
ar
X

iv
:h

ep
-p

h/
99

09
32

2v
1 

 1
0 

Se
p 

19
99

CERN-TH/99-278
RIKEN-BNL preprint
UT-Komaba preprint

Scalar Glueball–Quarkonium Mixing and the Structure of
the QCD Vacuum

John Ellisa, Hirotsugu Fujiib and Dmitri Kharzeevc

a Theory Division,

CERN,

Geneva 23, CH–1211, Switzerland

b Institute of Physics, University of Tokyo at Komaba,

3-8-1 Komaba, Tokyo 153-8902, Japan

c RIKEN–BNL Research Center,

Brookhaven National Laboratory,

Upton NY 11973, USA

Abstract

We use Ward identities of broken scale invariance to infer the amount of scalar
glueball–q̄q meson mixing from the ratio of quark and gluon condensates in the QCD
vacuum. Assuming dominance by a single scalar state, as suggested by a phase-shift
analysis, we find a mixing angle γ ∼ 36◦, corresponding to near-maximal mixing of
the glueball and s̄s components.

Many scalar mesons are predicted in non-perturbative QCD, including q̄q bound states,
glueballs [1], q̄qq̄q molecules, radial excitations, and hybrids. Experimentally, there have
also been many reported sightings of scalar states, including the σ(400 − 700), f0(980),
f0(1300), f0(1500), f0(1700), . . . [2]. The theoretical identifications of these states are still
largely open, in particular the identification of the lightest scalar glueball. This quest
is complicated by the expectation that the various different scalar states could mix with
each other [3], sharing out any characteristic glueball signatures and polluting even the
strongest candidates [4] with, e.g., q̄q features [5].

One approach to the scalar-meson problem offered by non-perturbative field theory is
based on the consideration of Green functions of composite operators such as q̄(x)q(x) or
Ga

µν(x)Gaµν(x) ≡ G2, constrained by the (approximate and/or anomalous) Ward identities
of non-perturbative symmetries of QCD. The highly successful prototype for this approach
has been chiral symmetry, and it has also often been applied to broken scale invariance
[6, 7, 8, 9], with some success.

Unlike chiral symmetry, where the Ward identities are dominated by low-mass pseu-
doscalar mesons, there is no guarantee that the Ward identities of broken scale invariance
should be dominated by any single scalar-meson state. Under these circumstances, the
best formulation of the approach may be phenomenological, setting up a number of sum
rules [10] based on the Ward identities of broken scale invariance [11], and substituting
experimental data into them, with the aim of exploring empirically which collection of
states may saturate them.
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We have recently implemented such a programme for Green functions involving the
trace of the anomalous pure QCD energy-momentum tensor θ(x) ≡ β

4αs

Ga
µν(x)Gaµν(x) [11],

evaluating the sum rules with data on ππ and K̄K phase shifts and phenomenological
parametrizations of observed scalar mesons [12, 13]. We have found empirically that the
sum rules are probably dominated by the f0(980) state, with contributions from the lighter
σ and heavier f0 mesons each contributing around the 10% level.

Does this mean that one should identify the f0(980) as the lightest scalar glueball?
Certainly not until one has analyzed the pattern of mixing with q̄q states, a complicated
issue which we broach in this paper.

We study simple Ward identities for the two-point Green functions of θ and q̄q op-
erators. Assuming that the latter are dominated by the f0(980), as in the θθ case, we
find that the mixing of this “glueball” with an q̄q meson must be large. For a nominal
choice of vacuum parameters: 〈0|s̄s|0〉 = 0.8〈0|q̄q|0〉, where q̄q represents either ūu or

d̄d, 〈0|q̄q|0〉 = 0.016 GeV3 and 〈0
∣

∣

∣

β
4αs

G2
∣

∣

∣ 0〉 = 0.013 GeV4, we find near-maximal mixing

between glueball and s̄s components: γ ∼ 36◦, so that the f0(980) contains an almost
equal mixture of glueball and s̄s states.

We start by considering the low–energy theorem [10]

lim
q→0

i

∫

dx eiqx〈0|T

{

β(αs)

4αs
G2(x), O(0)

}

|0〉 = (−d)〈O〉 + O(mq), (1)

where d is the canonical dimension of the operator O, β(αs) is the Gell-Mann–Low func-
tion: β(αs) ≡ −bα2

s/2π + O(α3
s), b = (11Nc − 2Nf )/3, and O(mq) stands for the terms

linear in light quark masses. Here and subsequently, we work only with renormalization-
group invariant quantities.

Next we use a spectral representation for the theorem (1), assuming that O is a scalar
Hermitian operator:

〈0|T{
β(αs)

4αs
G2(x), O(0)}|0〉

=

∫

d4k(2π)−3 1

π
A(k)e−ikxθ(x0) +

∫

d4k(2π)−3 1

π
B(k)eikxθ(−x0), (2)

where

1

π
A(k) ≡ (2π)3

∑

n

δ4(pn − k)〈0|
β

4π
G2(0)|n〉〈n|O(0)|0〉, (3)

1

π
B(k) ≡ (2π)3

∑

n

δ4(pn − k)〈0|O(0)|n〉〈n|
β

4π
G2(0)|0〉. (4)

Specializing to the relevant case where O(x) is scalar, it is clear that A(k) and B(k) are
the scalar functions of the form,

A(k) ≡ A(k2)θ(k0), B(k) ≡ B(k2)θ(k0), (5)

where the support of the spectral condition requires the factors θ(k0). Assuming also
that O is CP even, as in the cases of θ and scalar q̄q densities, we may use time-reversal
invariance to infer that

A(k2) = B(k2) ≡ ρO(k2). (6)
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Similarly, it can be shown that A(k) is real.
Inserting the resulting spectral representation

〈0|T{
β(αs)

4αs
G2(x), O(0)}|0〉

=
1

π

∫

d4k

(2π)3
ρO(k2)θ(k0){e−ikxθ(x0) + eikxθ(−x0)}

=
1

π

∫

∞

0
dm2ρO(m2)

∫

d4k

(2π)3
δ(k2 − m2)θ(k0){e−ikxθ(x0) + eikxθ(−x0)}

=
1

π

∫

∞

0
dm2ρO(m2)∆F (x;m2) (7)

into the theorem (1), we find the simple relation

1

π

∫

∞

0

dm2

m2
ρO(m2) = (−d)〈O〉 + O(mq), (8)

whose physical properties we now discuss in more detail.

In general, the intermediate states created by the operator O may include multi-particle
states as well as single-particle states. If one approximates the intermediate states by a
sum over single-particle states, one finds that the matrix elements here are scalar and can
depend only on k2 = m2

σ in this case. Then the three-momentum integral is trivially done:

1

π
ρO(k2)θ(k0) =

∑

σ

δ(m2
σ − k2)θ(k0)〈0|

β(αs)

4αs
G2|k;σ〉〈k;σ|O|0〉, (9)

where the index σ specifies the species of scalar meson, and |k;σ〉 stands for a state of
momentum k. The theorem (1) therefore becomes

∑

σ

1

m2
σ

〈0|
β(αs)

4αs
G2|k;σ〉〈k;σ|O|0〉 = (−d)〈O〉, (10)

which may further be simplified to

1

m2
σ

〈0|
β(αs)

4αs
G2|k〉〈k|O|0〉 = (−d)〈O〉 (11)

in the case of the single sharp resonance.
We now show how the relation (1) can be used to fix the mixing between the scalar

quark–antiquark and glueball states. We first choose O(x) =
∑

i miq̄iqi(x), for which the
spectral representation (1) becomes 1:

1

π

∫

ds
ρ̃(s)

s
≃ −3 〈

∑

i

miq̄iqi〉, (12)

where
1

π
ρ̃(s) = (2π)3

∑

n

δ4(pn − k)〈0|
β(αs)

4αs
G2|n〉〈n|

∑

i

miq̄iqi|0〉, (13)

1We recall that the canonical quantum operator dimension of q̄q is 3, whereas the renormalization-group
invariant combination mq̄q has mass scaling dimension 4 [10]. We ignore operator mixing between G2 and
q̄q, assuming a mass-independent renormalization scheme such as MS.
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These relations demonstrate that the spontaneous breaking of chiral symmetry, reflected
in a non-zero value of the quark condensate 〈0|q̄q|0〉 necessarily implies mixing between
the “glueball” and “quarkonium” components of physical scalar resonances σ. In the case
of the single sharp resonance σ, the theorem (13) implies that

1

m2
σ

〈0|
β(αs)

4αs

G2|k〉〈k|
∑

i

miq̄iqi|0〉 = −3〈
∑

i

miq̄iqi〉. (14)

Choosing instead O(x) = β(αs)
4αs

G2(x) leads to another sum rule [10]:

1

π

∫

ds
ρ(s)

s
≃ (−4) 〈

β(αs)

4αs
G2〉, (15)

where
1

π
ρ(k2)θ(k0) = (2π)3

∑

n

δ4(pn − k)|〈n|
β(αs)

4αs
G2|0〉|2, (16)

which we now analyze together with (14).
Combining the relations (15) and (12) and discarding possible multi-particle interme-

diate states, we find the following general relation:

∑

σ〈0|
β(αs)
4αs

G2|σ〉〈σ|β(αs)
4αs

G2|0〉/m2
σ

∑

σ〈0|
β(αs)
4αs

G2|σ〉〈σ|
∑

i miq̄iqi|0〉/m2
σ

=
4

3

〈β(αs)
4αs

G2〉

〈
∑

i miq̄iqi〉
. (17)

In the case of two flavors and neglecting the breaking of isospin symmetry, (17) leads to

∑

σ〈0|
β(αs)
4αs

G2|σ〉〈σ|β(αs)
4αs

G2|0〉/m2
σ

∑

σ〈0|
β(αs)
4αs

G2|σ〉〈σ|ūu + d̄d|0〉/m2
σ

=
4

3

〈β(αs)
4αs

G2〉

〈ūu + d̄d〉
. (18)

In the case of three flavors, we know that ms ≫ mu,md, and the s̄s condensate is compa-
rable to that of ūu, d̄d [14]. Hence the denominator of the right-hand side of (17) must be
dominated by the strange-quark contribution. If we further assume that the scalar strange
contents of scalar mesons are of the same order of magnitude as those involving u and d
quarks 2, then the denominator on the left-hand side of (17) will also be dominated by
the strange-quark contributions, and (18) can be re-written as

∑

σ〈0|
β(αs)
4αs

G2|σ〉〈σ|β(αs)
4αs

G2|0〉/m2
σ

∑

σ〈0|
β(αs)
4αs

G2|σ〉〈σ|s̄s|0〉/m2
σ

=
4

3

〈β(αs)
4αs

G2〉

〈s̄s〉
. (19)

The relations (17), (18), (19) demonstrate that the ratio of the glueball and scalar q̄q
components in the physical scalar resonances is determined by the ratio of the gluon and
quark condensates in the vacuum, which is the key theoretical foundation of this paper.

We now turn to the phenomenological analysis of the above sum rules. Here, the key
observation coming from the evaluation of the sum rule (15) using the available experi-
mental data on ππ and K̄K phase shifts is that the dominant contribution to the spectral
integral in (12) is due to the f0(980) resonance [12, 13]. It therefore makes sense to con-
sider approximate relations which follow from (17) in the case when both sum rules (16)

2A naive analysis of the π-nucleon σ term indicates that 〈N |s̄s|N〉 is not much smaller than 〈N |q̄q|N〉,
but there is no comparable information concerning scalar mesons.
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and (12) are saturated by a single resonance, namely the f0(980)
3. Since the f0(980),

with a width of Γ = 40 ÷ 100 MeV [2], is relatively narrow compared with its mass and
its separation from other scalar mesons, it is a reasonable approximation to approximate
its spectral shape by a delta function. The sum rule (15) then can be written as

1

m2
f0

|〈f0|
β(αs)

4αs
G2|0〉|2 ≃ −4 〈

β(αs)

4αs
G2〉. (20)

Since the quantity on the right-hand side, namely the gluon condensate, has been estimated
from QCD sum rule analyses [15], (20) fixes the coupling of the f0(980) resonance to the
scalar glueball current.

Because ms ≫ mu,md, it is reasonable to neglect the ūu + d̄d contribution to the
left-hand side of (17), and use the three–flavor relation (19) to determine the coupling of
this resonance to the scalar quark–antiquark current s̄s(x): 4

〈f0|
β(αs)
4αs

G2|0〉

〈f0|s̄s|0〉
≃

4

3

〈β(αs)
4αs

G2〉

〈s̄s〉
, (21)

which we now use to quantify glueball-quarkonium mixing in this state.

We assume that the f0 wave function is a superposition of glueball |G〉 and quark–
antiquark |Q̄Q〉 components 5:

|f0〉 = cos γ |G〉 + sin γ |Q̄Q〉. (22)

We next assume that the quark-antiquark component |Q̄Q〉 is mainly |S̄S〉: if there is a
substantial |ŪU + D̄D〉 component, this would (barring a cancellation) tend to increase
the estimate of the mixing angle γ given below. We further assume that the glueball
component |G〉 has the dominant coupling to the scalar gluon current, β(αs)

4αs

G2, and that

the quark–antiquark component |S̄S〉 has the dominant coupling to the s̄s current. If this
were not the case, there would be additional mechanisms for large glueball-quarkonium
mixing that would be difficult to quantify. Extracting a simple dimensional factor, these
approximations imply that

〈f0|
β(αs)
4αs

G2|0〉

〈f0|s̄s|0〉
= mf0

cotan γ, (23)

and (21) can now be used to determine the magnitude of the mixing angle in (22):

tan γ = mf0

3

4

〈s̄s〉

〈β(αs)
4αs

G2〉
. (24)

Numerically, using 〈s̄s〉 = (0.8 ± 0.1)〈q̄q〉 [14], 〈q̄q〉 ≃ 0.016 GeV3 and 〈β(αs)
4αs

G2〉 ≃

0.013 GeV4, we estimate on the basis of (24) that γ ≃ 36◦, i.e., the mixing between
the quark-antiquark and the glueball components is strong, even close to maximal.

3Similar conclusions on large glueball-quarkonium mixing would hold if any other single meson state
dominated the sum rules.

4We assume that the matrix elements in (13) and (16) are real, which must be the case for non-
degenerate single-particle states.

5Analogous arguments leading to large mixing could also be made if the f0(980) state turned out to be
q̄qq̄q molecule, as sometimes argued.
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To summarize, we have found that the mixing between the glueball and q̄q components
in the lightest scalar state dominating sum rules for θ = β(αs)

4αs

G2, i.e., the best candidate
for the lightest scalar “glueball”, is required by the the ratio of the quark and gluon
condensates to be very strong. We have evaluated this mixing for the f0(980) state that
has been found empirically in a phase-shift analysis [12, 13] to dominate the sum rule
for θθ, and found it to be near-maximal. We note that this conclusion would only be
strengthened if the sum rules were to be saturated by a state heavier than the f0(980).

Our analysis has, admittedly, been rather crude. However, we feel that it has demon-
strated the power of sum rules derived from broken scale invariance to contribute to the
debate concerning the identification of the lightest scalar glueball, indicating, in particular,
that its mixing with a quark-antiquark state may not be neglected.
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