a resolved photon. Taking k to be the momentum of the outgoing gluon,
the Feynman diagram contains a propagator of the form

G ∼ 1
(pa − k)2

≡ 1
M2

. (3)

In the limit of massless quarks, the propagator diverges in certain regions of
phase space. The denominator

M2 = (pa − k)2 = −2pak = −2|pa||k|(1− cos θ) , (4)

where θ is the angle between the gluon and the parton, vanishes if cos θ = 1
(collinear divergence) and if |k| = 0 (soft divergence). Both, the collinear and
soft divergences are infra-red (IR) divergences that can be regularized in the
dimensional regularization scheme [38, 39]. In this scheme n = 4−2ε dimensions
are chosen for the phase space integration, so that the singularities appear in
poles like 1/ε and 1/ε2. After the poles have been removed the limit ε → 0
is taken and the four-dimensional result is obtained. The singularity shown in
Fig. 2 is due to the radiation of a gluon in the initial state and is thus called
an initial state singularity. In addition to these, final state singularities occur,
when a parton is collinear or soft in the final state.

The virtual corrections involve loop integrals over internal momenta, that
lead to ultra-violet (UV) and IR divergences. These divergences can be extracted,
as the real corrections, in the dimensional regularization scheme as poles in 1/ε
and 1/ε2. The UV divergences are removed completely by adding a counter term
to the QCD Lagrangian, where the singularities are absorbed by a renormaliza-
tion of the quark charge, quark field, and gluon field.
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When the virtual and the real contributions are added, the IR divergences
cancel partly, leaving only initial state singularities. It can be proven that in the
remaining hard cross section the short distance finite parts and the long distance
singular parts factorize [4, 5]. One defines a bare partonic cross section dσ, that
is calculable in perturbative QCD, a renormalized finite partonic cross section
dσ̄ and transition functions Γi←j so that [40]

dσij(s) =
∑
k,l

∫
dzadzbΓi←k(za, µA)dσ̄kl(zazbs, µA, µB)Γj←l(zb, µB) . (5)

The variables za, zb ∈ [0, 1] give the momentum fraction of pa, pb in the propa-
gator after a parton is radiated as can be seen in Fig. 2. The singular terms are
absorbed into the transition functions in such a way that the renormalized cross
section is finite. This absorption depends on the scales µA and µB, which are the
factorization scales for the hadrons A and B, respectively. To obtain a hadronic
cross section, which is free of divergent parts, one needs renormalized PDF’s f̄ ,
which are defined as

f̄iA(ηa, µA) ≡
1∫

0

1∫
0

dxdzfjA(x)Γi←j(za, µA)δ(ηa − xaza)

=

1∫
ηa

dza

za
fjA

(
ηa

za

)
Γi←j(za, µA) . (6)

As one sees, the factorization scale dependence of the transition functions leads
to a scale dependence of the renormalized PDF’s. The factorization of the hard
and soft parts in the partonic cross section is pictured in Fig. 3 for the case
of a resolved photon with the subprocess depicted in Fig. 2. The factorization

xa

za

Fig. 3. The factorization theorem for the singular part of the partonic cross
section.

scales µA and µB define what is to be understood as the hard and the soft
part of the cross section. Referring to equation (3), M2 gives the off-shellness of
the propagator in the initial state of the partonic cross section. Interactions with
M2 < µA are described with help of the PDF of hadron A, whereas for M2 ≥ µF

one can apply perturbative QCD and calculate the partonic cross section.
Using the definitions of the renormalized quantities, the IR safe hadronic

cross section reads

dσH(s) =
∑
k,l

∫
dηadηbf̄kA(ηa, µA)dσ̄kl(ηaηbs, µA, µB)f̄lB(ηb, µB) , (7)
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where the variables ηa, ηb ∈ [0, 1] are defined as ηa = xaza and ηb = xbzb.
The connection between the IR safe and the bare hadronic cross sections can
be easily seen, by inserting the definition of the renormalized PDF’s (6) into
(7) and performing the integrations over the delta functions, making use of the
definition (5). The factorization scale dependences of the renormalized partonic
cross section and the PDF’s cancel to a large extend. The transition functions
that connect the renormalized partonic cross section and the PDF are, however,
not unique in NLO and arbitrary finite parts can be shifted from the PDF’s to the
renormalized partonic cross section. Therefore one has to define a factorization
scheme to be used for a consistent calculation. Commonly used schemes are the
DIS [41] and the MS [42] schemes.

To extract the renormalized from the unrenormalized quantities, one assumes
dσ̄, dσ and the transition functions to have perturbative expansions in αs [40]:

dσ̄(s) =
∞∑
n

(αs

2π

)n

dσ̄(n)(s) (8)

dσ(s) =
∞∑
n

(αs

2π

)n

dσ(n)(s) (9)

Γi←k(z) = δikδ(1− z) +
∞∑

n=1

(αs

2π

)n

Γ
(n)
i←k(z) (10)

The LO contributions are understood to be the n = 0th order contributions. For
the DR partonic cross section it is of order O(α2

s), for the SR contribution is
of order O(ααs) and for the D contribution it is of order O(α2). Inserting the
expansions (8)–(10) into (5) gives up to O(αs)

dσ
(0)
ij (s) +

αs

2π
dσ

(1)
ij (s) = dσ̄

(0)
ij (s) +

αs

2π

[
dσ̄

(1)
ij (s, µA, µB)

+
∑

k

∫
dz1 Γ

(1)
i←k(z1, µA)dσ̄

(0)
kj (z1s)

+
∑

k

∫
dz2 dσ̄

(0)
ik (z2s)Γ

(1)
k←j(z2, µB)

]
. (11)

Comparing the left hand and the right hand side in LO gives dσ̄(0) = dσ(0). The
NLO correction is obtained by comparing the left hand and right hand side to
order αs and rearranging the terms:

dσ̄
(1)
ij = dσ

(1)
ij −

∑
k

∫
dz1Γ

(1)
i←kdσ

(0)
kj −

∑
k

∫
dz2Γ

(1)
i←kdσ

(0)
kj . (12)

Thus the prescription for subtracting the singular parts from the bare cross
section is simple: the singularities are removed by a convolution of the finite
Born cross section with the singular O(αs) transition functions.

As we have seen, the PDF’s acquire a dependence on the factorization scales.
The evolution of the PDF’s with the scale are predicted in perturbative QCD
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by the DGLAP evolution equations [43, 44, 45]. This is the following set of
integro-differential equations:

dfi(x, Q2)
d ln Q2

=
∑

i

1∫
x

dz

z
Pi←j(z, αs(Q2))fj

(x

z
, Q2

)
. (13)

Here, Q2 is a general scale, and Pij(z) are the splitting functions that represent
a process in which a parton with momentum fraction x radiates a parton with
momentum fraction (1 − z)x and continues with momentum fraction xz. The
splitting functions can be expanded in powers of the strong coupling constant
with αs ≡ g2/4π:

Pi←j(z, αs) =
αs

2π
P

(0)
i←j(z) +

(αs

2π

)2

P
(1)
i←j(z) + . . . (14)

The evolution equations (13) predict the PDF’s at a higher scale once they are
fixed at some input scale Q2

0.

2.3 Factorization for the Photon

In the previous section we have described, how the absorption of the singularities
works in the case, when A and B are hadrons or resolved photons. For the direct
photon one additional complication has to be taken into account.

As mentioned in the introduction, in LO the photon gives rise to direct and
resolved contributions in the hadronic cross section. In NLO, the creation of a
collinear qq̄-pair in the initial state leads to initial state singularities in the direct
contribution. The only place for these singularities to be absorbed is the PDF
of the resolved photon. This leads to a point-like term in evolution equations of
the the photon PDF [46, 47]. A subtraction procedure for the real photon that
is consistent with the evolution of the photon PDF has been worked out in [48].

For the virtual photon, one actually has no real singularity, since the virtual-
ity P 2 regularizes the divergence. Integrating over the phase space of the qq̄-pair
in the initial state leads to a logarithmic dependence on P 2, namely ln(P 2/Q2),
where Q2 is the hard scale of the process. This logarithm becomes large for
P 2 � Q2 and is absorbed into the PDF in much the same way as described in
[48]. This leads to an inhomogeneous term in the PDF of the virtual photon,
which differs somewhat from the point-like term in the case of the real photon.
This will be described in more detail in section 4, where the construction of the
virtual photon PDF is explained.

3 Partonic Cross Sections

In this more technical section, we proceed with a computation of the perturba-
tively calculable partonic cross sections. The partonic cross sections contributing
to ep and γ∗γ scattering are very similar and will therefore be treated together
in this section. Both hadronic cross sections contain single resolved (SR) con-
tributions, in which the virtual photon couples directly to the subprocess and
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double resolved (DR) contributions, in which the virtual photon is resolved. In ep
scattering the virtual photon and its partonic content interact with the partons
of the proton, whereas in γ∗γ scattering they interact with the parton content
of the real photon. In addition to the SR and DR contribution, in γ∗γ scattering
one encounters the direct (D) interaction of both photons.

After an introduction to the notation of the various relevant subprocesses,
we give the formulæ for the Born and virtual contributions. Then we explain the
phase-space slicing method as a tool to separate singular regions of phase space in
the partonic cross section, so that we can calculate the singular parts of the real
final and initial state corrections. The results from [31] for the SR contributions
are recalled for completeness and consistency. The DR contributions can be
found in [13] and will be considered only briefly.

3.1 Notation

For the calculation of hadronic cross sections in sections 5 and 6, we will have
to calculate the matrix elements for the various partonic cross sections in LO
and in NLO. In LO the D contribution is of O(α2), the SR contribution is
of O(ααs) and the DR contribution is of O(α2

s). In NLO the D, SR and DR
contributions are of one order higher in αs. Since the partonic cross sections
have to be convoluted with the PDF’s of the photon, which are of order α/αs in
the high energy limit [46], the different contributions will turn out to be of the
same order. The matrix elements |M|2 from equation (2) are obtained by taking
the trace of the hadron tensor that corresponds to each subprocess. We define
H ≡ −gµνHµν . The Born contributions are labeled HB, the virtual corrections
are HV , and the real corrections are HR.

First, we have collected the definition of the LO Born matrix elements in
Tab. 1. The matrix elements for incoming anti-quarks are the same as those for
quarks and only give a factor 2 in the sum over all contributions in the hadronic
cross section. This holds also for the contributions in the other tables. Of special
interest in this work will be the NLO corrections to the Born matrix elements for
processes involving a virtual photon. These are the D and SR contributions, that
are collected in Tab. 2. The SR contributions with one virtual photon have been

Table 1. Definition of the LO matrix elements.
D and SR Processes DR Contributions

B1 = HB(γ∗γ → qq̄) B4 = HB(qq′ → qq′) B9 = HB(qq̄ → gg)

B2 = HB(γ∗q → qg) B5 = HB(qq̄′ → qq̄′) B10 = HB(qg → qg)

B3 = HB(γ∗g → qq̄) B6 = HB(qq → qq) B11 = HB(gg → qq̄)

B7 = HB(qq̄ → q′q̄′) B12 = HB(gg → gg)

B8 = HB(qq̄ → qq̄)
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Table 2. Definition of the NLO matrix elements for the D and SR processes.

Virtual Corrections 2→ 2 Real Corrections 2 → 3

V1 = HV (γ∗γ → qq̄) H1 = HR(γ∗γ → qq̄g) H4 = HR(γ∗q → qqq̄)

V2 = HV (γ∗q → qg) H2 = HR(γ∗q → qgg) H5 = HR(γ∗g → qq̄g)

V3 = HV (γ∗g → qq̄) H3 = HR(γ∗q → qq′q̄′)

Table 3. Definition of the NLO matrix elements for the DR contribution.

Virtual Corrections 2→ 2 Real Corrections 2 → 3

V4 = HV (qq′ → qq′) H6 = HR(qq′ → qq′g) H7 = HR(qq̄′ → qq̄′g)

V5 = HV (qq̄′ → qq̄′) H8 = HR(qq → qqg) H9 = HR(qq̄ → q′q̄′g)

V6 = HV (qq → qq) H10 = HR(qq̄ → qq̄g) H11 = HR(qg → qq′q̄′)

V7 = HV (qq̄ → q′q̄′) H12 = HR(qg → qqq̄) H13 = HR(qq̄ → ggg)

V8 = HV (qq̄ → qq̄) H14 = HR(qg → qgg) H15 = HR(gg → qq̄g)

V9 = HV (qq̄ → gg) H16 = HR(gg → ggg)

V10 = HV (qg → qg)

V11 = HV (gg → qq̄)

V12 = HV (gg → gg)

studied by several authors [31, 32], the D and SR contributions for real photons
can be found in [13], whereas the D contributions with one virtual photon have
only been studied in this work, yet.

Because of their importance, we show in Fig. 4 the classes of matrix elements
as collected in Tab. 2 explicitly. We also show the definition of the momenta
which will be used throughout this work for all three, i.e. D, SR and DR, con-
tributions. In Tab. 3 the matrix elements of the NLO processes for the DR
case are collected. These matrix elements have been calculated in [49] and the
integrations over the singular regions of phase space where performed in [13].

3.2 The Two-Body Processes

For the 2→ 2 processes we use the Mandelstam variables

s = (pa + pb)2 = (p1 + p2)2 ,



Inclusive Single- and Dijet Rates in NLO QCD . . . 12

pa

pb

p2

p1

p3

γ*

γ

q
–

q

g

γ*

q

g

q

g

γ*

q

q,

q

q
–,

γ*

q

q

q

q
–

γ*

g

q
–

q

g

Momenta H1 H2

H3 H4 H5

Fig. 4. Notation of the different processes involving one virtual photon.

t = (pa − p1)2 = (pb − p2)2 , (15)
u = (pa − p2)2 = (pb − p1)2 .

Note, that in the D and SR case, pa = q with P 2 ≡ −q2. In the D case pb is a
real photon, in the SR and DR cases pb is a massless parton. The partonic cross
section is given by the flux factor, the two-particle phase space and the matrix
elements:

dσ(ij → jets) =
1
2s

H(ij → jets)dPS(2) . (16)

The two-particle phase space is given by

dPS(2) =
1

Γ (1− ε)

(
4π

s

)ε

[z(1− z)]−ε dz

8π
, (17)

where z ≡ (pbp1)/(papb). Expressed by the Mandelstam variables, the phase
space reads

dPS(2) =
1

Γ (1− ε)

(
4π

stu

)ε

(s + P 2)−1+2ε dt

8π
, (18)

if the particle pa = q has mass −P 2. This is valid for the D and SR case. In the
DR case all partons are massless, so we substitute P 2 = 0 and the phase space
reduces to

dPS(2) =
1

Γ (1− ε)

(
4πs

tu

)ε
dt

8πs
. (19)

The Born matrix elements for the D and SR case read, using the notation of
Tab. 1,

B1 = (16π2α2) (Q4
i 8NC) Tγ(s, t, u) , (20)

B2 = −(16π2ααs) (Q2
i 2CF ) Tγ(u, t, s) , (21)

B3 = (16π2ααs) (Q2
i ) Tγ(s, t, u) , (22)
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where the definition of Tγ(s, t, u) can be found in the appendix, section 8.1. The
Born matrix elements for the DR case are given by

B4 = (16π2α2
s)

1
4N2

C

T1(s, t, u) , (23)

B5 = (16π2α2
s)

1
4N2

C

T1(u, t, s) , (24)

B6 = (16π2α2
s)

1
2

1
4N2

C

[T1(s, t, u) + T1(s, u, t) + T2(s, t, u)] , (25)

B7 = (16π2α2
s)

1
4N2

C

T1(u, s, t) , (26)

B8 = (16π2α2
s)

1
4N2

C

[T1(u, t, s) + T1(u, s, t) + T2(u, t, s)] , (27)

B9 = (16π2α2
s)

1
2

1
4N2

C

T3(s, t, u) , (28)

B10 = −(16π2α2
s)

1
8N2

C
CF

T3(t, s, u) , (29)

B11 = (16π2α2
s)

1
16N2

C
CF

T3(s, t, u) , (30)

B12 = (16π2α2
s)

1
2

1
16N2

C
CF

T4(s, t, u) . (31)

The factors 1/2 in some of the expressions are symmetry factors for two identical
particles in the final state. The definitions of the matrix elements T1, . . . , T4 can
again be found in the appendix 8.1.

The virtual corrections for the SR case are calculated by multiplying the one-
loop diagrams for γ∗γ → qq̄, γ∗q → gq and γ∗g → qq̄ with the corresponding
Born diagrams, which leads to an extra factor αs in the matrix elements. The
virtual corrections V2 and V3 are well known for quite some years from the
processes e+e− → qq̄g [53, 54]. They are achieved by crossing from the known
matrix elements [31]. The contribution V1 for the D case can be inferred from the
SR case by considering the contribution HV (γ∗g → qq̄). Only the parts which
have no gluon self-coupling are taken into account and the color factors have
to be adjusted appropriately. To compare the singular structure of the virtual
corrections with those from the real corrections, we write down the final result
for the D and SR case in the form

V1 = 16π2 α2αs

2π

(
4πµ2

s

)ε
Γ (1− ε)
Γ (1− 2ε)

E3 , (32)

V2 = 16π2 αα2
s

2π
2(1− ε)

(
4πµ2

s

)ε
Γ (1− ε)
Γ (1− 2ε)

[
C2

F E1 − 1
2
NCCF E2

+
1
ε

(
1
3
Nf − 11

6
NC

)
CF Tγ(s, t, u)

]
, (33)

V3 = 16π2 αα2
s

2π

(
4πµ2

s

)ε
Γ (1− ε)
Γ (1− 2ε)

[
CF E3 − 1

2
NCE4

+
1
ε

(
1
3
Nf − 11

6
NC

)
Tγ(s, u, t)

]
. (34)

Terms of order O(ε) have been neglected. The expressions E1, . . . , E4 are given
in the appendix 8.2. In the DR case, the Born processes B4, . . . , B12 have to be
multiplied by the corresponding one-loop processes. The results can be found in
[13]. They are given by V4, . . . , V12 in [22].
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3.3 Phase-Space-Slicing Method

As discussed in the section 2, the partonic 2 → 3 corrections are singular in cer-
tain regions of phase space. One possibility is to integrate the hard cross section
over the complete phase space in n dimensions and to obtain analytical results
for the integrated matrix elements. We choose a somewhat different method in
this work. We separate the singular regions of phase space from the finite regions
by inserting an invariant mass cutt-off yc into the integration, symbolically

1∫
0

dPS(3)|M2→3|2 =

yc∫
0

dPS(3)|M2→3|2 +

1∫
yc

dPS(3)|M2→3|2 . (35)

The first integral on the right hand side of this equation contains the singular
region of phase space and is integrated analytically in n = 4 − 2ε space time
dimensions. If the cut-off yc is chosen appropriately small, this singular phase
space separates into a 2 → 2 phase space dPS(2) that will be kept and a remaining
part dPS(r) that is integrated out together with the matrix elements. For small
yc various approximations can be applied to the matrix elements, so that the
integration of the matrix elements over dPS(r) is simplified considerably as will
become evident in sections 3.4–3.6. The non-singular second term on the right
hand side of (35) is integrated numerically, opening the possibility to adopt
a wide range of jet definitions and experimental cuts. This flexibility allows a
detailed comparison between theory and experiment. Of course, the dependences
of the first and the second contribution on the parameter yc should compensate,
leaving a result independent of yc, since the cut-off has no physical significance.
This also provides a strong test of the results, which will be described in section
5. The method described here is referred to as the phase-space-slicing (PSS)
method [50].

An important step in the application of the PSS method is the separation of
the two-body phase space from the singular part, dPS(3) → dPS(2)dPS(r). This
separation is different for the three cases encountered in this work, which are
singularities in the final state, in the initial state for massless particles and in
the initial state for a massive virtual photon. In the next two subsections we
will provide the formulæ that serve as a basis for the calculation of the singular
parts of the partonic cross sections in sections 3.4–3.6.

3.3.1 Singularities in the Final and in the Massless Initial State We
consider the splitting for a phase space containing one massive particle pa with
mass P 2 = −p2

a. In general, the 2 → 3 phase space in n dimensions is given by
[51]

dPS(3) =
dn−1p1

2E1(2π)n−1

dn−1p2

2E2(2π)n−1

dn−1p3

2E3(2π)n−1
(2π)nδn(pb + q− p1 − p2 − p3) .

(36)
It is useful to introduce the following irreducible set of invariants:

s0 = 2papb − P 2, t1 = −2pbp1,
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s1 = 2p1p2, t2 = −2pap3 − P 2, (37)
s2 = 2p2p3.

These five invariants are pictured in Fig. 5 on the left. The separation pictured
on the right of Fig. 5 is achieved by inserting [52]

1 =
∫

ds2

2π

∫
dn−1p23

(2π)n−12E23
δ(n)(p23 − p2 − p3)(2π)n (38)

into (36), where the definition s2 = p2
23 = (p2+p3)2 is used and E23 is the energy

of this intermediate particle. One obtains

dPS(3) =
ds2

2π

{
dn−1p1

2E1(2π)n−1

dn−1p23

2E23(2π)n−1
δn(pa + pb − p1 − p23)(2π)n

}
×

{
dn−1p2

2E2(2π)n−1

dn−1p3

2E3(2π)n−1
δn(p23 − p2 − p3)(2π)n

}
. (39)

To perform the integration over the delta functions in (39) it is useful to define
the kinematical variables in the c.m. system of the outgoing partons p2 and p3.
The angles of the partons p1 and p2, p3 with respect to the parton pb are shown
in Fig. 6. To parametrize the angles, the variables b ≡ 1

2 (1 − cos θ) and z1 ≡
(pbp1)/(papb) are used. After integrating over the delta functions and expressing
the variables by z1, b and the irreducible invariants introduced in (37), the three
particle phase space in n = 4− 2ε dimensions reads

dPS(3) =
ds2

2π

dz1

64π2

db

Nb
[b(1− b)]−ε dφ

Nφ

sin−2ε φ

Γ (2− 2ε)

[
16π2

s2z1(s0(1 − z1)− s2)

]ε

,

(40)
with the normalization constants

Nb =

1∫
0

db[b(1−b)]−ε =
Γ 2(1− ε)
Γ (2− 2ε)

and Nφ =

π∫
0

dφ sin−2ε φ =
4επΓ (1− 2ε)

Γ 2(1− ε)
.

(41)
For singularities in the final state the invariants s2 and b will vanish, whereas
for the singularities in the initial state of the massless particle pb the invariant
t1 and therefore z1 will vanish.

pb

pa

p1

p2

p3

pb

pa

p1

p2

p3

s2

t1
s0

s1

s2

t1

t2

Fig. 5. Separation of the three particle phase space.
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pb

p1

p3

p2

z

φ

χθ

Fig. 6. The three particle final state in the c.m. system of the particles p2 and
p3.

3.3.2 Singularities in the Initial State of a Virtual Photon For this
case, the mass P 2 = −p2

a of the photon with momentum pa serves as a regulator
for the integration. Therefore, the phase space (36) can be calculated in n = 4
dimensions. We introduce the five invariants

s0 = 2papb − P 2, t1 = −2pbp3,

s1 = 2p1p2, t2 = −2pap1 − P 2, (42)
s2 = 2p2p3,

and separate the phase space analogously to the case discussed above by inserting
(38) into (36). Again we move to the c.m. frame of the particles p2 and p3 and
define the variable b ≡ 1

2 (1− cos θ), but now θ is defined as the angle between pa

and p3. The singularities occur for t2 → 0, which we parametrize by the variable
z2 ≡ (pap3)/(papb). It is obvious from the definition of t2 that the variable z2

vanishes only for P 2 → 0. After integrating over the delta functions, the result
is simply

dPS(3) =
dφ

π

ds2

2π

dz2

8π

db

8π
. (43)

3.4 Final State Singularities

The singularities in the final state appear when the invariant s2 in equation (37)
becomes on-mass-shell. We define the variable r ≡ s2/s0 and consider the limit
r → 0. We start by considering the D and SR cases, for which we define the
two-body Mandelstam variables as

s = (pb + q)2 = 2pbq − P 2, ,

t = (pb − p1)2 = −2pbp1 , (44)
u = (pb − p23)2 = −2pbp23 .



Inclusive Single- and Dijet Rates in NLO QCD . . . 17

In the limit r → 0 the five invariants (37) reduce to these variables, with s0 → s
and t1 → t. The definitions of s, t and u are only unique in the limit r → 0. In the
limit s2 → 0 the phase space (40) separates according to dPS(3) = dPS(2)dPS(r)

with

dPS(r) =
Γ (1− ε)
Γ (2− 2ε)

dφ

Nφ
sin−2ε φ

(
4π

s

)ε
s

16π2
GF (r)drr−ε db

Nb
[b(1− b)]−ε (45)

where

GF (r) =
[
1− r

(1− z)

]−ε

= 1 +O(r) . (46)

The two-body phase space dPS(2) is given by equation (18). The limits of in-
tegration in dPS(r) are given by r ∈ [0,−t/(s + P 2)], b ∈ [0, 1] and φ ∈ [0, π].
The invariant s2 is integrated up to s2 ≤ ycs0, which restricts the range of r to
0 ≤ r ≤ min[−t/(s + P 2), yc] ≡ yF .

We have now achieved the separation of the phase space and have to inte-
grate the matrix elements over the region dPS(r). Therefore the 2 → 3 matrix
elements H1, . . . H5 are expressed by the variables s, t, u, r, b and φ in the limit
r → 0, which leads to approximated matrix elements with final state singulari-
ties HF1, . . . , HF5 [31]. A difficulty arises for those squared matrix elements that
contain real gluons. In that case more than one invariant can vanish in a propa-
gator, so that the different classes of singularities, such as initial and final state
singularities, are not properly separated. The separation is achieved by partially
fractioning the matrix elements.

After the matrix elements have been partially fractioned and approximated
in the limit r → 0, the integration over the singular region of phase space yields∫

dPS(r)HFi = 8π

(
4πµ2

s

)ε
Γ (1− ε)
Γ (1− 2ε)

(1− ε)Fi +O(ε) . (47)

The final results for F1, . . . , F5 are listed in appendix 8.3. They contain the IR
collinear and soft singularities that cancel against those of the virtual corrections.
It is essential that the singular terms are proportional to the LO matrix elements
Tγ and that the variables s, t and u defined in (44) correspond to the two-body
variables in the above discussed limit. The contributions F2, . . . , F5 have been
calculated in [31]. The final state correction F1 of the D contribution can be
derived from F5 by keeping only the abelian part and adjusting the color factor.
One can compare the singularities for the case of direct real photons as stated in
[22] with the ones given in appendix 8.3. The real photon contributions F1, . . . , F5

in [22] follow from the contributions F1, . . . , F5 in this work by taking the limit
P 2 → 0, so that t + u = −s.

Turning to the resolved photon case, the phase space is obtained from the
formula (45) by substituting q → pa with p2

a = 0, so that s = 2papb. The
two-body variables in the resolved case are given by

s = 2papb, t = −2pbp1, u = −2pbp23 . (48)

Note, that the two-body phase space for the DR case is given by equation
(19) of section 3.2. Expressing the matrix elements for the resolved processes
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H6, . . . , H16 as classified in Tab. 3 through the variables s, t, u, r, b and φ yields
the matrix elements containing final state singularities HF6, . . . , HF16 [13, 22].
The integral over the singular phase space is the same as in equation (47). The
final state corrections for the resolved case F6, . . . , F16 will not be stated here
again since they can be found in [22].

3.5 Initial State Singularities for Massless Particles

We turn to the discussion of the initial state singularities for particles with zero
mass. This includes the photon initial state singularity for the real photon for
the D case, the parton initial state singularities in the SR case and the parton
initial state singularities in the DR case. We start with the SR case, from which
the others can be inferred.

3.5.1 Parton Initial State Singularities in the SR Case In the SR case
parton initial state singularities arise for the incoming particle pb. The incoming
particle pa is the virtual photon with pa = q and P 2 = −q2. Using the notation
of section 3.3.1, the singularities appear when the invariant t1 becomes on-mass-
shell, i.e. for z1 → 0. The invariant s2 does not vanish in the case of initial state
singularities but rather defines the partonic c.m. energy of the corresponding
two-body process. We define the new variable

zb ≡ p2p3

qpb
=

s2

s0 + P 2
∈ [ηb, 1] , (49)

that gives the fraction of the momentum pb that participates in the subprocess
after a particle has been radiated in the initial state. The variable ηb is given by
ηb = xbzb. We define the two-body variables as

s = (p2 + p3)2 = 2p2p3 ,

t = (zbpb − p2)2 = −2zbpbp2 , (50)
u = (zbpb − p3)2 = −2zbpbp3 .

In the limit z → 0 the variable s2 reduces to s. In the same limit the phase space
(40) separates according to dPS(3) = dPS(2)dPS(r), where

dPS(r) =
1

Γ (1− ε)
dφ

Nφ
sin−2ε φ

(
4π

s

)ε
s

16π2
GI(z1)

× dz1z
−ε
1

dzb

zb

(
1− zb

zb
− P 2

s

)−ε(
1 +

P 2(1− zb)
zb(zbs− (1− zb)P 2)

)1−ε

(51)

with

GI(z1) =
[
1− z1

s− zbP
2

s(1− zb)− zbP 2

]−ε

= 1 +O(z1) . (52)

The two-body phase space is given by equation (18). The integration over dPS(r)

with z1 ∈ [0,−u/(s+ P 2)], zb ∈ [ηb, 1] and φ ∈ [0, π] is restricted to the singular
region of z1 in the range 0 ≤ z1 ≤ min{−u/(s + P 2), yc} ≡ yI .
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Expressing the matrix elements for the direct photon case, listed in Tab. 2,
with the variables s, t, u, z1, zb, b and φ and taking the limit z1 → 0, one obtains
the matrix elements Hb

I2, . . . , H
b
I5 [31] that contain initial state singularities on

the parton side B. These are integrated according to

∫
dPS(r)Hb

Ii =

1∫
ηb

dzb

zb
8π

(
4πµ2

s

)ε
Γ (1− ε)
Γ (1− 2ε)

(1− ε)Ib
i +O(ε) . (53)

where results for Ib
2 , . . . , Ib

5 are written down in appendix 8.4. They can also be
found in [31]. Apart from the two-body variables s, t, u and the cut-off yI , they
still depend on the integration variable zb. The results for the Ib

i contain IR
singularities proportional to 1/ε2 that cancel against the corresponding singu-
larities in the virtual corrections. The remaining singular parts are proportional
to 1/ε and to the Altarelli-Parisi kernels in four dimensions. These are removed
by a redefinition of the PDF’s that are the source of particle pb, which can be
a hadron or a resolved photon. The redefinition, as explained in section 2.2, is
achieved by equation (6) for the PDF’s, introducing the factorization scale (Mb)
dependence through the transition functions Γ

(1)
i←j :

f̄iB(ηb, M
2
b ) =

1∫
ηb

dzb

zb

(
δijδ(1− zb) +

αs

2π
Γ

(1)
i←j(zb, M

2
b )
)

fjB

(
ηb

zb

)
. (54)

Here fjB

(
ηb

zb

)
is the PDF of hadron B in LO before absorption of the collinear

singularities. The NLO transition functions are given by

Γ
(1)
i←j(zb, M

2
b ) = −1

ε
Pi←j(zb)

Γ (1− ε)
Γ (1− 2ε)

(
4πµ2

M2
b

)ε

+ Cij(zb) (55)

with Cij = 0 in the MS scheme. The renormalized partonic cross section dσ̄(γ∗i →
jets) for parton initial state singularities is calculated from the unrenormalized
cross section dσ by

dσ̄(γ∗i → jets) = dσ(γ∗i → jets)−αs

2π

∑
j

∫
dzbΓ

(1)
i←j(zb, M

2
b )dσB(γ∗j → jets) .

(56)
The dσB’s denote the Born level partonic cross sections that can be found in
section 3.2. The factor 4πµ2/M2

b in equation (55) is combined with the factor
4πµ2/s in equation (53) and leads to a factorization scale dependent term of the
form

−1
ε
Pi←j(zb)

[(
4πµ2

s

)ε

−
(

4πµ2

M2
b

)ε]
= −Pi←j(zb) ln

(
M2

b

s

)
. (57)

In this way, the subtracted partonic cross section will depend on the scale M2
b ,

as does the PDF of the hadron B, fiB .
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3.5.2 Real Photon Initial State Singularities in the D Case In the D
case the direct real photon can split into a qq̄ pair that gives rise to a collinear
singularity if the partons are emitted parallel. The calculation proceeds along
the lines that have been described for the parton initial state singularities in
the previous section 3.5.1. The two-body variables are defined as in equations
(50). The phase space separation as well as the formula (53) for the integration
over the singular regions remains unchanged. For the singular matrix element
Hb

I1 = Hb
I (γ∗γ → qq̄g) we have

∫
dPS(r)Hb

I1 =

1∫
ηb

dzb

zb
8π

(
4πµ2

s

)ε
Γ (1− ε)
Γ (1− 2ε)

(1− ε)Ib
1 +O(ε) , (58)

where Ib
1 is stated in the appendix 8.4. As remarked for the virtual and final

state corrections, the initial state correction for the D case can be infered from
the SR case with an incoming gluon instead of the real photon by dropping the
non-abelian terms and adjusting the color factor. The singularity appearing in
Ib
1 is proportional to the splitting function Pq←γ(zb) given in appendix 8.1. This

function appears in the evolution equation of the PDF of the real photon as an
inhomogeneous (so-called point-like) term, as will be explained in more detail in
section 4. Therefore, the photon initial state singularities can be absorbed into
the real photon PDF, according to the procedure given in [48]. We define the
renormalized PDF f̄qe of a quark q in the electron as

f̄qe(ηb, M
2
b ) =

1∫
ηb

dzb

zb

(
δqγδ(1− zb) +

αs

2π
Γ (1)

q←γ(zb, M
2
b )
)

fγe

(
ηb

zb

)
. (59)

The NLO transition functions are given by

Γ (1)
q←γ(zb, M

2
b ) = −1

ε
Pq←γ(zb)

Γ (1− ε)
Γ (1− 2ε)

(
4πµ2

M2
b

)ε

+ Cqγ(zb) (60)

with Cqγ = 0 in the MS scheme. In the discussed order, Pg←γ(z) = 0. The
partonic cross section dσ̄(γ∗γ → jets) for the photon initial state singularity is
calculated from the unrenormalized cross section dσ by

dσ̄(γ∗γ → jets) = dσ(γ∗γ → jets)− αs

2π

∫
dzbΓ

(1)
q←γ(zb, M

2
b )dσB(γ∗q → jets) .

(61)
The cross section dσB contains the LO virtual photon-parton scattering matrix
element B2 given in section 3.2. The dependence of the real photon PDF on the
factorization scale enters in the same way as discussed for the SR case, section
3.4.1.

3.5.3 Parton Initial State Singularities in the DR Case The calculation
of the initial state singularities for the DR case is very similar to the calcula-
tions shown for the SR case, only now both incoming partons are massless. The
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calculations for the partons pa and pb yield identical results and thus we have
to consider these singularities only once. The singularities occur in the region
z1 → 0. The formula for the phase space separation is obtained from equation
(51) by substituting q → pa with p2

a = P 2 = 0, so that s = 2zbpapb. With these
substitutions, the phase space (51) reduces to

dPS(r) =
1

Γ (1− ε)
dφ

Nφ
sin−2ε φ

(
4π

s

)ε
s

16π2
GI(z1)dz1z

−ε
1

dzb

zb

(
1− zb

zb

)−ε

(62)
with

GI(z1) =
[
1− z1

1− zb

]−ε

= 1 +O(z1) . (63)

The two-body phase space in the case of initial state singularities is given by
(19). Expressing the resolved matrix elements H6, . . . , H16 with the variables
s, t, u, z1, zb, b and φ in the limit z1 → 0 leads to the resolved matrix elements
containing initial state singularities HJ6 , . . . , HJ16 [13, 22]. These are integrated
similar to equation (53), leading to the results J6, . . . , J16. These are not stated
here, they can be found in [13, 22]. The initial state singularities on the proton
side J6, . . . , J16 are given by Ra

6 , . . . Ra
16 in [22]. The cancellation of the poles

from the real and virtual corrections proceeds as in the SR case discussed above.
The remaining poles in 1/ε are proportional to the Altarelli-Parisi kernels and
are absorbed into the PDF’s of the hadrons A and B that emit the particles pa

and pb.

3.6 Initial State Singularities for the Virtual Photon

The initial state singularities described in the previous section were extracted
and handled in the dimensional regularization scheme, i.e. in d = 4− 2ε dimen-
sions. In the case of the real photon this is necessary, because the real photon is
massless. The singular terms are proportional to a simple pole in ε multiplied by
the splitting function Pq←γ . These initial state singularities are absorbed into
the PDF of the real photon. The NLO correction for the direct virtual photon
becomes singular only in the limit P 2 → 0. After integrating the phase space up
to the invariant cut-off yc, the logarithm ln(P 2/s) will occur that becomes large
in the limit of small P 2. The logarithm has to be absorbed into the PDF of the
virtual photon, instead of the 1/ε poles in the real photon case.

To show the subtraction of the logarithm explicitly, we start by defining the
two-body variables for the virtual photon initial state singularities. They are
given by

s = (p2 + p3)2 = 2p2p3 ,

t = (pb − p2)2 = −2pbp2 , (64)
u = (pb − p3)2 = −2pbp3 .

We define the variable za as

za ≡ p2p3

qpb
=

s2

s0 + P 2
∈ [ηa, 1] (65)
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with ηa = xaza. It gives the momentum fraction of the three-body c.m. energy
that participates in the two-body process. The definition of the three-body vari-
ables is given in section 3.3.2, equation (42). As mentioned above, the mass P 2

regularizes the initial state singularities of the virtual photon. The singular terms
appear in the case t2 → 0 in (42), which corresponds to z2 → 0 for P 2 → 0. For
z2 → 0 the phase space (43) separates according to dPS(3) = dPS(2)dPS(r), with

dPS(r) =
s

16π2

dφ

π

dza

za
dz2 and dPS(2) =

1
8π

dt

s + P 2
. (66)

The limits of integration are given by z2 ∈ [0,−t/(s + P 2)], za ∈ [ηa, 1] and
φ ∈ [0, π]. Since the integration of z2 is restricted to the singular region we
define the integration range for z2 by 0 ≤ z2 ≤ min{−t/(s + P 2), yc} ≡ yJ .

Expressing the matrix elements for the direct photon case, listed in Tab. 2,
with the help of the variables s, t, u, z2, zb, b and φ and taking the limit z2 → 0, we
obtain matrix elements Ha

I1, . . . , H
a
I5 that contain the initial state singularities

on the virtual photon side. These are integrated according to

∫
dPS(r)Ha

Ii =

1∫
ηa

dza

za
8πIa

i . (67)

The results for Ia
1 , . . . , Ia

5 are collected in appendix 8.5. They contain the sin-
gularities for the D and SR contributions. Apart from s, t, u and yJ , the results
also depend on the integration variable za. All five expressions Ia

1 , . . . , Ia
5 contain

the term

M(P 2) =
1

2NC
Pq←γ(za) ln

(
1 +

yJs

zaP 2

)
(68)

which is large for P 2 � s and singular for P 2 = 0 as expected. The large
contribution has to be subtracted and absorbed into the PDF of the virtual
photon. Here, we have the same freedom as in the case of the real photon, as has
been described above for the D case. Finite parts can be shifted from the PDF
to the direct cross section and vice versa.

However, the virtual photon PDF’s used later on in this work are constructed
in a scheme similar to the MS scheme for real photons and we have to use the
same scheme to obtain consistent results. Therefore, we subtract those terms
that will yield the MS scheme of the real photon in the limit P 2 → 0. In order
to make the comparison with the case of the real photon possible, we state here
the singular parts of the expressions Ia

1 , . . . Ia
5 , that appear for the real photon

in d = 4− 2ε dimensions. They are given by [14]

M = −1
ε

1
2NC

Pq←γ(za) +
1

2NC
Pq←γ(za) ln

(
(1− za)

za
yJ

)
+

1
2

. (69)

The characteristic singularity proportional to 1/ε is subtracted by absorbing the
transition function

Γ (1)
q←γ(za, M2

γ ) = −1
ε
Pq←γ(za)

Γ (1− ε)
Γ (1− 2ε)

(
4πµ2

M2
γ

)ε

(70)
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into the PDF of the real photon. This subtraction produces a factorization scale
dependence of the photon PDF and gives the finite contributions to the cross
section. The expression remaining after the absorption is, in the MS scheme:

MMS = − 1
2NC

Pq←γ(za) ln

(
M2

γza

yJs(1− za)

)
+

1
2

. (71)

In order to obtain the same finite terms in M(P 2) from equation (68) in the
limit P 2 → 0 for the virtual photon case, we absorb the transition function

Γ
(1)
q←γ∗(za, M2

γ , P 2) = ln

(
M2

γ

P 2(1− za)

)
Pq←γ(za)−NC (72)

into the PDF of the virtual photon. This leaves the finite term

MMS(P 2) = − 1
2NC

Pq←γ(za) ln

(
M2

γza

(zaP 2 + yJs)(1− za)

)
+

1
2

, (73)

that reduces to the expression MMS in (71) for real photons in the limit P 2 →
0. We therefore call this form of factorization the MS factorization for virtual
photons.

4 Parton Distribution Function of the Photon

As mentioned in the introduction and worked out in section 3, the photon pro-
duces a qq̄-pair in the initial state of the NLO direct contribution that leads to
a large logarithm for virtual photons and a singularity for real photons. These
terms have to be absorbed into the PDF of the virtual and real resolved photons,
respectively, leading to a point-like term in the evolution equations of the photon
PDF’s. In this section, we wish to introduce the PDF of the real and the virtual
photon.

After a general discussion of the origin of the photon structure, we define the
structure function and the PDF of the real photon. The evolution equations will
be explained and the differences to the proton will be pointed out. A discussion
of the formalism for the virtual photon PDF resembling the formalism for the
real photon follows. Finally, we compare two parametrizations of the virtual
photon PDF which we use in our computations.

4.1 Origin of the Photon Structure

The photon is the elementary gauge boson of QED. However one knows from
soft low energy γp reactions, that a photon can behave like a hadron. If the time
of the interaction between the proton and the photon is much smaller than the
fluctuation time tf of the qq̄-pair, the pair will interact with the proton rather
than with the photon itself and will give rise to a hadronic structure of the
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photon. The fluctuation time for high energy photons with virtuality P 2 can be
estimated from the uncertainty principle by [55]

tf =
2q0

P 2 + m2
qq̄

, (74)

where q0 is the energy of the photon and mqq̄ is the mass of the pair. As P 2

increases, tf becomes smaller, giving back the photon its structureless character.
Thus, one can identify the direct photon, which interacts directly as a structure-
less object, and the resolved photon, which has a hadronic structure.

At this point it is important to further distinguish the possible configurations
of the qq̄-pair which yield different contributions to the resolved photon. The
photon can create a large size, asymmetric configuration with small transverse
momentum kT that gives rise to soft non-perturbative effects and a small size,
symmetric configuration with large kT that yields hard, perturbative interactions
[56]. The soft part will behave more like a hadron and it will therefore be called
the hadronic part of the resolved photon, whereas the hard part behaves more
like a point-like photon and will therefore be called the point-like part. A possible
physics interpretation of the soft part of the resolved photon is the fluctuation
of the qq̄-pair into a vector-meson with mqq̄ ' mV , which is described by the
vector-meson dominance (VMD) model [57]. The coupling of the photon to the
vector-meson 4π

f2
V

has been predicted by the VMD model, giving

f2
ρ

4π
:

f2
ω

4π
:

f2
ϕ

4π
= 9 : 1 : 7 . (75)

These ratios have been confirmed by measurements of the reaction e+e− →
hadrons.

We have introduced the distinction between direct and resolved photons,
but this distinction is unambiguous only in LO. In NLO the direct and resolved
parts of the photon become intermixed through the point-like part of the resolved
photon. A possibility to distinguish between the direct and the resolved photon
interaction has been suggested by Levy [56]. Consider photon-gluon fusion as
shown in Fig. 7. The diagram on the left is usually denoted as a direct process

pT

kT

Fig. 7. Direct and resolved photon processes for photon-gluon fusion.

in LO. The diagram on the right describes the fluctuation of the photon into a
qq̄ pair with a given kT followed by the interaction of one of the partons with a
gluon, which produces a final state with some pT . If kT � pT , the process can
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be called a resolved interaction. For kT � pT the pT is too small for the final
state partons to form two separate jets, so the diagram looks like the diagram
on the left und thus can be considered as a direct interaction. For large P 2 it is
more likely that kT � pT so that the direct component is dominant. For low P 2

the resolved part will be more dominant.

4.2 Parton Distribution Functions of the Real Photon

The structure of the real photon has been analyzed in the process eγ → eX ,
depicted in Fig. 8. We define x ≡ Q2/(Q2 +W 2) with Q2 = −q2 and P 2 = −p2,
where W is the c.m. energy of the γ∗γ system and y ≡ (pq)/(pk). Denoting the
longitudinal polarization state of the photon as l and the transversal one as t,
we can define photon structure functions

F γ
1 =

Q2

4πα

1
2x

σtt , (76)

F γ
2 =

Q2

4πα
(σtt + σlt) . (77)

Using these definitions, the cross section for eγ scattering can be written as

dσ(eγ → eX)
dxdy

=
4παs

Q4

[
(1− y)F γ

2 + xy2F γ
1

]
. (78)

This is in complete analogy to the DIS ep reaction. The difference to the case of
ep scattering lies in the fact that the photon structure function can be calculated
perturbatively in the limit of large Q2. This is not possible for the proton struc-
ture function. The photon structure function is computable in the quark-parton
model (QPM) from the box diagram γ∗γ → qq̄ and gives in LO in the limit
m2

qi
� Q2, where mqi are the quark masses, [59, 60, 61]

F γ,pl
2 =

Nf∑
i=1

xqγ
i (x, Q2) (79)

with

qγ
i (x, Q2) = 3e2

qi

α

2π

{
[x2 + (1− x)2] ln

Q2(1− x)
m2

qi
x

+ 8x(1− x)− 1
}

. (80)

γ*(q)

γ(p)

e(k)

X

Fig. 8. Single-tag DIS eγ experiment.
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The function qγ
i can be interpreted as the PDF of the quark in the photon, in

analogy to the proton case.
The QPM result can be modified substantially by QCD effects, such as mul-

tiple gluon radiation ladder diagrams. In the limit of large Q2 these kind of
corrections where shown to be exactly calculable in LO [46] and NLO [47]. The
result is of the form

F γ,asymp
2 = α

[
a(x)

αs(Q2)
+ b(x)

]
, (81)

where a(x) is the LO and b(x) the NLO result. Unfortunately F γ,asymp
2 be-

comes negative for small values of x, which cannot be true, since the photon
structure function is measurable. The problem cannot be cured by adding the
VMD contributions that have been mentioned in the previous section, since this
non-perturbative contribution is expected to be well-behaved. Therefore it is not
possible to compute the photon structure function by perturbation theory alone.

To handle the problems of the photon structure function, Glück and Reya [62]
have suggested to formally add all contributions to the photon structure, namely
the QPM, their QCD corrections and the VMD contributions into a single photon
structure function F γ

2 =
∑

i xqγ
i (x, Q2) and fix the quark distributions at some

input scale Q2
0 in analogy to the proton case. Then the photonic parton densities

at different values of Q2 follow from the inhomogeneous evolution equations, that
are in LO

dqγ
i

dt
= hbox +

αs

2π

1∫
x

dz

z

[
Pq←q

(x

z

)
qγ
i + Pg←q

(x

z

)
gγ
]

(82)

dgγ

dt
=

αs

2π

1∫
x

dz

z

[
Pq←g

(x

z

)
qγ
i + Pg←g

(x

z

)
gγ
]

. (83)

Here, t ≡ ln(Q2/Λ2) and the inhomogeneity is given by

hbox = 3e2
qi

α

2π
[x2 + (1− x)2] . (84)

The solution of the homogeneous equations is similar to the solution of the
DGLAP equations for hadrons and can therefore be called F γ,had

2 . The particular
solution of the inhomogeneous equation is due to the inhomogeneity that stems
from the point-like coupling of the photons to the quarks and can therefore be
called F γ,pl

2 . The general solution of the inhomogeneous evolution equations for
the photon is thus given by

F γ
2 = F γ,had

2 + F γ,pl
2 . (85)

This equation allows one to speak about the hadronic and the point-like part of
the photon structure function.

The measurement of the photon structure function is not as easy as for
the proton case. Due to limited detector acceptance, the measured hadronic
energy is not equal to the total hadronic energy, so that the photon energy is
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not determined well, which leads to large systematic errors. In addition, the
structure function F γ

2 is small and the cross section (78) is suppressed by 1/Q4,
which leads to large statistical errors. In spite of these difficulties, the photon
structure has been measured for various values of Q2. In Fig. 9 all existing data
for F γ

2 is presented as a function of x for different values of Q2 (taken from [58]).
One important difference in the behaviour of the proton and the photon

structure functions is that F γ
2 manifests strong scaling violation even in LO

without gluon radiation included. It is positive in the whole x region. Further-
more, F γ

2 should be large at large x due to the point-like part of the photon
structure function, while the structure function of the proton is small at large x.
Predictions from several parametrizations for the PDF of the real photon (solid
curve [33], dashed curve [34], dotted curve [37]) are also shown in Fig. 9.

Fig. 9. Compilation [10] of all existing data on F γ
2 in comparison to predictions

of the PDF parametrizations in [33, 34, 37].
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4.3 Parton Distribution Functions of the Virtual Photon

We now turn to a discussion of the virtual photon structure. Some old data
from the PLUTO collaboration [25] exist, which show the structure function of
a target photon with virtuality P 2 ' 0.4 GeV2 at Q2 ' 5 GeV2. At HERA
information about the structure of the virtual photon has been obtained by two
different methods [23, 24]. One was by tagging photons with a mean virtuality
of P 2 ' 10−5 GeV2 with the electron calorimeter of the luminosity system.
Another method was to use the beam-pipe calorimeter to tagg photons with a
range in virtuality of 0.1 < P 2 < 0.6 GeV2. The ratio of the resolved to the
direct contribution can be plotted as a function of the photon virtuality P 2,
where an experimental definition of the direct and the resolved part of the cross
section has to be given. We will come back to this data in section 5, where we
calculate one- and two-jet cross sections in NLO for ep scattering under HERA
conditions. We will compare the ratios as defined in the experiment with our
theoretical predictions.

Here, we concentrate on the construction of the PDF’s for a virtual photon.
First, we state the LO QPM result for virtual photons, which substitutes the
result (80) for real photons. The virtuality P 2 serves as a regulator in this case
and in the limit Λ2 � P 2 � Q2 one obtains [59, 60, 61]

qγ∗
i (x, Q2) = 3e2

qi

α

2π

{
[x2 + (1− x)2] ln

Q2

x2P 2
+ 6x(1 − x)− 2

}
. (86)

The evolution equations in Q2 for virtual photons and the resulting PDF’s are
exactly calculable in perturbative QCD in a limited range of photon virtuality,
Λ2 � P 2 � Q2 [60, 61]. The PDF’s of the real photon are known for the region
P 2 � Λ2, as described in section 4.2. At HERA, though, the intermediate region
P 2 ' Λ2 is of special interest, as has been noted above. The aim of Glück, Reya
and Stratmann (GRS) in [36] and Schuler and Sjöstrand (SaS) in [37] was to
construct PDF’s for virtual photons, that are valid in the whole P 2-region, i.e.
0 ≤ P 2 ≤ Q2. We explain the constructions of these PDF’s in the following.

4.3.1 The PDF’s of GRS Glück, Reya and Stratmann have used for their
construction a VMD inspired interpolation between the PDF’s of real photons
and those valid at P 2 � Λ2 [36], since the PDF’s fγ

i (x, Q2, P 2) obey evolution
equations similar to those of the real photon. The question therefore reduces to
finding appropriate boundary conditions at Q2 = P 2. Defining

η(P 2) ≡ m4
ρ

(m2
ρ + P 2)2

, (87)

where m2
ρ = (0.77)2 GeV2 refers to some effective mass in the vector-meson

propagator, PDF’s valid for all values of P 2 are defined as

fγ∗(x, Q2 = P 2, P 2) = η(P 2)fγ∗
had(x, P 2) + [1− η(P 2)]fγ∗

pl (x, P 2) . (88)

In this formula, the perturbatively calculable pointlike part fγ∗
pl is given by the

function qγ∗
i (x, Q2 = P 2) from equation (86) and gγ∗(x, Q2 = P 2) = 0 in NLO.
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For a LO construction, fγ∗
pl (x, Q2 = P 2) = 0. These results are for the DISγ

scheme [33], which is connected to the MS-scheme via the transformations

qγ∗
DISγ

= qγ∗

MS
+ qγ

i (x, Q2 = m2
i )

gγ∗
DISγ

= gγ∗

MS
, (89)

where qγ
i (x, Q2) is given by (80). These transformations are valid only for the

NLO distributions, whereas the LO distributions are equal in both schemes. The
reason for introducing the DISγ scheme was that the differences between the LO
and the NLO result are small. The hadronic, non-perturbative input is given by

fγ∗
had(x, P 2) = κ

4πα

f2
ρ

×
{

fπ(x, P 2) , P 2 > µ2

fπ(x, µ2) , 0 ≤ P 2 ≤ µ2
(90)

where µ2
LO = 0.25 GeV2 and µ2

NLO = 0.3 GeV2. The function κ(4πα/f2
ρ )fπ(x, µ2)

is just the prescription for the boundary conditions at input scale Q2 = µ2 for
real photons. As one observes,

η(P 2 = 0) = 1 and 1− η(P 2 � Λ2)→ 1 . (91)

Thus, the usual real photon PDF is regained for P 2 = 0, whereas the perturba-
tively calculable part dominates for P 2 � Λ2. The number of flavors is set to
Nf = 3. The heavy quark sector (c, b, . . .) is supposed to be added as predicted
by perturbation theory of fixed order with no active c and b quarks in the proton
and photon PDF’s. In LO this amounts to adding the processes γ∗g → cc̄ and
γ∗g → bb̄ to the cross section, keeping mc, mb 6= 0.

In [27] GRS have provided PDF’s of the virtual photon in a parametrized
form in LO that can be conveniently used for numerical calculations. The input
scale is Q0 = 0.5 GeV and the restriction P 2 ≤ Q2/5 is implemented as to
fulfill the condition P 2 � Q2. We show the x-distribution for the up-quark at
a scale of Q2 = 50 GeV2 for three different values of P 2, namely P 2 = 0, 1 and
5 GeV2 in Fig. 10 a. As one observes, the distribution decreases with increasing
P 2. For P 2 = 0 the real photon PDF of Glück, Reya, Vogt [33] is reproduced
exactly and the curves fall on top of each other. The use of the MS scheme for
the LO distributions has to be explained. The authors GRS and SaS both give
distributions in the DISγ scheme, but their schemes differ slightly. SaS actually
also give MS distributions. In order to make the results comparable, we treat the
distributions of GRS formally as in NLO and use the transformation equations
(89) also for the GRS LO distributions.

It should be mentioned, that GRS have calculated NLO distributions in [27].
Distinct differences occur for larger P 2 and x > 10−3 which is mainly due to
the different NLO perturbative boundary condition at P 2 = Q2, which does not
exist for the real photon structure function.

4.3.2 The PDF’s of SaS Schuler and Sjöstrand represent the solution of the
inhomogeneous evolution equations of the real photon as a sum of a perturbative
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Fig. 10. (a) The GRS LO prediction in the MS scheme for the up-distribution of
a virtual photon at Q2 = 50 GeV2 and various fixed values of P 2. For comparison,
the LO prediction of GRV for a real photon [33] is shown, which lies exactly on
top of the PDF of GRS for P 2 = 0; (b) SaS1M PDF’s.

and a non-perturbative term [37]

fγ(x, Q2) =
∑
V

4πα

f2
V

fγ,V MD(x, Q2; Q2
0) +

α

2π

∑
i

2e2
qi

Q2∫
Q2

0

dk2

k2
fγ,qq̄(x, Q2; k2) .

(92)
Here, Q2

0 ≥ Λ2 is the input scale for the non-perturbative solution fγ,V MD of the
homogeneous evolution equations, which can be interpreted as a fluctuation of
the real photon into vector-mesons. The second term represents the anomalous
perturbative solutions of the γ → qq̄ fluctuations, where k2 is the virtuality of
the qq̄-pair, which has a continuous spectrum. As noted above, the evolution
equations of the PDF’s of the virtual photon can be exactly calculated in the
range Q2

0 � P 2 � Q2. For real photons in the region of P 2 � Q2
0, the PDF’s
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Fig. 11. (a) Comparison between the GRS and SaS1M LO predictions for the
up-distribution of a virtual photon at Q2 = 50 GeV2 and P 2 = 1.0 GeV2 and
the purely perturbative contribution in the MS scheme; (b) P 2 = 10 GeV2. The
distribution for GRS lies exactly atop of the SaS1M curve.

are given by equation (92). To obtain results valid for the whole P 2 region, SaS
make use of the dispersion relation

fγ∗(x, Q2, P 2) =
α

2π

∑
i

2e2
qi

Q2∫
0

dk2

k2

(
k2

k2 + P 2

)2

fγ,qq̄(x, Q2; k2) . (93)

This model provides the correct behaviour for both P 2 → 0 and the above
described perturbative region. Now, the region of low k2 can be associated with
the discrete set of vector-mesons, so that by introducing the cut-off Q2

0 in the
k2-integration SaS obtain [37]

fγ∗(x, Q2, P 2) =
∑
V

4πα

f2
V

(
m2

V

m2
V + P 2

)2

fγ,V MD(x, Q2; Q̃2
0)
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+
α

2π

∑
i

2e2
qi

Q2∫
Q2

0

dk2

k2

(
k2

k2 + P 2

)2

fγ,qq̄(x, Q2; k2) . (94)

These parton distributions are the solutions of the inhomogeneous evolution
equations of the virtual photon. Note, that the input scale for the VMD PDF’s
has been shifted from Q2

0 → Q̃2
0 with Q2

0 < Q̃2
0. This is motivated by a study

of the evolution equations in [63], which shows that the evolution for virtual
photons starts later in Q2.

The authors SaS have provided the PDF’s of the virtual photon in a para-
metrized form in LO for Nf = 4 in [37] for two different input scales, namely
Q0 = 0.6 GeV and Q0 = 2 GeV. We will use the lower scale in this work.
In contrast to the GRS parametrization, the c quark is included as a massless
flavor in the PDF that undergoes the usual evolution as the other massless quarks
except for a shift of the starting scale Q0. We show the up-quark distribution in
comparison to the ones obtained by GRS in Fig. 10 b for the same scale and P 2

values as in Fig. 10 a. They show roughly the same behaviour and deviate only
in the small x region. For P 2 = 0, the GRV [33] distribution of the real photon
is recovered more or less. We have used the SaS1M parametrization, which is
given in the MS scheme, to make the SaS results comparable with the GRS
distributions.

In section 3.5 we have calculated the part of the hard cross section for an
incoming virtual photon that couples directly to the subprocess, leading to the
logarithmic terms ln(P 2/Q2). The logarithm is absorbed into the PDF of the
virtual photon. As we suspect from the above discussion, the PDF of the virtual
photon should reduce approximately to the perturbatively calculable contribu-
tion (72) in the region of large P 2. Thus, comparing the contribution (72) directly
with the, say, up-quark distribution for virtual photons should lead to results of
the same order of magnitude for large P 2. They cannot give exactly the same
results, since the perturbative part of the u-quark distribution is evolved with
help of the evolution equations. In Fig. 11 a, b we show the purely perturba-
tive contribution in comparison to the u-quark distributions GRS and SaS1M
at Q2 = 50 GeV2 for the two values P 2 = 1 GeV2 and P 2 = 10 GeV2 in the
MS-scheme. As one observes, the perturbative solution and the u-distribution
coincide rather well for the larger P 2 value, especially in the large x range, with
a slight enhancement of the perturbative curve near x = 1.

5 Electron-Proton Scattering at HERA

We come to an analysis of inclusive jet-rates in electron-proton scattering for
slightly off-shell photons. After the introduction of the hadronic cross section,
using the calculated partonic cross sections of section 3, we explain the matching
of theoretical and experimental jet definitions. Afterwards, some numerical tests
are discussed, and finally numerical results for one- and two-jet inclusive cross
sections are given. A comparison with present HERA data is shown.
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5.1 Hadronic Cross Section

We write electron-proton scattering for the production of two jets as

e(k) + P (p)→ e(k′) + Jet1(ET1 , η1) + Jet2(ET2 , η2) + X . (95)

Here, k and p are the momenta of the incoming electron and proton, respectively,
and k′ is the momentum of the outgoing electron. The jets in the final state
are characterized by their transverse momenta ETi and rapidities ηi, which are
observables in an experimental setup. The interaction of the electron with the
proton is mediated by an electroweak vector boson with four-momentum q ≡
(k − k′) and virtuality P 2 ≡ (−q2). The process is dominated by a photon,
especially for the small virtualities under consideration. We therefore concentrate
on the photon and neglect contributions from the other electroweak bosons. The
phase space of the electron can be parametrized by the variables y ≡ (pq)/(pk)
and P 2. In the case of small virtualities P 2 � q2

0 , where q0 is the energy of the
virtual photon, y gives the momentum fraction of the electron energy Ee, carried
away by the virtual photon, so y ' q0/Ee. The c.m. energy of the hadronic
system is given by sH = (p + k)2, whereas the c.m. energy of the photon-proton
subsystem is W 2 = (p + q)2.

We have discussed the factorization of hard and soft regions of the electron-
proton cross section in section 2. The hadronic cross section dσH may be written
as a convolution of the hard scattering process dσe/k with the PDF of the proton
fk/P (xb), where xb is the momentum fraction of the parton from the proton:

dσH(sH) =
∑

k

∫
dxb fk/P (xb)dσe/k(xbsH) . (96)

The hard process is given by the squared matrix element |M|2, which has to be
divided by the flux factor 2sHxb and multiplied by the phase space of n final
state particles of the subprocess and the electron, dPS(n+1):

dσe/k =
1

4sHxb
|M|2dPS(n+1) . (97)

The matrix element |M|2 separates into the hadron tensor Hµν and the lepton
tensor Lµν = 4(kµk′ν − k′µkν − gµνkk′):

|M|2 =
4πα

P 4
LµνHµν . (98)

The constant α is the electromagnetic coupling constant. The separation of the
phase space into a part depending only on the electron dL and a part depending
only on the final state particles of the subprocess dPS(n) is easily achieved by
inserting a delta function for the intermediate virtual photon and gives

dPS(n+1) = dLdPS(n) with dL =
P 2

16π2

dφ

2π

dydP 2

P 2
. (99)

Here φ is the azimuthal angle of the outgoing electron. This degree of freedom
can be integrated out, yielding

1
4P 2

∫
dφ

2π
LµνHµν =

1 + (1− y)2

2y2
Hg +

4(1− y) + 1 + (1− y)2

2y2
HL , (100)
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with the definitions Hg ≡ −gµνHµν and HL ≡ (4P 2)/(sHy)2pµpνHµν . Since we
will consider the range of small photon virtualities P 2 throughout this work,
the contribution HL proportional to P 2 will be neglected. We approximate the
spectrum of the virtual photons by

dfγ/e(y)
dP 2

=
α

2π

1 + (1 − y)2

y

1
P 2

, (101)

which is the unintegrated Weizsäcker-Williams [8] formula. For later use we de-
fine the virtuality P 2

eff = 0.058 GeV2. By inserting P 2
eff into the unintegrated

Weizsäcker-Williams formula, we obtain the value for the Weizsäcker-Williams
formula integrated in the region P 2

min ≤ P 2 ≤ P 2
max = 4 GeV2 using the mini-

mum photon virtuality P 2
min := m2

ey2

1−y . In this way, we can reproduce the P 2 ' 0
results.

Defining the partonic cross section

dσγ/k =
1

4xbysH
Hγ/kdPS(n) , (102)

the hard scattering (97) integrated over the angle φ can be written as

dσe/k = dσγ/kdfγ/e(y)dy . (103)

As discussed in the previous section, a photon with moderate virtuality in-
teracts with a proton not only as a point-like particle, but also via its hadronic
content. The hadronic structure of the photon is described by a PDF fγ/l(xa),
introducing the new variable xa that gives the momentum fraction of the parton
from the photon. To simplify the notation, the case of a direct photon is included
into the PDF of the photon via the delta function fγγ(xa) = δ(1−xa). Summa-
rizing the above results, the hadronic cross section dσH(sH) may be written as
a convolution of the hard scattering dσk/l with the PDF of the photon fγ/l(xa)
and of the proton fk/P (xb), multiplied by the photon spectrum dfγ/e(y):

dσH =
∑
k,l

∫
dxadxbdy dfγ/e(y) fγ/l(xa)dσl/kfk/P (xb) . (104)

The hard cross section dσkl now describes the interactions of the partons from
the photon (and the photon itself) with the partons from the proton and is given
by the trace of the hadron tensor, multiplied with the phase space of the final
state particles, divided by the flux factor:

dσl/k =
1

4xaxbysH
Hl/kdPS(n) . (105)

The factorization (104) is visualized in Fig. 12.
For electron-proton scattering, the SR case, in which the virtual photon cou-

ples directly to the partons from the proton, and the DR case, in which the
photon serves as a source of partons, are present. As mentioned in section 2, the
matrix elements cannot be integrated over the whole region of phase space in



Inclusive Single- and Dijet Rates in NLO QCD . . . 35

e

P

P2 = -q2

y

xb

xa

        (pt)Jets

photon remnant

proton remnant

Fig. 12. Factorization of hard and soft contributions in electron-proton scatter-
ing.

NLO. A cut-off has to be introduced that separates the singular from the finite
regions. The results for the integration over the singular regions were given in
section 3 and the factorization of singular terms has been discussed. Although
the calculation of the NLO matrix elements is straightforward, especially using
algebraic programs like REDUCE [64], the results for the full matrix elements are
too cumbersome to be stated here. For both, the SR and the DR cross section,
we have a set of two-body contributions and a set of three-body contributions.
Each set is completely finite, as all singularities have been canceled or absorbed
into PDF’s. Each part depends separately on the phase space slicing parameter
yc. The analytic calculations are valid only for very small yc, since terms O(yc)
have been neglected in the analytic integrations. As explained in section 3.3, the
two separate pieces have no physical meaning. When the two-body and three-
body contributions are superimposed to yield a suitable inclusive cross section,
as for example the inclusive one- or two-jet cross section, the dependence on the
cut-off ys will cancel. This has been checked explicitly and will be demonstrated
in section 5.4.

We now come to the kinematics of electron-proton scattering. We first con-
centrate on the SR cross section, for which the kinematics is most easily treated
in the c.m. system of the virtual photon and the proton, where for the three-
vectors p +q = 0. We denote the momenta of the final state particles as p1 and
p2, which can be expressed by their transverse momenta ET1 = ET2 = ET and
their rapidities η1 and η2 in the γ∗P c.m. system by pi = ET (cosh ηi, 0, 0, sinhηi)
(remember that the azimuthal angle has been integrated out). From energy and
momentum conservation one obtains

W = ET (e−η1 + e−η2) , (106)

y =
W 2 + P 2

sH
, (107)

xb = 1 +
2W

W 2 + P 2
ET (sinh η1 + sinh η2) . (108)
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The phase space, including the integration over xb and y, can be expressed as

dPS(2)dxbdy =
W 2

W 2 + P 2

2ET

sH

dET

(2π)2
dη1dη2 . (109)

The Mandelstam variables s, t and u are defined as

s = (pb + q)2 = (p1 + p2)2 ,

t = (q − p1)2 = (pb − p2)2 , (110)
u = (q − p2)2 = (pb − p1)2 .

In the DR case, the rapidities of the final state partons η′1 and η′2 are expressed
in the c.m. system of the two partons and have to be boosted into the photonic
c.m. system via

ηi = η′i +
1
2

ln xa for i = 1, 2 . (111)

Inserting these transformed rapidities into the above equations (106)–(109) the
correct formulæ in the case of the resolved photon for xa, xb, y and W , now
containing η′i, are obtained. For xa = 1, which defines the SR case, the two
systems are identical and η′i = ηi.

For a comparison with HERA data the rapidities and transverse momenta
have to be transformed from the photonic c.m. system to the HERA laboratory
system. The calculation of the SR and DR cross sections proceed as for real
photoproduction, i.e. the transverse momentum (qT ) of the virtual photon and
other small terms proportional to P 2 are neglected so that the virtual photon
momentum is in the direction of the incoming electron and q0 = Eey. The
transformation from the c.m. system into the HERA laboratory system is as for
real photoproduction:

ηlab
i = ηi +

1
2

ln
Ep

yEe
. (112)

5.2 Snowmass Jet Definition

The factorization of hard and soft regions in the hadronic cross section has been
discussed so far for the initial state. The non-perturbative and not calculable
regions are parametrized through the PDF’s of the hadron or the resolved pho-
ton. A similar problem occurs in the final state. The partons that are emitted
from the subprocess cannot be observed directly due to the confinement of color
charge. The hadronization of partons into single hadrons in the final state can be
described, similarly to hadrons in the initial state, by fragmentation functions.
Another possibility is the observation of a shower built from a large number of
hadrons without resolving the specific type of hadrons emitted. One then has
to define jets in order to identify the hadron showers with individual partons or
their combinations from the subprocess. The combination of hadrons into jets
is done by cluster algorithms, where jet definitions can be implemented. The jet
definitions should fulfill a number of criteria [65], such as they should be simple
to implement in theory and experiment, be well defined and yield finite cross
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sections in any order of perturbation theory and give cross sections that are more
or less insensitive to the hadronization processes.

Looking at the theoretical side of inclusive two-jet cross sections, in LO there
is a one-to-one correspondence between the parton from the subprocess and the
jet in the final state. Therefore the theory is not sensitive to any specific cluster
algorithm used in the experiment. This is not sensible, because the experimental
results depend strongly on the used algorithm. Only in NLO can one imple-
ment certain jet definitions on the theoretical side, because the jet can obtain a
substructure due to the nearly collinear radiation of a parton in the final state.

Several jet definitions have been proposed to date, one of the first being the
(ε, δ) criterion of Sterman and Weinberg [66] (see also [50]). We will adopt the jet
definition of the Snowmass meeting [67]. According to this definition, two partons
i and j are recombined, if Ri,J < R, where Ri,J =

√
(ηi − ηJ )2 + (φi − φJ )2 and

ηJ , φJ are the rapidity and the azimuthal angle of the combined jet respectively,
defined as

ETJ = ET1 + ET2 , (113)

ηJ =
ET1η1 + ET2η2

ETJ

, (114)

φJ =
ET1φ1 + ET2φ2

ETJ

. (115)

The cone-radius R is chosen as in the experimental analysis. Thus, two partons
are considered as two separate jets or as a single jet depending on whether they
lie outside or inside the cone with radius R around the jet momentum. In NLO,
the final state may consist of two or three jets. The three-jet sample contains all
three-body contributions, which do not fulfill the cone condition. The rapidities
used for the cone constraint are evaluated in the HERA laboratory system.

5.3 Numerical Input

We now describe the input for the numerical calculations. We have chosen the
CTEQ3M proton structure function [68] which is a NLO parametrization in the
MS scheme, with Λ

(4)

MS
= 239 MeV. This Λ value is also used to calculate αs

from the two-loop formula

αs(µ) =
12π

(33− 2Nf) ln µ2

Λ2

(
1− 6(153− 19Nf)

(33− 2Nf)2
ln(ln µ2

Λ2 )

ln µ2

Λ2

)
. (116)

We use this formula for both the LO and NLO calculations. In the case of
photoproduction, the scale µ is set equal to the transverse momentum of the
jets, since this is the only hard scale present in the interactions. Here, P 2 � E2

T ,
so that we also set µ = ET . Equivalently, the factorization scales are chosen to
be Mγ = Mp = ET .

For the PDF’s of the virtual photon we choose either the GRS [36] set or the
SaS1M set [37]. Both sets are given in parametrized form for all scales M2

γ so that
they can be applied without repeating the computation of the evolution. As men-
tioned in section 4, both sets are given only in LO, i.e. the boundary conditions
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for P 2 = M2
γ and the evolution equations are in LO. Since neither of the two

PDF’s is constrained by empirical data from scattering on a virtual photon tar-
get we consider these LO distribution functions as sufficient for our exploratory
studies on jet production and treat them as if they were obtained in NLO. As
noted in section 4, the heavy quarks are supposed to be added as predicted by
fixed order perturbation theory with no active heavy quarks in the PDF’s of
the proton and the photon. Since in this section we are primarily interested in
studying the sum of the direct and resolved contributions and the influence of
the consistent subtractions of the NLO direct part we refrain from adding the
LO or NLO cross sections for direct heavy quark production as suggested in
[27, 36]. So, our investigations in connection with the GRS parametrization of
the virtual photon PDF are for a model with three flavors only. For consistency
we take also Nf = 3 in the NLO corrections and in the two-loop formula for
αs. Of course, the proton PDF has been obtained for Nf = 4. In comparison to
the GRS parametrization, we studied the relevant cross sections also with the
virtual photon PDF’s of SaS [37], which are for Nf = 4.

The cross sections we have computed are for kinematical conditions as in
the HERA experiments, for which positrons of Ee = 27.5 GeV which collide
with protons of Ep = 820 GeV. To have the equivalent conditions as in the
ZEUS analysis we choose the constraints ymin = 0.2 and ymax = 0.8 for the
variable occuring in the unintegrated Weizäcker-Williams approximation. The
cone radius is set to R = 1.

5.4 Numerical Tests

Since the separation of the two-body and three-body contributions with the
slicing parameter yc is a purely technical device in order to distinguish the phase
space regions where the integrations are done analytically from those where they
are done numerically, the sum of the two- and three-body contributions should
be independent from yc. The dependence of the two-body contributions on the
slicing parameter is logarithmic, giving rise to (ln yc)- and (ln2 yc)-terms. The
parameter yc has to be quite small to guarantee that the approximations in the
analytical calculations are valid. Typically, yc is of the order of 10−3, forcing
the two-body contributions to become negative, whereas the three-body cross
sections are large and positive. In Fig. 13 a, b we have checked for two different
values of P 2, by varying yc between 10−4 and 10−2, that the superimposed two-
and three-body contributions are independent of yc for the inclusive single-jet
cross sections integrated over the whole kinematically allowed η region for fixed
ET = 20 GeV. Only the SR contribution is tested, since the insensitivity of the
DR contributions on yc has been checked in [13, 22].

Furthermore, we have explicitly checked that the SR one- and two-jet cross
sections for virtual photons are in perfect agreement with the ones from real
photoproduction given in [14, 13] by integrating the virtuality numerically over
the region of small P 2 with P 2

min ≤ P 2 ≤ 4 GeV2. The main contribution to the
cross section comes from the lower integration boundary, where the dependence
of the matrix elements on P 2 is small.

Both, the yc-dependence test and the comparison with the results from [14,
13], give us confidence that our computer program for the calculation of jet
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Fig. 13. (a) Single-jet inclusive cross section integrated over the physical η region
for ET = 20 GeV and for the virtuality P 2 = 0.058 GeV2 as a function of the
slicing parameter yc. The solid line gives the sum of the two- and the three-body
contributions; (b) P 2 = 10.0 GeV2.

cross sections in electron-proton scattering yields reliable results. It is interesting
now to study the scale dependences of the LO and NLO cross sections. The
relevant scales are the renormalization scale µ, the factorization scale for the
virtual photon Mγ and that for the proton Mp. Since the dependence on these
scales should vanish in an all-order calculation, we expect the dependences to
be reduced by going from LO to NLO.

Of special interest is the dependence of the cross section on the factorization
scale Mγ , which comes from the factorization of the photon initial state singu-
larities. The dependence is logarithmic, since terms proportional to ln(M2

γ/P 2)
have been subtracted from the NLO cross section for the direct virtual photon,
as indicated in equation (72). The dependence of the NLO direct single-jet in-
clusive cross section, integrated over the region η ∈ [−1.875, 1.125] for ET = 7
GeV, on the parameter Mγ/ET for two different values of P 2 is shown in Fig. 14
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a, b as the dashed curve. It is compared to the resolved virtual photon contri-
bution in LO, which gives the dotted curve. It is sufficient to use the LO matrix
elements, since the main Mγ dependence of the resolved contribution stems from
the dependence of the photon PDF on the negative logarithm − ln(M2

γ/P 2). For
the comparison we used the SaS1M parametrization of the virtual photon, which
is given in the MS scheme. As one can see from the Fig. 14 a, b, the dependences
on the logarithms of the direct and the resolved contributions cancel rather well
in the sum.
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Fig. 14. (a) Single-jet inclusive cross section integrated over η = [−1.875, 1.125]
for ET = 7 GeV and for the virtuality P 2 = 1.0 GeV2 as a function of the scale
parameter Mγ/ET . The MS-SaS1M parametrization with Nf = 4 is chosen. The
solid line gives the sum of the NLO direct and LO resolved virtual photon cross
sections; (b) P 2 = 10.0 GeV2.

Finally, we study the renormalization scale dependence of the NLO correc-
tions as compared to the LO cross section. We consider only the SR contribu-
tions, since the DR have been tested and shown to have a reduced scale de-
pendence in [13, 22]. In Fig. 15 a, b we have plotted the one-jet inclusive cross



Inclusive Single- and Dijet Rates in NLO QCD . . . 41

section integrated over η ∈ [−1.875, 1.125] for ET = 7 GeV and P 2 = 1, 10 GeV2.
We have used the two-loop formula for αs also in the LO calculation for better
comparison. For P 2 = 1 GeV2 the scale dependence of the NLO curve is reduced
considerably. At P 2 = 10 GeV2 though, the NLO cross section falls off slightly
for the smaller scales below µ ' ET . This could be attributed to the fact, that
the scale and the virtuality are of the same order in this region and the condition
P 2 � Q2 required in the construction of the virtual photon PDF begins to be-
come violated. Actually, for a full test of the renormalization scale dependence
it would be necessary to vary all scales µ = Mγ = Mp simultaneously, since
also the structure functions are renormalization scale dependent. It is an em-
pirical fact, that the scale dependence of the proton structure function is small.
The dependence of the photon structure function on the renormalization scale
is large, but this can only be accounted for by the resolved contributions. The
reduced renormalization scale dependence of the sum of the direct and resolved
contributions has already been demonstrated in [13, 22].

5.5 Single-Jet Inclusive Cross Sections

In this section, we present numerical results for inclusive one-jet cross sections
as a function of the virtuality P 2. We choose the following notation of the curves
as to make the discussion clearer: the SR cross sections shall be denoted as Dir
(reminding of the direct character of the virtual photon), whereas the DR cross
sections are labeled Res. In addition, the sum of the SR and DR contributions is
shown and labeled Sum. Note, that in the case of electron-proton scattering the D
component does not exist. As has been calculated in section 3, large logarithmic
contributions occur for small photon virtualities for the, direct virtual photon
that can be subtracted and absorbed into the PDF of the virtual photon. The SR
cross sections, where these logarithmic terms have been subtracted, are specified
by the index s, giving the contributions Dirs. All plots in this section are taken
from ref. [26].

We first concentrate on predictions with the PDF’s of GRS. In Fig. 16 a, b, c,
the results for d3σ/dET dηdP 2 are shown as a function of ET integrated over η in
the interval−1.125 ≤ η ≤ 1.875, which are the boundaries employed in the ZEUS
analysis [23]. We show results for the the three values of P 2 = 0.058, 0.5 and 1
GeV2. For all three P 2 the cross section is dominated by the Res component at
small ET . Near ET = 20 GeV the Dirs contribution is of the same magnitude as
the Res cross section. The sum of the cross sections as a function of P 2 falls off
nearly uniformly in the considered ET range with increasing P 2. This decrease
is stronger for smaller ET .

Next, we studied the η distribution of the Dirs contribution at fixed ET =
7 GeV and the same P 2 values as in Fig. 16. The results are shown in Fig.
17 a, b, c, where two approximations are shown, namely the LO cross section
and the NLO cross section from [13]. There, P 2 = 0 everywhere, except for
the unintegrated Weizsäcker-Williams approximation, which leads to a 1/P 2

dependence. Obviously this approximation is good for P 2 = 0.058 GeV2. At the
larger P 2 however it overestimates the cross section and should not be used.
This means that the P 2 dependence of the Dirs part, although the strongest
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Fig. 15. (a) Single-jet inclusive cross section integrated over η = [−1.875, 1.125]
for ET = 7 GeV and for the virtuality P 2 = 1.0 GeV2 as a function of the scale
parameter µ/ET . The MS-SaS1M parametrization with Nf = 4 is chosen. The
solid line gives the NLO direct prediction, whereas the dashed curve shows the
LO cross section; (b) P 2 = 10.0 GeV2.
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logarithmic P 2 dependence has been subtracted, should be taken into account.
In the sum of the Dirs and Res cross sections the difference is small as long as
the Res part dominates. This holds for the smaller ET ’s. The LO prediction is
evaluated with the same structure functions and αs value as the NLO result. It is
smaller than the NLO result, which it approaches with increasing P 2. Of course,
this finding depends on the chosen value of R because the NLO cross section
depends on R, whereas the LO curve does not, as we have already noted before.
Estimates of the inclusive cross section with LO calculations can therefore only
be trusted for large cone radii.

The results shown so far are for a model with three flavors only and therefore
should not be compared to the experimental data except when the contribution
from the charm quark is added at least in LO. A more realistic approach is to use
the photon PDF’s SaS1M [37] which are constructed for four flavors. In Fig. 18 a,
b, c results are presented for d3σ/dET dηdP 2 integrated over η ∈ [−1.125, 1.875]
as a function of ET for P 2 = 0.058, 0.5 and 1.0 GeV2. We can compare these
curves with the results in Fig. 16a, b, c obtained with the PDF of GRS, where
Nf = 3. The sum of the Dirs and Res contributions changes by 10% to 30% in
the small ET region and approximately 50% in the large ET region. The larger
cross section for Nf = 4 results mainly from the Dirs contribution. The direct
component is more important for larger ET than for smaller ET . Therefore the
increase is stronger in the large ET region.

Of interest are also the rapidity distributions for fixed ET . These are shown
for ET = 7 GeV as a function of η between −1 ≤ η ≤ 2 choosing P 2 = 0.058, 1, 5
and 9 GeV2 in Fig. 19 a, b, c, d. We show the subtracted Dirs cross section, the
Res cross section and their sum. The Res component has its maximum shifted to
positive η’s in contrast to the Dirs component, as expected. The Dirs component
decreases quite rapidly with increasing η. This stems from the subtraction of
the (ln P 2/M2

γ ) terms as can be seen by comparison with the unsubtracted cross
section, denoted Dir, in Fig. 19 a, b, c, d. The sum of the resolved and subtracted
direct cross section Dirs is more or less constant for the smaller P 2 values and
decreases with increasing η for P 2 = 5 and 9 GeV2.

In section 4.3 we have checked by a direct comparison, that the subtraction
term (72) approximates the PDF of the photon rather well for large enough P 2.
Thus, for these large virtualities we expect the unsubtracted cross section (Dir)
to be the correct one, rather than the sum of the subtracted direct Dirs and the
resolved contributions, at least for small η. The larger P 2, the closer does the
full direct cross section Dir approach the sum Res+Dirs, as can be observed in
Fig. 19 a, b, c, d. As we have seen in section 4.3, there still is a deviation of the
pure perturbative contribution from the evolved PDF in the small x region. This
corresponds to the kinematic region of large η, which is the forward direction of
the proton. This deviation is evident in the Fig. 19 a, b, c, d as well; at P 2 = 9
GeV2 the two cross sections differ at η = 2 by approximately 30 %. Another
difference shows up in the backward direction at η = −1. In this region, which
corresponds to the region in the photon PDF where the perturbative component
dominates, no deviation is expected. The cause might be the neglection of the
transverse momentum qT of the virtual photon in the calculation of the Dir and
Res cross sections, which becomes especially important for larger P 2. Actually,
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Fig. 16. (a) Single-jet inclusive cross section integrated over η ∈ [−1.125, 1.875]
for the virtuality P 2 = 0.058 GeV2. The MS-GRS parametrization with Nf = 3
is chosen. The solid line gives the sum of the subtracted direct and the resolved
term; (b) P 2 = 0.5 GeV2; (c) P 2 = 1.0 GeV2
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Fig. 17. (a) Single-jet inclusive cross sections for ET = 7 GeV and P 2 = 0.058
GeV2. The MS-GRS parametrization with Nf = 3 is chosen. Only the SR part
with subtraction (Dirs) is plotted. The solid line gives the LO contribution. The
dashed curve is the full NLO cross section, whereas the dotted curve gives the
NLO cross section, where the NLO matrix elements have no P 2-dependence; (b)
P 2 = 0.5 GeV2; (c) P 2 = 1.0 GeV2.
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Fig. 18. (a) Single-jet inclusive cross section integrated over η ∈ [−1.125, 1.875]
for the virtuality P 2 = 0.058 GeV2. The MS-SaS1M parametrization with Nf =
4 is chosen. The solid line gives the sum of the subtracted direct and the resolved
term; (b) P 2 = 0.5 GeV2; (c) P 2 = 1.0 GeV2.
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Fig. 19. (a) Comparisons of single-jet inclusive cross sections for ET = 7 GeV
and the virtuality P 2 = 0.058 GeV2. The MS-SaS1M parametrization with Nf =
4 is chosen. The solid line gives the sum of the subtracted direct and the resolved
term. The dash dotted curve is the direct contribution without subtraction; (b)
P 2 = 1 GeV2; (c) P 2 = 5 GeV2; (c) P 2 = 9 GeV2.

looking at Fig. 10 b from section 4, the purely perturbative curve, which will
occur in the unsubtracted Dir component, overestimates the up-distribution at
x = 1, which corresponds to the backward η region. So, also in this region, the
sum of the Dirs and the Res components could still be a better estimate of the
cross section, than the Dir component alone.

It is clear that the resolved and the direct cross sections decrease with in-
creasing P 2 for fixed η and ET . It is of interest to know how the ratio of Res
to the Dir cross section behaves as a function of P 2. This has been analyzed in
[26]. Apart from the fact that the ratios cannot be measured directly, we found
a strong dependence of the ratio on the scheme chosen for the photon PDF and
very large corrections when going from LO to NLO. As one can deduce from
these results, it is not very sensible to compare the Dir and Res contributions
directly. Rather one has to introduce a parameter that experimentally separates
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Dir and Res contributions. We will introduce this parameter in the following
section.

5.6 Dijet Inclusive Cross Sections

In comparison to single-jet cross sections, dijet cross sections provide a much
stronger test of QCD, since they depend on one variable more. We will now
present inclusive dijet cross sections d4σ/dET dη1dη2dP 2 as a function of P 2.
The variable ET is defined according to [12, 13] to be the transverse momentum
of the measured (trigger) jet, which has rapidity η1. The second rapidity η2

is associated with the second jet, where the two measured jets are those with
highest ET in the three-jet sample, i.e. ET1 , ET2 > ET3 .

In principle we could predict η distributions similar to those in [12]. Since
experimental data on these distributions are not expected in the near future be-
cause of limited statistics, we refrain from showing such plots here and present
only the ET distributions integrated over the interval −1.125 < η1, η2 < 1.875
following the constraints of the ZEUS analysis [23]. The results for P 2 = 0.058, 0.5
and 1.0 GeV2 are shown in Fig. 20 a, b, c, where the full curve is given by the
cross section d4σ/dET dη1dη2dP 2 as a function of ET integrated over η1 and η2

in the specified interval and for 0.2 < y < 0.8 (the plots in this section are taken
from ref. [26]). The functional dependence on ET does not change as a function
of P 2, only the absolute value of the cross section decreases with increasing P 2.

Furthermore we show the so-called enriched direct and resolved cross section
in Fig. 20. These two contributions are defined with a cut on the variable xobs

γ ,
which is given by

xobs
γ ≡

∑
i ETie

−ηi

2yEe
, (117)

where the sum runs over the two highest ET jets. The variable xobs
γ gives the

fraction of the photon energy going into the two measured jets. It is a good
estimate of the theoretically defined variable xa, that defines the fraction of the
photon momentum participating in the hard interaction, see Fig. 12. For xa = 1,
the photon couples directly to the subprocess, whereas for xa < 1 some of the
photon energy goes into the production of a remnant jet, leading to resolved
processes. Note, that in LO xa = xobs

γ . For experimental considerations, one
defines the direct enriched contribution for xobs

γ > 0.75, whereas the resolved
enriched component has xobs

γ < 0.75. Both enriched cross sections contain con-
tributions from the direct and the resolved part. In Fig. 20 a, b, c the sum of the
Dir and Res curves is equal to the full cross section d4σ/dET dη1dη2dP 2 with no
cut on xobs

γ . The curves in Fig. 20 are for the GRS parton distributions in the
MS scheme. As to be expected, with increasing P 2 the full cross section is more
and more dominated by the Dir component, in particular at the larger ET . This
means that the cross section in xobs

γ < 0.75 decreases stronger with P 2 than in
the xobs

γ > 0.75 region. This could be studied experimentally by measuring the
ratio of the two cross sections as a function of P 2 for fixed ET . This has not
been done yet.
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Fig. 20. (a) Dijet inclusive cross section integrated over η1, η2 ∈ [−1.125, 1.875]
for the virtuality P 2 = 0.058 GeV2. The MS-GRS parametrization with Nf = 3
is chosen. The solid line is the sum of the direct and the resolved contribution.
The dashed line is the direct-enriched contribution with xobs

γ > 0.75 and the
dotted curve is the resolved enriched contribution with xobs

γ < 0.75; (b) P 2 = 0.5
GeV2; (c) P 2 = 1.0 GeV2.
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Fig. 21. The ratio of the resolved-enriched to the direct-enriched contributions
as calculated in Fig. 20 a, b, c, integrated over ET1 , ET2 > 4 GeV in LO (dotted)
and NLO (full) for the SaS1M parametrization with Nf = 4 compared with
ZEUS data.

Instead, the ZEUS collaboration [23] has presented data on the ratio r =
Res/Dir, where Dir and Res refer to the enriched direct and resolved cross sec-
tions. The ZEUS data in [23] has actually been obtained by integrating the
transverse momenta of the two-jet cross sections over the region ET1 , ET2 ≥ 4
GeV and the rapidities in the range −1.125 < η1, η2 < 1.875 for various P 2-bins.
With the integration cut on the transverse momenta of the two hardest jets, the
transverse momentum of the unobserved jet can vanish, which is not IR safe in
NLO QCD. We therefore allow the second jet to have less than 4 GeV if the
third unobserved particle is soft (i.e. has a transverse momentum of less than 1
GeV) [12]. Through this procedure, a yc dependence is avoided. We calculated
the ratio r as a function of P 2 up to P 2 = 0.6 GeV2 and compared it with the
ZEUS [23] data in Fig. 21 in LO (dotted curve) and NLO (full curve), using the
SaS1M photon PDF with Nf = 4 flavors. We find quite good agreement of the
NLO prediction with the data points for P 2 ≥ 0.25 GeV2. The curve deviates
from the data for P 2 ' 0.2 GeV2, though, and even more for the point P 2 ' 0,
which lies about 30% above the prediction. Surely the photoproduction data is
much more precise then the other points shown in Fig. 21. For photoproduction
it has been shown in [12], that the measured enriched resolved component is
larger than the predicted one for a small cut in the transverse momentum. This
has been attributed to additional contributions from multiple interactions with
the proton remnant jet in the resolved cross section, which have not been in-
cluded in the NLO calculations. This underlying event contribution is reduced for
larger Emin

T and for cone radii smaller than 1. These problems must be present
in the comparison shown here for the smallest P 2 value as well. As it seems, the
underlying event contribution is also reduced by going to higher values of P 2.
This could be studied more directly by measuring rapidity distributions for the
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enriched resolved γ∗ sample as was done for the photoproduction case [12].

6 Photon-Photon Collisions

In this section we predict inclusive jet rates for the case of photon-photon colli-
sions in kinematic regions that will become available in LEP2 experiments. We
first introduce the notation and kinematics for the hadronic cross section and
then discuss some numerical results.

6.1 Jet Production Cross Section and Kinematics

To obtain a close correspondence between ep scattering discussed in the previous
section and γγ∗ scattering to be discussed here, we use similar notations. Thus,
we deviate somewhat from the notation used in section 4. We start from electron-
positron scattering for two-jet production, which may be written as

e+(k1)+e−(k2)→ e+(k′1)+e−(k′2)+Jet1(ET1 , η1)+Jet2(ET2 , η2)+X . (118)

We assume, that the interaction of the electrons is processed via the interaction
of one quasi-real and one virtual photon, that are radiated by the electron and
positron, respectively. Thus, we consider the subprocess

γ∗a(p) + γb(q) →
∑

(Jet)i + X , (119)

with p ≡ k1 − k′1 and q ≡ k2 − k′2. The electron-positron c.m. energy is given
by sH = (k1 + k2)2, whereas the γγ∗ c.m. energy is given by W 2 = (p + q)2.
Since both, the real and the virtual photon, acquire some hadronic substructure
through the resolved processes, it is not quite clear which is the probing and
which is the probed photon. We therefore will not speak about target and probing
photon, but simply of the real and the virtual photon. We define the virtuality
of the real photon as Q2 ≡ −q2 with Q2 ' 0 and that of the virtual photon
as P 2 ≡ −p2. Next, the momentum fractions of the photon in the electron and
positron ya and yb have to be defined, which are given by

ya ≡ pk2

k1k2
and yb ≡ qk1

k1k2
' Eγ

Ee
. (120)

Here, Eγ is the energy of the real photon and Ee is the electron energy in the
e+e− c.m. system.

Considering jet production, the interaction of the photons have three different
parts [20, 21, 22]. First in the direct (D) contribution, both photons can interact
directly, which yields the QPM box diagram in LO. The NLO QCD corrections
consist of the radiation of one additional gluon in the final state and the virtual
corrections. Next, the single-resolved (SR) components have to be considered,
which result from the hadronic structure of either of one of the photons. Since the
resolved real and the resolved virtual photon have different hadronic structures,
described by different PDF’s, we will specify the SR contribution of a resolved
virtual photon as SR∗, whereas the single resolved real photon contribution is
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Fig. 22. The different components contributing in γγ∗ scattering.

simply denoted SR. Finally, the contribution from two resolved photons is called
the double-resolved (DR) contribution. The different components are pictured
in Fig. 22.

The resolved photons are considered as sources for partons, which afterwards
interact in a subprocess. The factorization of hard and soft regions in the e+e−

cross section is given by

dσ(e+e− → jets) =
∑
k,l

∫
dxadxb fγ∗/l(xa)dσk/lfk/γ(xb)

dfγ∗/e(ya)fγ/e(yb)dyadyb . (121)

It is written as a convolution of the PDF’s of the virtual and the real photons
fγ∗/l(xa) and fk/γ(xb), respectively, with the hard partonic cross section dσij

and the spectra of the photons, that are described by the Weizsäcker-Williams
approximation. The spectrum of the real photon is integrated over the low Q2

region from Q2
min = m2

ex2

1−x to Q2
max = 4 GeV2, giving

fγ/e(yb) =
α

2π

1 + (1− yb)2

yb
ln
(

Q2
max

Q2
min

)
. (122)

The function fγ∗/e is given by equation (101). The kinematics can be described
most easily in the c.m. system of the virtual photon and the electron that radiates
γb. We start from the D case, for which from energy-momentum conservation
one has

W = ET (e−η1 + e−η2) , (123)

ya =
W 2 + P 2

sH
, (124)

yb = 1 +
2W

W 2 + P 2
ET (sinh η1 + sinh η2) . (125)

Both variables ya and yb are integrated out and are included in the phase space
for convenience, which gives

dPS(2)dyadyb =
W 2

W 2 + P 2

ET

2sH

dET

(2π)2
dη1dη2 . (126)
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In the SR and DR cases, the additional variables xa and xb have to be introduced.
They give the momentum fractions of the partons in the resolved photons. We
neglect the transverse momentum of the incoming virtual photon qT as we have
done in the case of electron-proton scattering, so the partons are traveling in the
direction of the incoming photons. Thus the energies of the partons pa and pb

are given by xaEγ∗ and xbEγ , respectively. The rapidities are boosted by

η′i = ηi +
1
2

ln(xaxb) . (127)

In the DR case, xa 6= 1 and xb 6= 1, whereas in the SR case only one of the
variables xa or xb is less then 1.

6.2 Predictions for Inclusive Jet Rates

We now come to a presentation of numerical results for the scattering of a virtual
on a real photon. First we note that the factorization and renormalization scale
dependences of the D contribution is tested indirectly with the tests done in
section 5.4, since the matrix elements for the D case are proportional to the
abelian color class for the subprocess γg → qq̄g which is included in the SR
case. All tests hold for each color class separately, since e.g. the cancellation
and factorization of singularities holds for each color class separately. The Mγ

dependence of the D and the SR∗ contribution compensate each other, just as
for the SR and DR components, as tested in section 5.4.

For producing our plots we assume kinematical conditions that will be en-
countered at LEP2, where the photons are emitted by colliding electrons and
positrons, both having the energy of Ee = 83.25 GeV. We choose the configu-
ration, where the virtual photon travels in the positive z-direction. We focus on
one-jet cross sections and do not present results on dijet rates, since the studies
here have only exploratory character. For the same reason we have used only the
MS-GRS [36] parametrization of the photon PDF, for obtaining our results and
do not consider the SaS PDF’s [37]. We have implemented the PDF of GRS for
both, the real and the virtual photon, since the GRS parametrization goes over
into the GRV [33] parametrization for the real photon, when choosing Q2 = 0.
The real photon will be integrated over Q2 using the Weizsäcker-Williams ap-
proximation for the region described before equation (122), whereas the virtual
photon will have fixed P 2-values. Because of the high c.m. energies encountered
at LEP2, we have set the number of flavors to Nf = 4, adding the contributions
from photon-gluon fusion by fixed order perturbation theory. We took the value
Λ

(4)

MS
= 239 MeV for the QCD scale, which is also used in the αs two-loop for-

mula, for which µ = ET . The factorization scales are set equal, as in the case of
electron-proton scattering, with Mγ = Mγ∗ = ET . The Snowmass jet definition
[67] is used as explained in section 5.

The D and SR curves presented in the following are the NLO contributions
for the direct virtual photon, where the large logarithm has been subtracted
and should therefore be denoted Ds and SRs in accordance with the notation in
section 5. Since we do not present curves for the unsubtracted cross sections, we
suppress the index s to simplify the notation.
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Fig. 23. (a) Single-jet inclusive cross section integrated over η ∈ [−2, 2] for
the virtuality P 2 = 0.058 GeV2. The MS-GRS parametrization with Nf = 4
is chosen. The upper full curve is the sum of the D, SR, SR∗ and the DR
components; (b) P 2 = 0.5 GeV2; (c) P 2 = 1.0 GeV2.
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Fig. 24. (a) Single-jet inclusive cross section as a function of η for fixed ET =
10 GeV and virtuality P 2 = 0.058 GeV2. The MS-GRS parametrization with
Nf = 4 is chosen. The upper full curve is the sum of the D, SR, SR∗ and the
DR components; (b) P 2 = 1 GeV2; (c) P 2 = 5 GeV2; (d) P 2 = 9 GeV2.

In Fig. 23 a, b, c the ET spectra1 for the virtualities P 2 = 0.058, 0.5 and
1.0 GeV2 for the cross section d3σ/dET dηdP 2 are shown, integrated over the
interval −2 ≤ η ≤ 2, which are the boundaries being presently used at LEP1.5.
As explained in section 5, the value P 2

eff = 0.058 GeV2 is chosen as to reproduce
the P 2 ' 0 case. As one can see, the SR (lower full) and SR∗ (dash-dotted) curves
coincide in Fig. 23 a, where the real photon is approximated by the integrated
Weizsäcker-Williams formula and the virtual photon has the value of P 2

eff . The
full cross section (upper full curve) is dominated by the DR component only
in the small ET range for small P 2 values. For P 2 = 0.5 and 1.0 GeV2, the
DR and D contributions are of the same order around ET = 4 GeV, but the
DR component falls off quickly for the higher ET ’s, leaving the D component
as the dominant contribution. This is expected, as the resolved virtual photon

1I thank T. Kleinwort for the consent in using his computer program for producing the SR∗
and DR curves.
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is important for smaller P 2 and suppressed for the larger virtualities. For the
same reason, the SR∗ contribution falls below the SR curve when going to higher
values of P 2 (remember that the resolved real photon is not suppressed by P 2).
In all curves, both SR contributions do not play an important role for the full
cross section. Of course, all contributions decrease with increasing P 2, so that
the full cross section falls of with increasing P 2.

We turn to the η-distribution of the single-jet cross section for fixed ET = 10
GeV between −2 ≤ η ≤ 2 for the virtualities P 2 = 0.058, 1, 5 and 9 GeV2. As
one sees in Fig. 24 a–d, the D and DR distributions for the lowest virtuality
P 2

eff are almost symmetric, because of the identical energies of the incoming
leptons. The SR curve falls off for negative η, whereas the SR∗ component is
suppressed for positive η. Going to higher P 2 values, the D contribution stays
more or less symmetric and dominates the full cross section, as we have already
seen in Fig. 23 a, b, c for the larger ET values. The components containing
contributions from the resolved virtual photon DR and SR∗ fall of in the region
of negative η so that they become more and more asymmetric. This is clear, since
we have chosen the virtual photon to be incoming from the positive z-direction
and the resolved virtual photon is falling off for higher virtualities. To observe
the compensation of the ln(P 2/M2

γ ) term, subtracted from the direct virtual
photon, with the similar but negative behavior of the resolved virtual photon,
one has to compare the DR and SR, and the D and SR∗ components (see Fig.
22). The DR and SR contributions are of the same magnitude in the negative
η region and the DR component is dominant for the larger η values, where the
resolved photon is more important. We have observed these findings already for
ep scattering. The same holds for the D and SR∗ distributions in the negative
η region, only here the D component is far more dominant then the SR∗ one in
the whole η region.

7 Summary and Outlook

We have calculated single- and dijet inclusive jet cross sections for γ∗p and γ∗γ
scattering through a consistent extension of methods used in the calculation of γγ
scattering and of photoproduction in ep scattering. The partonic cross sections
for the considered reactions were calculated in NLO QCD using the phase-space
slicing method, where a technical cut-off yc is introduced to separate singular and
finite regions of phase space. The spectrum of the real photon was approximated
with the integrated, whereas the spectrum of the virtual photon was approxi-
mated by the differential Weizsäcker-Williams formula. For the resolved virtual
photon contribution we used the parton distributions of the virtual photon in a
LO parametrization.

For the hard cross section, we have in particular worked out the subtraction
of singularities that appear when integrating the phase space over the collinear
region of the virtual photon. Contrary to real photons, the singularity appearing
for the virtual photon is not regulated in the dimensional regularization scheme
but by the virtuality P 2 of the photon. This leads to a logarithm depending on
P 2, which is absorbed into the PDF of the virtual photon. Through this proce-
dure, the PDF becomes scheme and scale dependent. The terms remaining in the
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subtracted cross section are constructed in such a way, that the corresponding
real photon term is obtained in the limit P 2 → 0 in the MS scheme.

We have presented several tests of the numerical program [69] for the evalu-
ation of the cross sections. We have shown, that the dependence on the slicing
parameter yc vanishes when the regulated singular and finite contributions are
added. Furthermore, the factorization scale dependences of the NLO direct and
the LO resolved contributions cancel to a large extend. The renormalization scale
dependence was shown to be reduced in NLO compared to LO.

The jet cross sections for γ∗p scattering were computed under HERA con-
ditions using the Snowmass jet definition. We presented distributions in the
transverse energy and rapidity of the observed jet. For very small P 2 we found
good numerical agreement between real and virtual photoproduction. For the
larger P 2 values, the unsubtracted direct contribution corresponding to the case
of deep inelastic scattering approximates the sum of the subtracted direct and
resolved contribution rather well, at least for not too large rapidities. This is in
accordance with the result that the perturbatively calculable subtracted term
agrees quite well with the evolved quark distributions of the virtual photon PDF
in the larger x range. Differences between the unsubtracted direct and the sum
of the subtracted direct and resolved components can be attributed to small dif-
ferences in the subtraction term and the quark distribution and to effects from
neglecting the transverse momentum of the incoming virtual photon.

Furthermore we have calculated distributions in the transverse energy for
inclusive dijet cross sections. For experimental considerations the variable xobs

γ

has been introduced, which is used for a separation of the direct and resolved
contributions. The resolved part was defined for xobs

γ < 0.75, whereas the direct
part was given for xobs

γ > 0.75. In this way, both contributions contained non-
negligible direct and resolved parts. The sum of the enriched direct and resolved
curves of course showed to be independent of the value of xobs

γ . As an application
we have calculated the ratio of the resolved to the direct enriched cross sections,
that could be compared to ZEUS data. The ratio shows significant NLO effects
and is in good agreement with ZEUS data for P 2 > 0.2 GeV2. For smaller
virtualities the experimental data points lie above the theoretical prediction,
which can be attributed to, e.g., multiple scattering between the photon and
proton remnants.

The jet cross sections for γ∗γ scattering were evaluated for conditions to be
met at LEP2. As for ep scattering we used the Snowmass jet definition. We
showed distributions in the transverse energy and the rapidity only for single in-
clusive cross sections with one parametrization of the virtual photon. In contrast
to the ep scattering, for γ∗γ scattering one additional subprocess is encountered,
which is the direct interaction of the real with the virtual photon. The singulari-
ties of the real photon were regularized in the dimensional regularization scheme,
whereas the virtual photon singularities have been handled as described above
by subtracting the large logarithm. The direct component was shown to be the
most dominant one for larger ET . The resolved virtual photon contributions were
suppressed for larger values of P 2 due to the suppression of the virtual photon
PDF for larger virtualities.

Future investigations on virtual photoproduction will require more data on



Inclusive Single- and Dijet Rates in NLO QCD . . . 58

single inclusive jet production at large transverse energy. A detailed dijet analysis
of an infrared safe cross section such as d4σ/dET dη1dη2dP 2, where the trans-
verse energies of the two jets are not cut at exactly the same value, will provide
an improved insight into the structure of the virtual photon. Furthermore, choos-
ing a kT -cluster-like jet definition with smaller cone radii will reduce both the
uncertainties in the jet algorithm and in the underlying event. On the theoretical
side, one possible improvement is the correct treatment of the transverse mo-
mentum of the incoming photon for larger P 2 including a correct transformation
from the photonic c.m. frame to the HERA or LEP laboratory systems. For a
consistent NLO treatment, the inclusion of NLO parton densities for the photon
is necessary. These are, however, needed in a parametrized form and should also
be studied in correlation with deep inelastic eγ∗ scattering data.
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A General Definitions

To simplify the notation, we state some definitions here that will be used through-
out the appendix. The Mandelstam variables s, t and u are defined in the usual
way. The scale M2 that appears in the virtual, initial and final state corrections
is normally set equal to the virtuality of photon P 2, only in the photoproduction
limit P 2 → 0 we set M2 = s. The Born terms that appear throughout this work
are given by

Tγ(s, t, u) = (1− ε)
(

t

u
+

u

t

)
− 2P 2 s

ut
− 2ε , (128)

T1(s, t, u) = 4NCCF

(
s2 + u2

t2
− ε

)
, (129)

T2(s, t, u) = −8CF (1 − ε)
(

s2

ut
− ε

)
, (130)

T3(s, t, u) = 4CF (1− ε)
(

2NCCF

ut
− 2N2

C

s2

)
(t2 + u2 − εs2) , (131)

T4(s, t, u) = 32N3
CCF (1− ε)2

(
3− ut

s2
− us

t2
− st

u2

)
. (132)
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For the initial state corrections the plus distribution function

R+(x, z) :=

 ln
(
x
(

1−z
z

)2)
1− z


+

(133)

is needed. As the integration over z in the initial state singularities runs from
zmin to 1, the plus distribution function is defined as

R+[g] =

1∫
zmin

dz R(x, z)g(z)−
1∫

0

dz R(x, z)g(1), (134)

for any regular function g(z). This leads to additional terms not given here
explicitly when (134) is transformed so that both integrals are calculated in the
range [zmin, 1]. The singular terms in the initial state corrections are proportional
to the Altarelli-Parisi splitting functions

Pq←γ(z) = NC (1 + 2z(1− z)) , (135)

Pq←q(z) = CF

[
1 + z2

(1− z)+
+

3
2
δ(1 − z)

]
, (136)

Pg←q(z) = CF

[
1 + (1− z)2

z

]
, (137)

Pg←g(z) = 2NC

[
1

(1− z)+
+

1
z

+ z(1− z)− 2
]

+
[
11
6

NC − Nf

3

]
δ(1− z), (138)

Pq←g(z) =
1
2
[
z2 + (1 − z)2

]
. (139)

The plus functions appearing here are defined, in contrary to equation (134), in
the limits [0, 1]. In the virtual corrections the function

L(x, y) = ln
∣∣∣ x

P 2

∣∣∣ ln ∣∣∣ y

P 2

∣∣∣− ln
∣∣∣ x

P 2

∣∣∣ ln ∣∣∣1− x

P 2

∣∣∣− ln
∣∣∣ y

P 2

∣∣∣ ln ∣∣∣1− y

P 2

∣∣∣
− lim

η→0
Re
[
L2

( x

P 2
+ iη

)
+ L2

( y

P 2
+ iη

)]
+

π2

6
(140)

appears [31], where L2(x) is the Dilogarithm function. In the limiting case P 2 →
0 one finds for L2(x)

L2

( x

P 2

)
= −π2

6
− 1

2
ln2
( x

P 2

)
. (141)

The square of the logarithm has two different values according to the sign of x:

ln2
( x

P 2

)
=
{

ln2(−x/P 2)− π2 for x < 0
ln2(x/P 2) for x > 0

. (142)
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Therefore, ones obtains the following three cases for the function L(x, y) appear-
ing in the virtual corrections of the real photon with P 2 = 0:

L(x, y) =
π2

2
− 1

2
ln2

(
x

y

)
for x > 0, y > 0 , (143)

L(x, y) =
3π2

2
− 1

2
ln2

(
x

y

)
for x < 0, y < 0 , (144)

L(x, y) = π2 − 1
2

ln2

(
−x

y

)
for

{
x > 0, y < 0
x < 0, y > 0

. (145)

B Virtual Corrections

In this subsection we give the explicit expressions for the virtual corrections that
arise from the interference of the LO Born processes for γ∗γ → qq̄, γ∗q → gq
and γ∗g → qq̄ with the corresponding one-loop amplitudes. The expressions can
be found in [31]. The results depend on the two-body variables s, t and u:

E1 =
[
− 2

ε2
+

1
ε
(2 ln

−u

M2
− 3)− π2

3
− 8− ln2 −u

M2

]
Tγ(s, t, u)

− 4 ln
−u

M2

(
2u

s + t
+

u2

(s + t)2

)
− ln

s

M2

(
4u + 2s

u + t
− st

(u + t)2

)
− ln

−t

M2

(
4u + 2t

u + s
− st

(u + s)2

)
+ 2L(−u,−s)

u2 + (u + t)2

st
+ 2L(−u,−t)

u2 + (u + s)2

st

−
(

4u

s + t
+

u

s + u
+

u

u + t

)
+
(

u

s
+

u

t
+

s

t
+

t

s

)
(146)

E2 =
[

2
ε2

+
2
ε

(
ln
−u

M2
− ln

s

M2
− ln

−t

M2

)]
Tγ(s, t, u)

+
[
−π2

3
− ln2 −u

M2
+ ln2 s

M2
+ ln2 −t

M2
+ 2L(−s,−t)

]
Tγ(s, u, t)

− 4 ln
−u

M2

(
2u

s + t
+

u2

(s + t)2

)
+ ln

s

M2

2s

u + t
+ ln

−t

M2

2t

u + s

+ 2L(−u,−s)
u2 + (u + t)2

st
+ 2L(−u,−t)

u2 + (u + s)2

st

− 2
(

2u

s + t
− u

s
− u

t
− s

t
− t

s

)
(147)

E3 =
[
− 2

ε2
+

1
ε
(2 ln

s

M2
− 3) +

2π2

3
− 8− ln2 s

M2

]
Tγ(s, u, t)

+ 4 ln
s

M2

(
2s

u + t
+

s2

(u + t)2

)
+ ln

−u

M2

(
4s + 2u

s + t
− ut

(s + t)2

)
+ ln

−t

M2

(
4s + 2t

s + u
− ut

(s + u)2

)
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− 2L(−s,−u)
s2 + (s + t)2

ut
− 2L(−s,−t)

s2 + (s + u)2

ut

+
(

4s

u + t
+

s

u + s
+

s

s + t

)
−
(

s

u
+

s

t
+

u

t
+

t

u

)
(148)

E4 =
[

2
ε2

+
2
ε

(
ln

s

M2
− ln

−u

M2
− ln

−t

M2

)]
Tγ(s, u, t)

+
[
4π2

3
+ ln2 −u

M2
− ln2 s

M2
+ ln2 −t

M2
+ 2L(−u,−t)

]
Tγ(s, t, u)

+ 4 ln
s

M2

(
2s

u + t
+

s2

(u + t)2

)
− ln

−u

M2

2u

s + t
− ln

−t

M2

2t

u + s

− 2L(−s,−u)
s2 + (s + t)2

ut
− 2L(−s,−t)

s2 + (u + s)2

ut

+ 2
(

2s

u + t
− s

u
− s

t
− u

t
− t

u

)
. (149)

C Final State Corrections

In the following we give the real final state corrections that appear when the
2 → 3 matrix elements are integrated over the singular region of phase space.
The expressions depend on the invariant mass cut-off yF and on the two-body
variables s, t and u. Terms of order O(ε) have been neglected. The contributions
F2, . . . F5 can be found in [31].

F1 = α2αs4NCCF Q4
i Tγ(s, t, u)

{
1
ε2

+
1
ε

(
3
2
− ln

s

M2

)
+

7
2
− 3

2
ln
−yF (t + u)

M2
− ln2 −yF (t + u)

s
+

1
2

ln2 s

M2
− π2

3

}
(150)

F2 = αα2
sCF Q2

i Tγ(t, s, u)
{

CF

[
1
ε2

+
1
ε

(
3
2
− ln

−t

M2

)
+

7
2
− 3

2
ln
−yF (t + u)

M2
− ln2 yF (t + u)

t
+

1
2

ln2 −t

M2
− π2

3

]
+

1
2
NC

[
1
ε2
− 1

ε

(
− 2 + ln

−st

Q4
+ ln

−s

t
− 5

3

)
+ ln

−(t + u)
M2

ln
−s

t
+ ln2 yF (t + u)

t
− ln2 −yF (t + u)

s

− 1
2

ln2 t + u

t
+

1
2

ln2 −(t + u)
s

− 2 ln
−yF (t + u)

M2

+ ln
−(t + u)

M2
ln

−st

(t + u)2
+ ln2 −(t + u)

M2

− ln2 yF (t + u)
t

− ln2 −yF (t + u)
s

+
1
2

ln2 −t− u

s
+

1
2

ln2 t + u

t

− 5
3

ln
−yF (t + u)

M2
+

67
9
− 2π2

3

]}
(151)
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F3 = αα2
s(Nf − 1)CF Q2

i Tγ(t, s, u)
{
− 1

3
1
ε

+
1
3

ln
−yF (t + u)

M2
− 5

9

}
(152)

F4 = αα2
sCF Q2

i Tγ(t, s, u)
{
− 1

3
1
ε

+
1
3

ln
−yF (t + u)

M2
− 5

9

}
(153)

F5 = αα2
sQ

2
i Tγ(s, t, u)

{
CF

[
1
ε2

+
1
ε

(
3
2
− ln

s

M2

)
+

7
2
− 3

2
ln
−yF (t + u)

M2

− ln2 −yF (t + u)
s

+
1
2

ln2 s

M2
− π2

3

]
− 1

4
NC

[
1
ε

ln
−t

s

− ln
−(t + u)

M2
ln
−t

s
+ ln2 yF (t + u)

t
− ln2 −yF (t + u)

s

+
1
2

(
ln2 −(t + u)

s
− ln2 t + u

t

)]}
+ (t↔ u) (154)

D Initial State Corrections for Massles Partons

Here, we state the parton initial state singularities as functions of the invariants
s, t and u, the cut-off parameter yJ and the additional variable of integration
zb. Again, terms of O(ε) have been neglect. The contributions Ib

2 , . . . Ib
5 can be

found in [31].

Ib
1 = α2αsQ

4
i

[
− 1

ε
Pq←γ(zb) + NC

{
(1− 2zb + 2z2

b ) ln
(−(t + u)

M2

1− zb

zb
yI

)
+ 2zb(1 − zb)

}]
(1− ε)CF Tγ(s, t, u) , (155)

Ib
2 = αα2

sQ
2
i CF Tγ(s, t, u)

{
CF

[
− 1

ε

1
CF

Pq←q(zb)

+ δ(1− zb)
(

1
ε2

+
1
ε

(
− ln

−u

M2
+

3
2

)
+

1
2

ln2 −u

M2
+ π2

)
+ (1− zb)

(
1 + ln

(−(t + u)
M2

1− zb

zb
yI

))
+ 2R+

(−u

M2
, zb

)
− 2 ln

(−u

M2

(
1− zb

zb

)2)
− 2zb

1− zb
ln
(

1 +
u

t + u

1− zb

yIzb

)]
− 1

2
NC

[
δ(1− zb)

(
1
ε

ln
t

u
+

1
2

ln2 −u

M2
− 1

2
ln2 −t

M2

)
+ 2R+

(−u

M2
, zb

)
− 2R+

( −t

M2
, zb

)
− 2 ln

(−u

M2

(
1− zb

zb

)2)
+ 2 ln

( −t

M2

(
1− zb

zb

)2)
− 2zb

1− zb
ln
(

1 +
u

t + u

1− zb

yIzb

)
+

2zb

1− zb
ln
(

1 +
t

t + u

1− zb

yIzb

)]}
, (156)

Ib
3 = αα2

sQ
2
i

[
− 1

ε

1
CF

Pg←q(zb) +
1

CF
Pg←q(zb) ln

(−(t + u)
M2

1− zb

zb
yI

)
− 2

1− zb

zb

]
CF

2
Tγ(s, u, t), (157)
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Ib
4 = (Nf − 1)Ib

3 , (158)

Ib
5 = αα2

sQ
2
i

[
− 2

ε
Pq←g(zb)

+ 2Pq←g(zb) ln
(−(t + u)

M2

1− zb

zb
yI

)
+ 1
]
CF Tγ(s, u, t)

+
[
2
ε

1
NC

Pg←g(zb) + δ(1− zb)
(
− 2

ε2
+

1
ε

(
ln

tu

Q4
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3
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2Nf

3NC

)
− 2π2

− 1
2

ln2 −u

M2
− 1

2
ln2 −t

M2

)
− 2R+

(−u

M2
, zb
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( −t

M2
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)
+ 2 ln

(−u
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+ 2 ln

( −t

M2

(
1− zb
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+

2zb

1− zb
ln
(

1 +
u

t + u

1− zb

yIzb

)
+

2zb

1− zb
ln
(

1 +
t

t + u

1− zb
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)
− 4(1 + z2

b )
1− zb
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ln
(−(t + u)

M2

1− zb

zb
yI

)](
− NC

4

)
Tγ(s, t, u). (159)

E Initial State Corrections for the Virtual Photon

A virtual photon can decay into a qq̄-pair. After the integration over the collinear
region of phase space the Born matrix elements factorize. There are three types
of Born matrix elements, namely the processes qq′ → qq′ (denoted by T1), qq →
qq (denoted by T1 and T2) and qq̄ → gg (denoted by T3). The divergence is
regularized by the virtuality of the photon P 2. The corrections depend on the
two-body variables s, t and u, on the cut-off parameter yJ and on the additional
variable of integration za.

Ia
1 = −2α2αsQ

4
i M

[
Tγ(t, s, u) + Tγ(u, s, t)

]
, (160)

Ia
2 = 2CF αα2

sQ
2
i MT1(s, t, u) , (161)

Ia
3 = −2αα2

sQ
2
i M

[
T1(t, s, u) + T1(u, s, t)

]
, (162)

Ia
4 = 4CF αα2

sQ
2
i M

[
T2(s, t, u) + T2(t, s, u)

+ 1
2 (T3(s, t, u) + zycl. permutations in s, t, u)

]
, (163)

Ia
5 = 2CF αα2

sQ
2
i M

[
T3(s, t, u) + zycl. permutations in s, t, u

]
, (164)

where

M =
1

2NC
Pq←γ(za) ln

(
1 +

yJs

zaP 2

)
. (165)
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