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Chapter 1

Introduction

Since its formulation in the 60s, the Standard Model [1] (SM) of electroweak in-
teractions has been extensively tested with great success. In particular, the high
statistics accumulated by the LEP experiments from 1989 to 1995 (when the first
phase of LEP at centre-of-mass energies close to 91 GeV ended) and the small ex-
perimental systematic uncertainties, have allowed to test the SM predictions at the

quantum level.

In fact, the cross section of the process ete™ — uTu~ and its angular distribu-
tion have been accurately measured at different energy points around the Z mass [2].
These measurements have allowed a precise determination of the effective couplings
of the Z to the muons. Within the effective coupling language, the “on peak” mea-
surements o and A% determine completely the vector and axial coupling of the Z
to the muons and hence, together with the known photon couplings, they determine
the complete behaviour of the cross section and forward-backward asymmetry at

any energy, in the absence of new physics beyond the Standard Model.

In a more general framework, the actual description of the energy dependence
of these quantities requires the introduction of additional parameters which can
be determined at LEP with just limited accuracy given the present measurements.
The main reason is the limited excursion in energy during the LEP energy scans,

which gives a rather small lever arm to measure the energy dependence.

In practice, by using a structure function picture of the beams, we know that the
actual direct measurements are a centre-of-mass average of the “hard scattering”

cross section: the “inclusive” cross sections that we have measured come from



e A11LIUUIULLIVULL

averaging the “hard scattering” cross sections in a wide range of energies with a
weight given by the initial state radiation (ISR) probability function. Conceptually,
the ISR energy loses are effectively “scanning” (although in a very non-uniform way)
the “hard scattering” process in a range of energy which is much broader than the

nominal one of LEP.

If we consider that QED is a well established theory which, in fact, allows
very accurate calculations of the ISR radiation probability, then we do know how
this “ISR scan” is performed, that is, which is the actual probability of the “naked
beams” colliding at a certain energy. The idea, then, is to try to be more “exclusive”
in the measurements, by extracting from the event characteristics the centre-of-mass
energy of the “hard scattering” process. Although this is not a rigorous procedure
in quantum mechanics, we shall see that theoretically one can justify and show its

validity in a very good approximation.

The reconstruction of the effective centre-of-mass energy is possible in the case of
muon pair production process, because of the absence of neutrinos (in contrast to the

case of tau production), and because they are produced via s-channel annihilation.

So far, the analysis of radiative muon events carried out by other LEP exper-
iments [3] was based on the specific selection of events with strong initial state
radiation. This requirement results in a very small sample of events, and only the

global agreement with the SM expectations could be checked.

In this thesis we introduce a new method to determine, on an event-by-event
basis, the actual centre-of-mass energy of the “hard scattering” process. This will
allow us to use all the muon events and hence, all the statistical power of the data,
giving us maximal sensitivity to the electroweak parameters. We will show that,
by setting up a suitable fitting procedure allowing us to use that information, we
can obtain precise determinations of the cross section and the forward-backward
asymmetry in a wide range of energies, spanning without gaps from 60 to 140 GeV
(the region not covered by past accelerators). These measurements enable us to
make accurate determinations of the energy dependence of the cross section and
the forward-backward asymmetry as well as to place constraints on the existence
of new 7 bosons that could change this dependence. Moreover, we can explore for
the first time the centre-of-mass energy region around 80 GeV and 113 GeV, where

the violation of parity symmetry is maximal, and therefore the sensitivity to the
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presence of new scalar interactions that could couple to the initial electrons or final

muons is maximized.

In addition, by deconvolving the measurements taken at the Z resonance from
the ones taken at different effective energies, we optimize the extraction of the

electroweak parameters, giving the correct statistical weight to each event.

The outline of this thesis is as follows: in chapter two we analyze the theoretical
framework of our approach. We start with a description of the SM predictions
for the process of interest here, and then we develop the “model independent”
formalism and we study the precision achieved in the relevant interval of energies.
A brief description of possible extensions of the SM that would introduce new gauge

bosons is introduced at the end of chapter two.

Chapter three is devoted to the description of the experimental apparatus, the
LEP collider and the ALEPH detector, together with a description of the algorithms
used in the analysis to identify muon candidates and photons in ALEPH, and to

reconstruct the particle direction.

Chapter four is devoted to explain the specific selection procedure, and to built
the likelihood function to be maximized. In chapter five we show the results ob-
tained for the electroweak parameters, and their systematic uncertainties. From
these results, we study possible extensions of the SM, (new scalar interactions and

new gauge bosons). The final summary and conclusions are given in chapter six.



Chapter 2

Theoretical framework

This chapter describes the theoretical framework necessary to interpret the results
of this analysis. In section 2.1 the Standard Model predictions for the process

te™ — ptpu are given and it is shown how the inclusion of higher order corrections

e
are absolutely necessary to cope with the experimental accuracy. In section 2.2
we present the necessary language to describe this process in an almost model
independent way, and it is compared with the actual Standard Model predictions.
The last section 2.3 is devoted to possible extensions of the Standard Model that
include new gauge bosons, because this are the most obvious candidates to modify
the predicted energy dependence of the observables in the energy range from 60 GeV

to 140 GeV.

2.1 The Standard Model of EW interactions

The Standard Model [1] (SM) is a gauge theory, based on the group SU(3), ®
SU(2);, @ U(1l)y, which describes strong, weak and electromagnetic interactions,
via the exchange of the corresponding spin-1 gauge fields: 8 massless gluons and 1
massless photon for the strong and electromagnetic interactions respectively, and
3 massive bosons, W* and Z, for the weak interaction. The fermionic-matter
content is given by the known leptons and quarks, which are organized in a 3-fold

family structure:
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where each quark appears in 3 different “colours”, and to each particle corresponds
an antiparticle with the same mass but with opposite quantum numbers. Thus,
the left-handed fields are SU(2), doublets, while their right-handed partners trans-
form as SU(2), singlets. The {d’,s’,b'} states are three lineal combinations of the
{d, s,b} mass eigenstates. The unitarity matrix which relates both is the Cabibbo-
Kobayashi-Maskawa matrix which depends on three angles and a phase which have
to be determined experimentally. This phase is the responsible of the CP symmetry
breaking in the SM and it is widely believed that CP nonconservation in the early
universe is the source of the apparent imbalance between matter and antimatter.
There’s no equivalent mixing matrix in the leptonic sector, although recent experi-
mental results [4] seem to indicate the existence of v, — v, mixing, and therefore to

invalidate the hypothesis of massless neutrinos.

The gauge symmetry is broken by the vacuum, which triggers the Spontaneous

Symmetry Breaking (SSB) of the electroweak group to the electromagnetic sub-

group:

SU(3)e @SUQ2), @ U(L)y 8 SUB)e © U(L) g

The SSB is an “intriguing” way of generating the weak gauge bosons and fermion
masses while is preserving the gauge symmetry of the Lagrangian. This symmetry
is essential in order to make the theory renormalizable, in other words to keep the

number of “infinities” that appear in the theory finite, and therefore be absorbed in
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the redefinition of a finite number of “bare” parameters. In fact, 't Hooft demon-
strated in 1971 [5] that for a theory to be renormalizable, it must be a Yang-Mills
theory, that is, a theory with a local gauge invariance. Only if we have such a high
degree of symmetry can we obtain the systematic cancellations of divergences order

by order.

This mechanism has as a consequence the appearance of a physical scalar particle
in the model, the so-called “Higgs” boson, that has not been observed experimen-
tally. Its mass range is constrained to be My > 66 GeV [6] at 95% confidence level.
The precise electroweak measurements at LEP have some sensitivity to the log(My)
through loop corrections, and allow to constraint My to be below 550 GeV at 95%
confidence level [7]. The next generation of machines (LEP 11, LHC) should be able

to decide whether the simplest Higgs model is correct.

2.1.1 Lowest order SM predictions for the process ete™ —
T

The Feynman diagrams contributing at tree level to the process ete™ — putpu™ are

those shown in figure 2.1 in the massless limit where the Higgs exchange diagram

is neglected. The neutral current coupling constants between the Z° boson and the

fermions are given by,

1f —2Q; sin®0y I
Uf = a

(2.1)

2 sin Oy cos Oy 57 94 Oy cos Oy

where ]:{ and @)y denote the third isospin component and the electric charge of a
given fermion specie f. Oy is known as the weak mixing angle defined as the ratio
of the weak coupling constants, (¢ and ¢'), to the gauge groups SU(2) and U(1), or

equivalently,

Mw
Mz
where My, and My are the masses of the gauge fields W+ and Z° respectively.

cos Oy = (2.2)

The electromagnetic current coupling constant between the 4 boson and the
fermions has only a vectorial component given by the electric charge J;. Note
that the simultaneous presence of vector and axial couplings breaks the Parity
symmetry (P) of the process, and as a consequence the angular distribution of the

produced muon pair is not symmetric.
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Figure 2.1: Feynman diagrams contributing at tree level to the process ete™ — pTpu=. The
Higgs exchange diagram is neglected.

Using the Feynman rules and neglecting the fermion masses (thus neglecting
the Higgs exchange diagram), the Born differential cross section for this process is

obtained:

do®(s) Ta?  s?
oot = 25 A L H oo O+ ad)(v] + @) + 8 os buevyacay
ra?s(s — M32)
+ 25 1 Z05) |§ {(1 + cos? 0)2v.v,, + 4 cos Gaeau}
2
+ %(1 + cos* 0) (2.3)

where the Z propagator is written in the lowest order Breit-Wigner approximation,
| Z(s) [* = (s = MZ)* + (MzI'z)*

0 is the polar angle in the centre-of-mass frame between the incoming electron
(e7) and the outgoing muon (u~) as shown in figure 2.2, s is the centre-of-mass
energy squared, My is the Z° mass, 'y is the Z° width and o = €?/4r is the

electromagnetic coupling constant at the Thompson limit («(0)).

As we have already mentioned, the SM prediction for this process is not sym-
metric in the space, (P symmetry is not conserved), and we can define a forward-

backward asymmetry as:



(& dllculTiival 11 AlliTtywul i

Figure 2.2: Schematic representation of the process ete™ — ptpu~

and
1 do®(s)
¢ = dcos 0
7 /0 Ol cos 0
0 do®(s)
)= d cos §———
% /_1 Ol cos 0
so that,
4o 52 s(s — M32)
0 2 2,2 | 2 Z
_ o0, + 1| (24
Mo = Btk )+ 5 M ] e
2 2 2
0 g’ s s(s — M3)
_ TS e vava, + S5 ME) 2.5
o) = G [t Frgdea] e

and with this definition the angular distribution at tree level can be written as:

d 0
daco(sSH) = gao(s)(l + cos® 0 + 214?%(8) cos ) (2.6)

Note that this angular distribution is independent of the specific SM prediction
and is a general consequence of the helicity conservation between the initial and the
final state in the massless limit, when the interaction is mediated by a spin-1 boson.
This is so, because the scattering proceeds from an initial state with J, = £1 to a
final state with J., = 41, where the z, z’ axes are along the ongoing e~ and outgoing
p~ directions, respectively. Thus, there are four helicity amplitudes proportional

to the rotation matrices,

B (0) = <N |e | ja>
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where y is perpendicular to the reaction plane and A, A" are the net helicities along
the z, 2/ axes. The four helicity amplitudes have the same vertex factors and are

thus proportional to:

d1(0) = dLy(0) = 51+ cos0)
B(0)=dy(0) = 51— cosh)

If we take now the spin average of these four squared amplitudes we get an angular

distribution as in equation 2.6.

Now, from the measured values of My and M, we have sin? 0y ~ 0.22, and
therefore using equation 2.1 Z—Z ~ 0.1. This implies that the Z° boson coupling to
muons is essentially axial, and as the v boson coupling is vectorial, the interference
between both contributions will generate a forward-backward asymmetry, while the
individual contributions of the diagrams appearing in figure 2.1 will be essentially
symmetric. This can be seen in figure 2.3, where the contribution of the Z°-exchange
channel, y-exchange channel and their interference is explicitly shown. In particular,
one can see how the energy dependence of the forward backward asymmetry is

completely generated by the interference between both channels.

In fact, it turns out that due to the interference between the 7 contribution
(dominated by the axial coupling), and the v contribution (that is only vector
coupling), there is a region of energies (y/s ~ 80 GeV) in which parity violation is
maximal and o, ~ opr ~ 0, where i(j) in o;; stands for the polarization of the
incoming e~ (outgoing p~) [8]. Similarly, there is a region around /s ~ 113 GeV
where orp ~ orp, ~ 0 and parity violation is maximal too. In terms of helicity

cross sections, the total and antisymmetric cross sections can be written as

0 1

o = §(ULL‘|‘URR‘|‘ULR‘|‘URL)
o 3

O = g(ULL+URR_ULR_URL)

so that, at these interesting energies O'?b = :I:%U, and corresponds to the maximum
value for | o, | that the probability density of eq. 2.6 allows (for values of | A%, |
larger than 3/4 the differential cross section is not positive defined because it will

imply a negative helicity cross section).

A study of the muon pair production at these energies allows to search for new

physics in an environment of minimal background [8]. More specifically, a scalar
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interaction that will not interfere with the Z° or

naturally show up at these energies.

o° (nb)
S e
Foz e
N AR
10—1? .
10—2; ............... e
il e | L | L
20 40 60 80 100 120 140
Ecm (GeV)
AO
1 fb
0.8 5 7 e
0.6 F Z - T T
0.4 F YL -
0.2 b
0 g
0.2 &
-0.4 F
0.6 [
-0.8 |
1 L ol
20 40 60 80 100 120 140
Ecm (GeV)

the photon contribution, will

Figure 2.3: Contributions of the individual channels to the muon pair production process. The
size of the interference contribution for ¢ is below 1073 nb and is not shown in the upper figure.

In principle, the SM has some free parameters that need to be fixed experimen-

tally in order to be able to use equation 2.3. The most natural option is to take the

best measured parameters as input parameters of the theory:

(a4

Gr
Mz

1
137.0359895(61)
1.166389(22) x 107°GeV >

91.18(63)GeV

(2.7)

being the first one the electromagnetic coupling constant measured at very low ¢

(Thompson limit), and the second one is the Fermi coupling constant, obtained from

the analysis of the muon decay using the Fermi interaction language. If instead

of the Fermi language, one uses the SM language at Born level to predict the
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muon lifetime measurement, then Gy is equivalent to the product of the W boson

couplings times the W boson propagator at ¢* — 0, namely:

To 1
Gp = ——n 2.8
r V2 M, sin® Oy (28)
so that, in practice, we can substitute My in equation 2.2 by G'p that is much
better known. Defining

T
Ao = = (37.2802(3)GeV)?
0= e = (3T280(3)GeV)

one can compute My, and therefore sin? Oy as

/2
My [ 440 45"
My = —%=|1+(1—--)Y — 80.937GeV
V2 M3
: 1 44,
sin? Oy = 5 l1 —(1 - @)1/2] — 0.2122

Nevertheless, the direct data on My gives My = 80.356 + 0.125 GeV [9], that
is, about 4.6 sigma off from the above prediction. If the neutrino-nucleon data
is used in addition [10], then the best experimental determination of sin®#fy is
sin? Oy = 0.223740.0021 at about 5.5 sigma from the above prediction. So, already
at this stage, one can see that the Born SM language is not accurate enough to
describe the data and therefore, since the SM is a renormalizable theory, we must

include higher order contributions to correct the above expressions.

2.1.2 Higher order corrections

In order to take into account higher order corrections, the first step is to define the
renormalization scheme, that is, to define the “bare” input parameters of the theory
that need to be renormalized and the corresponding renormalization equations. The
discussion that follows is based on the on-shell-mass renormalization scheme where
the “bare” parameters to be renormalized are the electromagnetic coupling constant,
the masses of all the particles in the theory and the Cabibbo-Kobayashi-Maskawa

fermionic mixing angles.

At one loop, equation 2.8 becomes,

T 1
Gp = ——(1+A 2.9
r V2 Mg, sin® GW( +ar) (29)
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Since in the self energy corrections all kind of heavy particles may show up virtually,
in practice the size of Ar depends on all the constants of the SM Lagrangian and,

in particular, on the still unknown (or badly known) top mass and Higgs mass.

Ar is customarily splitted into pieces which have different conceptual origin:

29
Ar = Aa— MA,O + Aryem (2.10)

sin? Oy
Let’s discuss a little bit the different contributions to Ar that constitute the
basic building blocks of radiative corrections.
Photon vacuum polarization: A«

A« describes the change in the electric charge coupling from ¢* = 0 to the real

q* of the interaction. Therefore at energies around the Z° mass,

(a4

1 — A«

a(M}) = (2.11)

which within the SM is

2
Aa = 3% ;Q% (log Z—lg . g) + Aajag + ...
where the first term is the contribution for charged leptons, Aay,q the contribution
for quarks and the dots indicate remaining (small) bosonic contributions. One can
see from the above expression that Aa is dominated by the contribution of light
particles and it remains unchanged by new physics. In the case of quarks, since the
actual masses to be used in this expression are not well determined, Aaj,q is in
practice computed via dispersion relations using the experimental data on hadronic

et

e~ cross sections. Recently there has been some updates on the number obtained
with this procedure [11], and we will take the standard value taken by the LEP
community Aap,g = 0.0280 + 0.0007 at ¢* = M corresponding to a~'(M3) =

128.896 £ 0.090.
Quantum corrections to the p parameter: Ap

The p parameter is defined as the relation between the neutral and charged
current strength at ¢*> = 0. In the SM at tree level,
My

= — = 1
po cos? Oy M2
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but after computing one loop corrections p = pg + Ap being

V20

1672

Ap = ZchAmfc—l—...
f

being f all fermion doublets, N, s their possible number of colours and Am?c =] m?cl—
m?cz | the doublet mass splitting. Ap is negligeable for light fermions but large for
heavy fermions with a light iso-doublet partner. Therefore, the largest contribution

is, by far:

\/§GF 2
which amounts to about 1% for m; = 175 GeV. Ap is sensitive to all kind of SU(2)
multiplets which couple to gauge bosons and exhibit large mass spliting and hence,

it is very sensitive to new physics,
Remainder corrections: Ar,..,

In addition to the terms included in the two previous corrections, there are other
non-leading (but non negligeable) contributions, that have a logarithmic dependence
with the mass of the top quark. In Ar at one loop the leading Higgs contribution
is logarithmic due to the accidental SU(2)y symmetry of the Higgs sector (the

so-called custodial symmetry).

Now, from the measured M;,, by CDF an DO collaborations [12] (M;,, = 175+
6 GeV), one can compute Ar at one loop to be Ar = 0.040 4+ 0.002 neglecting
the Higgs contribution, and see how the measured My and sin? @y compare with
the SM predictions at one loop. Introducing this result in equation 2.9 we have
My = 80.30 + 0.03 GeV and sin® Oy = 0.2245 + 0.0007, that compares very nicely
with the experimental measurements mentioned in the previous section, (My =

80.356 4 0.125 GeV, sin® Oy = 0.2237 4 0.0021).

So, the message is clear... at the present level of experimental accuracy, one
needs to compute the SM predictions at least to one loop. We will see in the next
section, that even this is not enough for some specific kind of radiative corrections,
but let’s focus now on the higher order SM predictions for the relevant process in

this work.
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2.1.3 Higher order SM predictions for the process ete™ —
phm ()

The goal is to be able to predict the total cross-section and forward-backward asym-
metry for the muon pair production process with a precision better than the permile
level at the 7 resonance. To do this, one needs to take into account higher order
corrections not only in the definition of the input parameters (a,G'r) determined at
q*> — 0, but also include the specific higher order corrections for this process.

At one loop, the radiative corrections to the process ete™ — utu~ can be
classified into two groups: photonic and non-photonic corrections. The first one
includes all contributions in which a photon line is added to the born diagram
and the second group includes the rest. This separation is specially important for
neutral current processes in which the non-photonic corrections at one-loop level

separate naturally from the photonic ones forming a gauge-invariant subset.
Non-photonic corrections

This corrections do not depend on experimental cuts, (with the exception of
box diagrams) and contain relevant information on the non-energetically avaliable
elements of the theory. So, they are the ones that allow the detailed test of the
quantum structure of the SM and the search for new physics. At one loop, these
contributions can be classified into three types, namely: box corrections (figure 2.4),
vertex corrections (figure 2.5) and vacuum polarization corrections (figure 2.6), in
such a way that one can just modify equation 2.6 with

dé(s)  do®(s)
dcos 6 dcos b

Figure 2.4: Weak box corrections.

(1 + Abox(sa CcO8s 0) + Avertex(s) + Avacuum(s)) (213)

The box corrections are very small near the 7 peak due to their non-resonant

structure. Their size depends on cosf and therefore they depend on the actual
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observable studied but their typical order of magnitude is Ay, < 0.02%. Their
influence is slightly bigger at energies which are several GeV below or above My,
but still negligible. This allows to use the angular distribution of equation 2.6 safely

(taking into account that the most precise measurements are at the 7 peak).

The vertex corrections are small too, but non negligeable. For all leptons their

typical size is of Ayerier < 1% and don’t modify the cos § dependence. Finally, the

\®W< >M®/
A AN

Figure 2.5: Vertex corrections.

vacuum polarization corrections (also called oblique corrections, propagator cor-
rections and self-energies) are the largest non-photonic corrections and typically
Avgcvum < 10%. These corrections are universal, that is independent of initial and
final fermion flavour. It has been shown by several groups that in four fermion
processes, the matrix element squared including non-photonic corrections can be
rewritten keeping a Born-like structure by defining running effective complex pa-
rameters [13]. As we shall see in the next section, initial-final factorizable corrections
such as self-energies and vertex corrections can be easily absorbed by redefining the

Born couplings (Effective coupling language).

v,z v,z

Figure 2.6: Vacuum polarization corrections.

Moreover, the effect of missing higher order corrections has been extensively
studied in reference [14]. The conclusions there are that & is known with a precision
of about 0.05% and the forward backward asymmetry is known with a precision of

about 0.04% due to the uncertainty on the hadronic contribution to Aa. So that, the
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precision achieved with the SM predictions at one loop copes with the experimental

accuracy (say 0.2%).
Photonic corrections

The photonic corrections near the 7 pole are very large for many observables.
They distort noticeably the shape of their energy dependence and hence their size
depends strongly on the actual energy. In addition, given the possibility to radiate
real photons, they depend also strongly on the experimental cuts applied to analyze

the data.

Nevertheless, the inclusion of photon lines does not add more physics than just
QED and therefore, the physics interest of photonic corrections is rather limited.
In general, the strategy applied to deal with these corrections consist in unfolding
them as accurately as possible from the observed measurements to recover the non-
photonic measurements. In this work, we will go a little bit further, and we will
measure directly the non-photonic cross-section and forward backward asymmetry

reconstructing the effective centre-of-mass energy of the collision.

For s-channel lineshapes, at one loop, photonic corrections can be classified into

three infrared-finite gauge-invariant sets of diagrams:

e Initial State Radiation (ISR). Contribution from diagrams in which a
photonic line is attached to the initial state fermion (see figure 2.7). These
corrections near the Z° pole are very large and of paramount importance.
To understand why ISR corrections are so important, the physical picture of
structure functions results very useful. In that picture, the colliding electrons
are though as composite objects inside which, parton electrons are dressed by
photons with which they share the beam’s momentum. These partons collide
in a “hard scattering” which is described by the amplitudes without photonic
corrections. The Z° resonance width acts as a natural photon energy cut-off
which decreases drastically the cross section. Out of all the beam’s collisions,
only those in which the actual parton energies is close enough to the Z°
mass will produce a “hard scattering” event. Therefore, the Z° resonance
acts as a monocromator of the parton energy since only those with the right
energy annihilate into a Z° boson. Therefore, the existence of ISR decreases

drastically the actual probability of Z° production (inclusive cross-section).
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In fact, at O(a)
o(s) = 6(s)(1 46 + Blnxo) +/: dw(é — 1456 (2.14)

where the first part is the soft photon cross-section and the rest the hard one;
x is the photon energy in units of the beam energy and s’ = s(1 —x); ¢ is the
soft-hard separation cut that is completely irrelevant because the final result
is independent of it; §; is the part of the soft radiative corrections which is
independent of xq, its value being

3 o [ 72 1
S = g+ 2 2.1
! 4ﬁ+7r(3 2) (2.15)

(8 defined as

B = Q—O‘(miz—1) (2.16)

™ mZ

and it can be regarded as an effective coupling constant for bremsstrahlung.
It is a factor associated to every electron bremsstrahlung vertex. At LEP
energies it is large: 3 ~ 0.11. Now, if there’s an effective energy cut-off given

by the Z° width zp ~ ]1\}—22, equation 2.14 becomes
o(M2) ~ &(MZ)(1+ 8 + Blnaxyy)

and 1 ~ 0.09 while ﬁln]\z—zz ~ —0.40, so that the infrared term dominates
by far and the final total correction is of about —30%. Note that in absence
of any resonance, the effective cut-off x,; disappears and we do not have any
large log like the one in the previous equation in the final result. Hence the
dominant correction will be then §;. Given their large size, the pure one loop
calculation of ISR corrections is clearly insufficient to match the experimental
precision (~ 0.1%). Therefore, the calculation of the two loop terms as well
as the study of the procedure to resum to all orders the infrared contributions
(exponentiation) were attacked before LEP started operation. The outcome
of this work was that the photonic corrections to the ete™ annihilation near
the Z° pole are very accurately known [15]. Several approaches to handle
higher orders, based on different physical pictures and different technical im-
plementations (inductive exponentiation, structure functions, YFS...) have

been developed and their results compare well.
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P 3K

Figure 2.7: QED Initial State corrections

In practice, the probability to emit a photon that decreases the “nominal”
centre-of-mass energy (1/s) to the “effective” one (y/s') can be parameter-
ized in a radiator function computed up to O(a?) and including soft photon

exponentiation as:
H(s,x) = [3:1;5_1(1 + 8+ 92) — g(Z —z)(1+ 6+ BlIn(a)) + 52H(:1;)

where §; and §; are just numerical functions independent of x, and §¥(z)
describes the probability of emission of hard photons up to O(a?). Explicit
expressions for these functions can be found in [15]. One can see that when
x — 0, the radiator function behaves as S2°~!, so that it is divergent in that
limit, while the integrated expression goes as z” and is finite. In this way, the
differential cross section in equation 2.6 depends now on two variables (cos 6
and x) and can be written as:
d*c
dzdcos

where cos 8 is referring to the centre-of-mass reference system, and is related

(s) = H(s,z) g(l + cos? 0)o(s") + cos 05 4(s") (2.17)

to the measured angles of the muon pair through:

sin l((9M+ —0,-)

2

sin %(QW +0,-)

cos

(2.18)

To writte equation 2.17, we have made the approximation that the radia-

tor function H(s,x) is the same for the symmetric and antisymmetric cross
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section. This is valid for soft photons in the collinear leading logarithmic
approximation provided the scattering angle is used in the rest frame of the

outgoing fermion pair.

It is not surprising that the convolution kernel for the antisymmetric part of
the cross section is different from the symmetric one, since 6 is a less inclusive
quantity than ¢ and the kinematical situation is more complicated. The
radiator function ]:[(5, x) for the antisymmetric cross section can be related

with H(s,x) through [15]:

N o 4dx 4a

H(s,z) = H(s,2)—0(1 —x¢—2)— 10g(1—|—:1;)2

(2.19)

Tl —=x
where 0(z) denotes the Heaviside function.

e Initial-Final State Interference (I-F interference). Contribution from
the interference between the diagrams in which a real photonic line is attached
either to the initial or the final fermionic lines (see figure 2.8). In this set
of contributions, as before, the infrared divergence which shows up in the
real photon emission when the photon energy vanishes, cancels the infrared
divergence present in the interference between the Born amplitude and the
one in which a virtual photon links the initial and the final state fermion lines
(box correction). This contribution, unlike the previous one, depends on cos

and its analytic form is rather involved.

04 VA
A Y A Y A;Hr ‘E-L"I[EV
—— —— +’V 7 —>— +7 —>—
7.2 Y ’

Figure 2.8: QED Initial-Final state interference corrections.



dllculTiival 11 AlliTtywul i

In fact, for inclusive observables, that is when there’s no cut on the phase
space of the Initial State photon, the contribution is very small, at the level

of 0(0.02%) for &, and can be safely neglected. This is the case usually at

o )
d cosfdx

where s' = s(1 — x) is the square of the “effective” centre-of-mass energy that

LEP, but in our case we are interested in the differential cross-section (

we have introduced in the discussion of the ISR corrections. In figure 2.9
one can see the contribution of the I-F QED interference for the total cross

section and the forward-backward asymmetry as a function of the cut on

/
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Figure 2.9: Contribution of the I-F QED interference for the total cross section and the forward-
backward asymmetry at \/s = Mz as a function of the cut on s,,;, = s(1 — &4y ), in the angular
acceptance | cos 6 |< 0.9.
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These contributions are parameterized in d;,¢ and &y, defined as:

O'if

i 1+ b0
0- . .
Af = AR+ g

where o'/ and A}J; include the interference, whereas o™/ and A?Zf don’t in-
clude it. d;,¢ and 0y, have been computed using an analytic expression that
describes the effect to O(a), at a centre-of-mass energy /s = 91.2 GeV, and

in the angular acceptance | cosf |< 0.9.

What one can learn from fig. 2.9 is that as we try to become less inclusive
(Tmaz — 0), the effect of the interference is becoming less and less negligible.
This is specially true for the forward-backward asymmetry, if we take into

account that the experimental precision in the determination of A;b is around

0.01 [7].

The actual reason why the I-FF QED interference is so small near the Z° peak is
the finite lifetime of the Z° which, somehow, “separates physically” the initial
and final state wavefunctions. Nevertheless, as we cut in radiated energy, the
photon wavelength increases and then, radiation starts overlapping the initial
and final state wavefunctions leading to a gradual restoration of the I-F QED

interference with increasing strength of the cuts.

Indeed, this phenomenon was proposed some time ago by S. Jadach and Z.
Was in ref. [16] as an alternative method to “determine” the Z° width. Very
recently, the DELPHI collaboration has published a study on this topic [17].

In our case, we pretend to be as insensitive as possible to such kind of effects,
in order not to spoil the interpretation of /s’ as the “effective” centre-of-
mass energy left after ISR. So that, instead of dealing with the probability
density of equation 2.17, we have to bin the distribution in intervals of  with
a minimum bin size of the order of Az ~ ]1\}—22 ~ 0.03. In any case, one needs
to bin the probability density in the limit + — 0 in order to have a finite

answer.

e Final State Radiation (FSR). Contribution from diagrams in which a
photonic line is attached to the final state fermion line (see figure 2.10). In this

set of contributions, the infrared divergence which shows up in the real photon
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emission when the photon energy vanishes, cancels the infrared divergence
present in the interference between the Born amplitude and the one in which
a virtual photon is attached to the final state vertex (vertex correction). If
we don’t cut on the phase space of the final state photon, the correction for
the total cross-section (&) is (1 + 33—;5)) and negligible for the antisymmetric
cross-section (). This amounts to a correction at the level of 0.17% at

energies around the Z° mass.

S

Figure 2.10: QED Final State corrections

2.2 Model independent approaches to the pro-
cess ete” — utu~

In the previous section, we have seen how the process eTe™ — uTu~ can be de-
scribed at lowest order by two quantities: 0°(s) and A%,(s) that are “in principle”
measurable. The explicit dependence of these quantities with the centre-of-mass
energy is predicted by the SM (see equations 2.4, 2.5). The inclusion of higher
order non photonic corrections does not change this picture and we can just absorb

them in a redefinition of the cross section (o(s) and Afb(s)).

To interpret &(s) and Afb(s) in a “model independent” way, we need to param-

eterize the energy dependence of these observables in such a way that it copes with
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the experimental accuracy, and has the minimum input from the theory. Since al-
most the beginning of LEP, the “effective coupling” language has been established
by the LEP community as a suitable way to compile the precision electroweak mea-
surements. In fact, this language is adequate when we are describing a restricted
energy region around the Z° resonance, but as we will see, we need a more general
approach to describe an energy region spanning from 60 GeV up to 140 GeV. This

is the motivation to introduce the so-called S-matrix language.

2.2.1 The effective coupling language

As we have seen in section 2.1, the inclusion of the leading non-photonic corrections
does not change at all the Born structure of the SM predictions. The “effective
coupling” language takes profit of this, and parameterizes 6(s) and Afb(s) as a
function of two real constant parameters per flavour: an effective vector coupling

(R(gv)) and an effective axial coupling (R(ga)).

In fact, one can absorb higher order non-photonic corrections in formulae 2.4 and 2.5

with just some simple replacements, namely:

a — a(s) Real part of v self-energy

r
s(s—MZ) — s(s— Mz)+ SZVZ%(AQ) Imaginary parts of v self-energy and g4y
z

I'
|Z(s)]? — (s— M2)* + (SVZZ)Q Imaginary part of Z self energy

y 4 — FG(S) §R(gV)v

v

Fe(s) R(ga) Real part of Z self-energy, v — 7 mixing, weak vertices

where oy
Fa(s) = —2—Z 2.20
o(3) 2\/§7Toz(3) ( )

J(Aa) can be neglected in the total cross section, but it turns out to be relevant

in the antisymmetric cross section [15],[18]. The explicit expression is

eI ()
S8 = TR0 () T 2 R(gn)

+23(Fy) (2.21)

where 117(s) is the v self-energy and Fy. is the vertex corrections to the electro-

magnetic coupling.
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A

In this way, we can replace 0°(s) (A%,(s)) by &(s) (Afp(s)), in equation 2.4
(equation 2.5).

By construction this language is an almost-model-independent language in which
the only underlying assumptions are (a part from the description of photonic ra-
diation by QED) just basic concepts of quantum field theory and the hypothesis
that the interaction is mediated by the exchange of two bosons, a massless photon
with vector coupling to the electric charge, and a massive Z boson with both vector
and axial couplings to fermions. In addition, from the theoretical point of view, the
accuracy of this language has been studied in great detail and its validity beyond

the experimental precision has been established [14], [19].

On the other hand, if we want to describe a wide region of energies, and not
only a limited energy region around the Z° pole, we find that this language is not
adequate. The problem arises from the v — Z interference terms in equation 2.4 and
equation 2.5, that becomes more and more important as we are moving away from
the Z° resonance. These terms are not independent parameters in this language,

because they are just function of the effective couplings mainly determined at the
Z° peak.

This problem is specially relevant in the case of the energy dependence of the
forward-backward asymmetry. As we have already mentioned, the non-zero asym-
metry that we observe when moving away from the Z° pole is a consequence of the
~ — Z interference term, that on the other hand is just a function of the weak axial
coupling, as can be seen in equation 2.5. The axial coupling is determined with high
precision from the measured total cross section at the Z° peak, because 6(M?2) o
(RUgve))? + (R{ga)?)(Rlgv, ) + (R(ga,))?) and for (R(gv))? << (R(gar))?, the
lepton lineshape measures basically (R(ga.))*(R(ga.))?. So that, even if there was
some new physics beyond the SM that could modify such energy dependence, this

will not be visible in this language !

So, if we are going to describe a wide range of energies, we need to treat the
energy dependence of &(s) and Afb(s) in a model independent way. This is what

the S-matrix approach basically does.
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2.2.2 The S-matrix language

The S-Matrix ansatz allows a consistent parameterization of the energy dependence
of the LEP cross sections and asymmetries because its underlying basic concept is
an expansion around the Z° pole on the energy dependence. It is a rigorous, well
defined and well documented [20] approach that allows to fit the data in a more
general way than the one using the “effective coupling” language since it does
not assume any a priori relation between on-resonance measurements and energy
dependences, which is something unavoidable in the “effective coupling” language.

Assuming that the S-matrix element that describes the process ete™ — utpu~
is analytic (so it can be expanded in a Laurent serie), and that there are only two
poles in the complex plane (corresponding to the Z-boson and y-boson in the SM),
one can write in a completely general way the S-matrix amplitude for this process

as is shown in figure 2.11.

Figure 2.11: Schematic representation of the S-matrix ansatz

The poles of M have complex residua Rz and R., the latter corresponding to the

photon, and F'(s) is an analytic function without poles.

Note that now Mz corresponds to the real part of the complex pole s;. In fact,
the relation between M 7 and the usual definition of M in terms of the Breit-Wigner

propagator can be found very easily to be:

_ M,

My, = —(—2— (2.22)
L+ (3£)?

_ r,

I, = —— (2.23)
L+ (37)?

after a redefinition of the real Fermi coupling constant that appears in the normaliza-

tion of the weak amplitude, being now a complex number with G = Gr/(1+ ZJI\}—ZZ)
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This is so, because

(S—M%—I—isj\l}—zz) B (S—M%—I—isj\l}—zz)
- _ MZ—iMzl'
1H(34)’
Gr

s— My +iM,Ty
and this demonstrates equations 2.22 and 2.23. Note that the ratio between 'z and

My is exactly the same in both definitions.

If one compares the amplitude M in figure 2.11 with the SM predictions after
including one loop non-photonic corrections, one can see that the structure of both
amplitudes is exactly the same with F(s) = 0, (neglecting the energy dependence of
the “effective couplings” and the contribution of the weak boxes). In other words,
the only contributions to F'(s) in the SM, are those that cannot be absorbed in the
definition of the “effective couplings”, that at one loop correspond to the inclusion
of the weak boxes diagrams, (see figure 2.4). As we have already seen, they can be

neglected safely at the present level of experimental accuracy.

Now, if the four helicity amplitudes that describe the process ete™ — utu~ are
written in this approximation,
R, R
4 _Z

S S — Sy

M = (2.24)

where i (j) stands for the polarization of the incoming e~ (outgoing p7), it is

straightforward to show (see appendix A),

—9
) erusriﬁ(s—Msz] (2.25)

S ..
Gi(s) == | MY )P = Zra e —
=g M s (s — My +M,T,

and therefore the total cross section defined as o = %(&LL + 0rRr + LR + ORL) Will

be

(2.26)

4 ﬂ n STt + (8 — Mzz)t]tot
s (s=My)?+MT,

while the antisymmetric cross section defined as &y, = %(&LL + 6rr — OLR — ORL)

will be

0 Ta?

2 (2.27)
(s — Mo)2+ M, TS

57+ (s — MQZ)Jfb]
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So that, these equations parameterize & and 6, in an almost model independent
way as a function of 6 real parameters: Mz, Uz, v, Jiot, 75 and Jpp, (the pure
QED contribution 7 is fixed to the SM predictions). Equations 2.22 and 2.23 are

used in order to recover the usual definition of the Z° mass and width.

The expressions that relate the coefficients r and J in these equations to the
helicity amplitudes are given explicitly in appendix A. The total cross section &(s)
needs to be corrected with a factor (1 + %Q(M%)) which takes into account the

possibility to radiate a photon in the final state.

The SM predictions for the helicity amplitudes are given in appendix A, and
in an approximate way can be related with the real part of the effective couplings
through

o o ((R(gve))® + (R(gac)) ) (R(gva))* + (R(gan))?)
Jiot o< R(gve)R(gv,.)

riy o R(gac)R(gve)R(ga.)Rigv,)

Jpp oo R(gac)R(ga,)

Introducing the measured M;,, by CDF an D0 collaborations [12] (M, = 175+
6 GeV) and the most probable mass range determined for My [7] (66 < My <
300 GeV), and fixing the input values to be (Myz = 91.1863 GeV, a ' (M%) =
128.896 + 0.090), the SM predictions for these parameters are shown in table 2.1,
where the error corresponds to the variation induced by the error on a~!(M%), on

the top mass and the unknowledge of M.

The number of digits quoted in table 2.1 have been chosen to match with the
experimental accuracy. From these numbers one can see that the parameters that
describe the energy dependence of the total cross section (.Ji,:) and antisymmetric
cross section (Js;) have negligible sensitivity to the top and Higgs masses. They
are determined in the SM by the interference between the photon and the Z-boson,
so they can be used to test any new contribution beyond the SM that can interfere
with the Z-boson.

In figure 2.12 there’s a comparison between the predictions of the S-matrix

ansatz with the actual SM predictions at one loop using the BHM EW libraries [21],
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My (GeV) = 91.1863

Iz (GeV) = 24974 £ 0.0006 + 0.0014750074
Ftot = 0.14298 =+ 0.00004 + 0.0001975-500%2
Jiot = 0.004 + 0.000 + 0.000 4 0.000

r s = 0.00278 = 0.00008 £ 0.000075:55012
I = 0.800 + 0.001 + 0.000 4 0.000

Table 2.1: SM predictions for the S-matrix parameters for Mz = 91.1863 GeV, oY (M2) =
128.896 £ 0.090, M;iop = 175 GeV and Mg = 150 GeV. The first error corresponds to the uncer-
tainty in a=1(M2). The second error corresponds to the variation of the top mass in the range
169 < My, < 181 GeV and the third of the Higgs mass in the range 66 < Mgz < 300 GeV.

in the energy range of interest in this work. One can see from this figure that at
energies around the Z° pole, the precision is better than the permile level, and
at energies below it is always much better than 0.5%. At energies above the Z°
pole, the precision is a little bit worse but always better than the 1% level, while
the only data avaliable at those energies before LEP II started was 5 pb™" taken
in November of 1995 at energies around 130-136 GeV. The statistical precision at
these energies is at the level of 10 — 20%, so the S-matrix ansatz copes perfectly

with the experimental accuracy in all the energy range.

2.3 Beyond the Standard Model. 7' physics

Despite the excellent performance of the SM so far, there is a general consensus
that it is not the “final” theory (if something like that exist). Most of the attempts
to unify the strong and electroweak interactions predict additional neutral heavy
gauge bosons 7' (see for instance [22]). New interference terms, as v — 7’ and
7 — 7' will appear at the Born level and will modify the cross-section and angular
distribution at energies far from /s ~ M. In this sense, a new gauge boson is the

most obvious candidate to modify the predicted energy dependence.
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Figure 2.12: Comparison of the S-matrix ansatz with the SM predictions as a function of the
centre-of-mass energy. The S-matrix parameters are those shown in table 2.1.

In principle, the Z’ influences cross sections in three different ways:

e virtual 7’ exchange ( also present without 77’ mixing). For sufficiently large

7' masses the main effect is seen only in the interference terms.

e shift of the mass of the standard Z boson seen at LEP I due to the Z 27’

mixing.
e modifications of the couplings of the standard Z boson due to the Z 7’ mixing.

The existence of a 7' would mean that the observed mass eigenstate at LEP [
needs to be considered as a mixture of the unmixed Z° and Z%, predicting a shift

in Mz from its SM value, with the mixing described by a matrix using the mixing
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Z B cos 05 sin 05 A
A - —sin 5 cos 04 VA

The angle 85 is related to the mixed masses Mz and My, and the light unmixed

angle #5:

mass My as follows:

Mg — Mj
M%/ - M02

tan?f; =

The mass My (that corresponds to Mz in the SM), is related to the weak mixing

angle and My in the SM expression:
Mw
/P cos Oy

where p is the usual electroweak parameter (p = 1 at lowest order).

MO —

There are several extensions to the SM that predict a hypothetical additional
gauge boson. The most “popular” models among experimentalists are superstring-
inspired models based on the Fg symmetry group and “left-right” symmetric mod-

els.

o E; models. In this kind of models [23], E¢ is the group of gauge symmetries
that is broken at the Planck scale as

Es — S0(10) @ U(1),,
— SU(5) ®U(1)X®U(1)¢
in which the SU(5) contains the standard SU(3), @ SU(2);, @ U(1)y. If there

is one extra low-energy Z, it must be a linear combination of Z, and Z,, i.e.,

Z(0s) = Zycosbs+ Zysinbg

The mixing angle #5 and the “model” angle #5 completely determine the cou-
plings of the Z and Z’ to leptons, trough the gauge structure of the theory.
Vector and axial couplings of leptons to the Z boson and the extra neutral
gauge boson, at first order in 83, are given by:

IL+ 2 sin0y, — %03 sin Oy (cos B — \/gsin bs)

v = .
2 sin Oy cos Oy ’

IL — 05 sin Gw(é cos O + %\/gsin bs)
@ = , (2.28)
2 sin Oy cos Oy
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and

—03(—% + 2 sin*fy ) — %sin Oy (cos O — \/gsin bs)
2 sin Oy cos Oy
—%03 — sin Gw(é cos O + %\/gsin bs)

- 2.29
4 2 sin Oy cos Oy ( )

/ J—
Ul — Y

The most popular choices correspond to s = 0,7/2 and -arctan(y/5/3) that
define the chi-model (Es(y)), the psi-model (Fs(1))) and the eta-model (Es(n))

respectively.

e L-R models. Left-right symmetric extensions of the SM were first pro-
posed [24] to explain the origin of parity violation in low energy physics. The
approach consists in considering a lagrangian intrinsically left-right symmet-
ric, the asymmetry observed in nature arising from a non invariant vacuum un-
der parity symmetry. The gauge group of the model is SU(2); @SU(2),@U(1).
The quantum number associated to the U(1) factor can be identified with
B—L, B and L being the baryon and lepton numbers.

Another interesting feature of the left-right model is the possibility of explain-
ing the smallness of the neutrino masses [25]. The presence of the right-handed
neutrinos, which has no couterpart in the SM, and of a suitable Higgs struc-
ture allows for the so called see-saw mechanism to take place and naturally

accounts for very light left-handed neutrinos.

The parameter appr describes the couplings of the heavy bosons to fermions,
and it can be expressed in terms of the SU(2); » coupling constants g7, p and

the weak mixing angle, trough

cos? By — N2sin? Oy
= 2.30
LR \l Asin? Oy ( )
with
» = & (2.31)
gRr

The new neutral current is defined with

1

QLR

Z(apr) = arpZr — ZB_1,
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following the convention adopted in the Particle Data Book [26].

For arg at its lower bound of 1/2/3, the L-R model is identical to the Fg(y)
model. The upper bound corresponds to g;, = gr with a value around apr ~

1.53. We have chosen an intermediate value of apr = 1 as example.

After specifying the model (and without any assumption on the structure of
the Higgs sector), only two free parameters remain: i) the mixing angle 63 between
Z and 7', ii) and the mass of the heavier-mass eigenstate, Mz. If we want to
test one of these particular models, and extract the corresponding limits on these
parameters, we can replace the model independent parameterization of &(s) and

d15(s) by the specific prediction of the model as a function of Mz and 6.

Figure 2.13 shows the deviations in the non-photonic corrected cross sections
and forward-backward asymmetries predicted by these four models. The Z’ mass
is fixed to Mz = 250 GeV, that is close to the limit of exclusion at 95% confidence
level for the most sensitive model (Fg(y)). The mixing angle (83) is fixed to zero

because the existing limits are already very constraining [27].

In the energy range near to the Z° pole position, the additional bosons direct
contribution to the cross section and forward-backward asymmetry is very small.
The deviations from SM expectations arise primarily from interference effects of the
hypothesized bosons and the existing ones (v and Z°). This is seen specially clear

in the case of the forward-backward asymmetry at energies around /s ~ 85 GeV.
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Figure 2.13: Deviation of ¢ and &, with respect the SM predictions, for several Z’' models.

Mz is fixed to 250 GeV, and the mixing angle 83 is fixed to zero.



Chapter 3

The ALEPH detector

The ALEPH detector [28] is one of the four large detectors installed in the LEP
collider. The other experiments are DELPHI [29], L3 [30] and OPAL [31]. It has
been designed as a general purpose detector for ete™ interactions: to study in detail
the parameters of the Standard Model, to test QCD at large Q? and to search for
new phenomena (such as the Higgs boson or supersymmetric particles ). Therefore,
the detector has been conceived to have good track momentum resolution, fine
calorimetric granularity, covering as much solid angle as possible and with good

hermiticity.

In this chapter we briefly describe the LEP collider and the beam parameters:
beam energy, energy spread... that will be relevant in the analysis. A general
description of the ALEPH apparatus with special emphasis in those subdetectors
used in the analysis is made in section 3.2.A brief description of the actual event

reconstruction and simulation in ALEPH is made in section 3.3.

3.1 The LEP collider

The LEP (Large Electron Positron collider) machine is an ete™ storage ring of
27 Km. of circumference sited at the European Centre for Particle Physics (CERN)
in Geneva, Switzerland. It is located in a tunnel at a depth between 80 m. and
137 m. spanning the French and Swiss territories, (see figure 3.1). It is the largest
collider ever built and the reason for its size is the synchroton radiation, which is
proportional to the square of the inverse mass of the particle and to the fourth

power of its energy. So that, for massive particles as protons it can be neglected
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but it is fierce for very light particles as electrons. It is also inversely proportional
to the square of the radius of the machine, so becomes manageable at high energy

circular colliders only if the radius is sufficiently large.

The beams that circulate around the ring are formed by bunches of electrons and
positrons. They are accelerated in opposite directions and cross in eight or sixteen
points in case the number of bunches per beam is four or eight, respectively, although
they are steered to collide every 22 pus (or 11 us) only in the four points where the
detectors are installed. The collisions in the other points are avoided by a system
of electrostatic separators. This scheme worked very well and luminosities ! at the
level of 1-2 10%'cm™2s™! have been achieved in the first phase of the accelerator
program at energies around 91 GeV (LEP-I phase), producing around 4 million

visible Z° decays per experiment.

Since November 1995, a new scheme was adopted, in order to increase even more
the luminosity, where in fact there were four trains of up to four bunches colliding
at each interaction point. This scheme is expected to achieve luminosities up to

5-6 10*'cm™2s7!, and compensate in some way the small cross section expected at

energies around 180 GeV, just above the W-pair threshold (LEP-II phase).

The LEP injection chain can be seen in figure 3.2. It starts with the LINear
ACcelerator (LINAC) which accelerates electrons and positrons in two stages. The
electrons are first accelerated up to 200 MeV. Part of the electrons are used to
produce positrons and the rest, together with the positrons are accelerated up to
600 MeV. Then, the particles are inserted into a small circular ete™ accelerator,
the Electron Positron Accumulator (EPA), where they are accumulated until the
electron and positron intensities achieve the nominal value. Afterwards, they are
inserted in the Proton Synchroton (PS) accelerator achieving an energy of 3.5 GeV.
Then, the particles are injected into the Super Proton Synchroton (SPS) storage
ring, reaching an energy of 20 GeV, and finally, they are injected into the LEP
main ring and accelerated to an energy of ~ 45 GeV with a current up to 6 mA per

beam.

Ithe number of events per unit of time per unit of cross section
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Figure 3.1: Schematic representation of the LEP ring

3.1.1 Determination of the beam energy

The determination of the LEP beam energy constitutes the highest precision mea-
surement performed at LEP so far, and allows to determine My and I'y with an
unprecedented precision. Since 1992, the method used to measure the beam energy
in LEP-I takes advantage of the fact that, under favourable conditions, transverse
beam polarization can be naturally built up in a circular machine due to the inter-
action of the electrons with the magnetic guide field (Sokolov-Ternov effect [32]).
The number of spin precession in one turn around the ring (“spin tune”) is

Ge — 2 Ebeam . Ebeam (GGV)
2 m.  0.4406486(1)

V=

where ¢, is the gyromagnetic constant and m, is the electron mass. This relation is
exact only for ideal storage rings, and needs to be corrected by small imperfections.

In this approximation, the spin precession frequency is equal to

fprec = V]rev
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Figure 3.2: Schematic representation of the LEP injectors and accelerators

with f., the revolution frequency being in typical conditions of f,., = 11245.5041(1) Hz.
From the above equations, it is clear that this spin precession frequency (fyrec) is
predicted with a very high precision as a function of the beam energy. On the other
hand, this frequency can be measured using a sweeping kicker magnet which pro-
duces an exciting field perpendicular to the beam axis and in the horizontal plane.
Then, when fspin—kick = (n 1) frer (n integer), that is when the exciting field is in
phase with the spin precession, the spin rotations about the radial direction add up
coherently from turn to turn. About 10* turns (~ 1 second) are needed to turn the
polarization vector in the horizontal plane (resonant depolarization). In this way,
by plotting the measured beam polarization versus fs,i,—gick, one can determine
foree with a precision which corresponds to an accuracy on the beam energy at the
level of 0.2 MeV. This method is often referred to as energy calibration by resonant
depolarization and has been used extensively for accurate beam energy calibrations

and measurements of particle masses [33].

Nevertheless, since just about 2 calibrations per week are, in practice, feasible,

this means that these very precise measurements, have to be extrapolated to the
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whole running time by correlating them with the energy measurements performed
by using some reference magnets. The scatter in this correlation, depends on the
stability of the machine energy and is affected by several variables, such as the status
of the radiofrequency cavities, the temperature and humidity in the LEP tunnel, the
distortions of the ring length, and even by current flow over the vacuum chamber
created by trains travelling between the Geneve main station and destinations in
France [34]!!!

For instance, due to the tidal forces of the sun and the moon, the circumference
of the machine changes by just ~ 1 mm, but they affect the beam energy at the
few MeV level (see figure 3.3). The final precision of the measurement improves as

these effects are understood and at present is of about 1.5 MeV.

LEP TidExperiment
11 Nov. 1992

200 T —— — T T
=  Relgtive energy change
m L measured by rescnant depolarization
PP L — Tide prediction : —strain/a,
{from G.E. Fischer)
100 - 4 -
N 7 M
0 I
E tride=0y I

-100
_200_...|...|...|..‘|‘..|...\_

0 4 & i2 ie 20 24

Time (hours)

Figure 3.3: Relative change in parts per million of LEP energy during 24 hours as a result of
the tide

Note that this measurement of the beam energy corresponds to the mean beam
energy of the electrons and positrons inside each bunch. The energy of the individual

electrons (or positrons) is distributed with a gaussian probability density, with a
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beam energy spread of around 39 MeV [35] that is much bigger than the error on the
mean energy. The energy spread of the beams is determined from the measurement

of the length of the luminous region, (oz), through the relation:

NG

EQSUZ

Obs

where « is the momentum compaction factor (o ~ 0.00019), R is the LEP mean
radius (R ~ 4242.893 m) and @ is the Synchroton tune (Qs; ~ 0.065). In this
way, the collision energy is gaussian-distributed with an energy spread about? /2 x
39 MeV ~ 55 MeV. So that, although the mean energy is known with very high
precision (~ 1.5 MeV), the energy of each individual collision is distributed with a
gaussian density probability with o ~ 55 MeV.

3.2 The ALEPH apparatus

3.2.1 General description

The ALEPH detector (ALEPH: Apparatus for LEP PHysics) is located at experi-
mental point number 4 in a cavern 143 m under the surface. It is a 12 m diameter
by 12 m length cylinder positioned around the beam pipe (tube of 10 cm of radius).
In the ALEPH reference system the z direction is along the beam line, positive in
the direction followed by the e~. The positive x direction points to the center of
LEP, and is horizontal by definition. The positive y direction is orthogonal to z

and x and is very close to vertical up.

The detector consist of subdetectors, each of one specialized in a different task.
The inner volumes are devoted to perform accurate tracking of charged particles
and to identify them using the ionization left in the detectors. They are immersed
in a “strong” magnetic field of around 1.5 T, in order to achieve a good momentum
resolution. The tracking volumes are surrounded by calorimeters, which are in two
layers, an inner layer which measures electromagnetic, and an outer layer which
measures hadronic energy. In fact, the calorimeters are the only subdetectors that
can determine the energy and direction of neutral particles (except for neutrinos,

that are able to traverse all the ALEPH subdetectors without leaving any signal).

2The factor v/2 is a consequence of the convolution of the two gaussian distributions
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Figure 3.4: Schematic view of the ALEPH detector. (1) Luminosity monitor. (2) Silicon
Microvertex Detector and Inner Tracking Chamber. (3) Time Projection Chamber. (4) Electro-
magnetic Calorimeter. (5) Superconducting Coil. (6) Hadronic Calorimeter. (7) Muon chambers.

(8) Focusing Quadrupoles.

The whole is surrounded by wire chambers to detect the penetrating muons. Spe-
cialized detectors situated at very low angles from the beam direction, give a precise

measurement of the luminosity. Figure 3.4 shows a schematic view of the ALEPH
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detector.

Let’s discuss briefly the ALEPH subdetectors. Following the order in which a

particle leaving the interaction point would encounter them:

e The Vertex DETector (VDET), fully operational since the end of 1991, is a
double sided silicon strip device with two layers of r¢ and z strips around the
beam pipe, providing a very accurate vertex tagging of tracks coming from
the interaction point (0,4 = 10um, o, = 13um). Since October 1995, a new
vertex detector twice as long as the former one has been installed, extending

the acceptance to lower polar angles, and with similar performance.

e The Inner Tracking Chamber (ITC) is a cylindrical multiwire drift chamber. It
is used to provide up to eight precise r¢ coordinates per track, with an average
accuracy of 150 pm. It contributes to the global ALEPH tracking and is also

used for triggering of charged particles coming from the interaction region.

e The Time Projection Chamber (TPC), the central track detector of ALEPH,
is a very large three-dimensional imaging drift chamber. It provides a three
dimensional measurement (up to 21 coordinate points) of each track (single
coordinate resolution of 173 um in the azimuthal direction and 740 um in
the longitudinal direction are achieved). From the curvature of the tracks in
the magnetic field, the TPC gives a measurement of the transverse particle
momenta, pr, with an accuracy of Apr/p3 = 0.6 x 1072 (GeV/c)™! at 45 GeV,
if it is used together with the ITC and VDET. The chamber also contributes
to particle identification through measurements of energy loss (dE/dx) derived
from about 340 samples of the ionization for a track traversing the full radial

range.

e The Electromagnetic CALorimeter (ECAL) is a sampling calorimeter con-
sisting of alternating lead sheets and proportional wire chambers read out in
projective towers to obtain a very high granularity (about 0.9° x 0.9%). It
measures the energy and position of electromagnetic showers. The high gran-
ularity of the calorimeter leads to a good electron identification and allows to

measure photon energy even in the vicinity of hadrons.

e The superconducting coil is a liquid-Helium cooled superconducting solenoid
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creating, together with the iron yoke, a 1.5 T magnetic field in the central

detector.

e The Hadronic CALorimeter (HCAL) is a sampling calorimeter made of layers
of iron and streamer tubes. It provides the main support of ALEPH, the large
iron structure serving both as hadron absorber and as return yoke of the mag-
net. It measures energy and position for hadronic showers and, complemented

with the muon chambers, acts as a muon filter.

e The muon chambers (pg-chambers), outside HCAL, are two double layers of

limited streamer tubes which identify muons and measure their directions.

An accurate luminosity measurement is absolutely necessary for the precise mea-
surement of cross sections. Instead of computing it from the LEP machine param-
eters:

Ne"'Ne—frev

droyoy

L Ny

where N, are the number of particles per bunch (typically of about 10'* at LEP),
Jrev 18 the previously introduced revolution frequency and o, and o, are the beam
transverse sizes ( about 200 wm and 10 pum respectively), the LEP experiments
determine the luminosity by counting the number of events coming from a process
with very well known cross section, such the small angle Bhabha scattering (ete™ —
eTe™). The non-electromagnetic contributions to this process are small and its cross

section for small angles is very high, namely

16ma? 1 1
OBhabha "~ s 02 - 02

min max

From the above expression it follows directly that the precise knowledge of the de-
tector inner edge radius is one of the fundamental milestones from the experimental
point of view. From the total number of identified Bhabha events, the integrated

luminosity follows as:

Naa_Nac.
/,Cdt _ Bhabh Back

€0Bhabha

where € is the experimental efficiency and N, 1s the number of background events.

It turns out that the present limitation in the knowledge of the luminosity is not
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the experimental error, but it comes from the theoretical calculation of the predic-
tion of the Bhabha cross section which, although being basically a QED problem,
technically is a rather difficult task and is “just” known at the 0.11% level [36].

The ALEPH detector has three subdetectors installed around the beam pipe to

detect small angle Bhabha scattering events:

e The Luminosity CALorimeter (LCAL) is a lead/wire calorimeter similar to
ECAL in its operation. It consists of two pairs of semi-circular modules placed
around the beam pipe at each end of the detector. It was used to measure

the luminosity until SICAL was installed.

e The Sllicon luminosity CALorimeter (SICAL) was installed in September 1992
on each side of the interaction region. It uses 12 silicon/tungsten layers to
sample the showers produced by small angle Bhabhas. It improves the statis-
tical precision of the luminosity measurement by sampling at smaller angles
than LCAL. The systematic error is also reduced thanks mainly to the greater

internal precision of the positioning of its components.

e The very small Bhabha CALorimeter (BCAL) located behind the final focus
quadrupoles, is used to monitorize the instantaneous luminosity delivered by
LEP. Being sited at lower angles, allows to have high statistics and have
more frequent measurements at the cost of increased systematic errors. It is
a sampling calorimeter made of tungsten converter sheets sandwiched with
sampling layers of plastic scintillator. A single plane of vertical silicon strips

is used to locate the shower position.

The optimization of the LEP performance needs also some monitoring of the

beam conditions which is accomplished by SAMBA in ALEPH:

e The Small Angle Monitor of BAckground (SAMBA) is positioned in front of
the LCAL at each end of the detector. It consists of two multi-wire propor-

tional chambers, and it is used as background monitor.

Not all the collisions that take place at LEP are useful to learn on Z° physics.
Many of these events are interactions with the residual beam-gas or the beam pipe

walls, electronic noise, off-momentum particles,... Moreover, some subdetectors
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need some time to be ready from event to event. For instance, it takes up to
45 psec for the ionization electrons to reach the end-plates of the TPC and the
electromagnetic calorimeter takes up to 61 psec to be cleared and ready for the next
event. Since up to six bunch crossings occur in this time, this operation should be
performed only when it is really necessary. In order to do that a trigger system was
designed in a three-level structure. The fist two levels are hardware implemented,

in order to give a very fast answer, while the third one is implemented by software.

o Level one decides whether or not to read out all the detector elements. Its
purpose is to operate the TPC at a suitable rate. The decision is taken
approximately 5 usec after the beam crossing from pad and wire information

form ECAL and HCAL and hit patterns from the I'TC. The level one rate

must not exceed a few hundred Hz.

o Level two refines the level one charged track triggers using the TPC tracking
information. If level one decision cannot be confirmed, the readout process is
stopped and cleaned. The decision is taken approximately 50 psec after the
beam crossing (the time at which the TPC tracking information is avaliable).

The maximum trigger rate allowed for level two is about 10 Hz.

e Level three is performed by software. It has access to the information from
all detector components and is used to reject background, mainly from beam-
gas interactions and off-momentum beam particles. It ensures a reduction of

the trigger rate to 3-4 Hz, which is acceptable for data storage.

All these electronic signals provided by the different subdetector in ALEPH
need to be controlled by software. This task is done by the Data AcQuisition
system (DAQ), which allows each subdetector to take data independently, process
all the information taken by the detector, activate the trigger system at every beam

crossing and write finally data in a storage system.

The DAQ [37] architecture is highly hierarchical. Following the data and/or
control flow from the bunch crossing of the accelerator down to storage device, the

components found and their tasks are:

e Timing, Trigger and Main Trigger Supervisor: synchronize the readout elec-
tronics to the accelerator and inform the ReadOut Controllers (ROC) about
the availability of the data.
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e ROC: initialize the front-end modules, read them out and format the data.

e Event Builder (EB): build a subevent at the level of each subdetector and

provide a “spy event” to a subdetector computer.

e Main Event Builder (MEB): collects the pieces of an event from the various

EB and ensures resynchronization and completeness.
o Level three trigger: as already seen, performs a refined data selection.

e Main host and subdetector computers: the main machine (an AXP cluster)
initializes the complete system, collects all data for storage and provides the

common services. The subdetector computers get the “spy events” and per-

form the monitoring of the large subdetectors (TPC,ECAL,HCAL).

The data taken by the online computers is called raw data and is reconstructed
quasi online. In less than two hours after the data is taken, the event reconstruction
and a check of the quality of the data are done, thus allowing ALEPH to have a
fast cross-check of the data and correct possible detector problems. This task has

been performed by FALCON (Facility for ALeph COmputing and Networking) [38],
nowadays integrated in the DAQ system.

The year by year continuous increase of CPU power of the machines has made
the hardware and software of FALCON develop in order to accommodate to the
avaliable performance and requirements. In its current configuration, FALCON
consists of three processors (three DEC-AXP machines). Each of the processors
runs the full ALEPH reconstruction program JULIA (Job to Understand Lep In-
teractions in Aleph) [39] which, for each event of the raw data file, processes all the
information from the different subdetectors. There are other programs like PASSO0,
which compute the drift velocity of the TPC, or the RunQuality program that also
run in FALCON.

After their reconstruction, the events are written in files of a format named
POT (Production Output Tape), and are transmitted to the CERN computer center
where they are converted into different data types more suitable for physics analysis.
In this work the ALPHA (ALeph PHysics Analysis) [40] package has been used, as
an interface that allows an easy access to the reconstructed physical quantities of

the particles: momenta, energies...
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3.2.2 Subdetectors relevant to the analysis

The analysis of radiative muon pair events relies essentially on the excellent ALEPH
tracking system, that allows the kinematic reconstruction of the events. This is the
reason why in the next sections we devote some more time to the actual performance
of the tracking devices: VDET,ITC and TPC. The analysis depends also on the
ability to identify photons in the ECAL calorimeter, and on the ability to identify
muons in the HCAL and p-chambers. So a few more words are necessary for these

subdetectors.

The Vertex Detector

The VDET [41] was the first double sided silicon microstrip detector installed in a
colliding beam experiment. The two concentric layers of silicon microstrips wafers
are located at radii of 6.5 cm and 11.3 cm. Particles passing trough a wafer deposit
ionization energy, which is collected on each side of the wafer. On one side, the wafer
is read out in the z direction, while in the other, it is read out in the orthogonal
r¢ direction. Hits on the two sides are not associated by hardware, but they are

added to tracks during the reconstruction process.

The advantage of the VDET is that it pinpoints a track’s location in space quite
near to the beam pipe. VDET hits are used by extrapolating a track found by the
I[TC and/or TPC to the VDET and then refitting the track more precisely using
VDET hits which are consistent with it. The addition of VDET to the tracking
system improved the momentum resolution to Apr/p3 = 0.6 x 1072 (GeV /c)™! for

muon pairs at 45 GeV.

Using VDET, together with the other tracking detectors, the spatial coordinates
of the origin of a charged track’s helix can be found to within 23 gm in the r¢
view and 28 pm in the rz view measured from dimuon events. This allows tracks
produced by decay of short-lived particles to be separated from those at the primary

interaction point with good efficiency.

The Inner Tracking Chamber

The ITC [42] using axial wires provides up to eight r¢ coordinates for tracking in the

radial region between 16 and 26 cm. It also provides the only tracking information
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Figure 3.5: Cut-away view of the VDET.

for the level-one trigger system. It is able to identify roughly the number and
geometry of tracks, due to its fast response in time (the trigger is avaliable within

2-3 us of a beam crossing) and allows non-interesting events to be quickly rejected.

The ITC is operated with a gas mixture of argon (50%) and ethane (50%) at

atmospheric pressure.

The ITC is composed of 8 layers of sensing wires (operated at a positive poten-
tial in the range 1.8-2.5 kV) running parallel to the beam direction, which detect
the ionization of particles passing close by. By measuring the drift time, the r¢
coordinate can be measured with a precision of about 150 gm. The 2z coordinate is
found by measuring the difference in arrival time of pulses at the two ends of each
sense wire, but with a very poor accuracy of only about 3 cm and it is not used in

the standard tracking.

The drift cells of the ITC are hexagonal, with a central sense wire surrounded
by six field wires held at earth potential. Four of these field wires are shared by
neighboring cells in the same layer (see figure 3.6). The cells in contiguous layers
are offset by half a cell width, which helps to resolve the left-right ambiguity in the
track fitting.
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Figure 3.6: The ITC drift cells.

The Time Projection Chamber

The TPC [43] is the main tracking detector in ALEPH. It was designed to ob-
tain high precision measurements of the track coordinates, to get good momentum

resolution and to measure the dE/dx depositions of charged particles.

The charged particles that pass through the TPC ionize the gas that fills it. The
electrons produced in this ionization are driven by an electric field to the end-plates
where wire chambers are located. These are detected and yields the impact point
(r¢ coordinate). The time needed for the electrons to reach the end-plates gives the
z-coordinate. Due to the presence of a 1.5 T magnetic field parallel to the beam
line, the trajectory of a charged particle inside the TPC is a helix and its projection
onto the end-plate is an arc of a circle. The measurement of the sagitta of this arc
yields the inverse of the curvature radius which is proportional to the modulus of

the component of the momentum perpendicular to the magnetic field.

As shown in figure 3.7, it has a cylindrical structure 4.4 m long. Its volume is
delimited by two coaxial cylinders which hold the end-plates. The inner cylinder
has a radius of 35 cm, the outer one of 180 cm. It was designed with this dimen-
sions in order to reach a 10% resolution in transverse momentum in the worse case

(maximum energy of a single particle at 90 GeV in the LEP-II phase).

The device is divided into two half-detectors by a membrane which is situated
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Figure 3.7: View of the TPC.

in the plane perpendicular to the axis and midway between the end-plates. This
central membrane is held at a negative high voltage (-26 kV) and the end-plates
are at a potential near ground. The curved cylindrical surfaces are covered with
electrodes held at potentials such that the electric field (110 V/cm) in the chamber

volume is uniform and parallel to the cylinder axis.

The TPC volume is filled with a nonflammable gas mixture of argon (91%)
and methane (9%) at atmospheric pressure. This mixture allows to reach high
wt values (w is the cyclotron frequency and 7 is the mean collision time of the
drifting electrons). This causes the electrons to drift mainly along the magnetic
field lines and thereby reduce the systematic displacements due to the electric field

inhomogeneities.

The electrons produced by the ionization are amplified in the proportional wire
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Figure 3.8: View of a TPC end-plate.
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Figure 3.9: View of a TPC wire chamber.
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chambers placed in the end-plates. There are 18 wire chambers (“sectors”) on each
end-plate. In order to get a minimum loss of tracks at boundaries, the sectors are
arranged in a “zig-zag” geometry shown in figure 3.8. In each end-plate, there are
six sectors labelled “K” inside a ring of twelve alternating sectors labelled “M”
and “W?” outside. All sectors are composed of wire chambers and cathode pads.
The wire chambers consist of three layers of wires: gating wires, cathode wires and

sense/field wires. Figure 3.9 shows a perspective of them.

The gatting grid [44] has the purpose of preventing positive ions produced in
the avalanches near the sense wires from entering the main volume of the TPC, and
thereby distorting the electric field. Potentials of V, £ AV, (with V, ~ —67 V) are
placed on alternating wires of the grid. A AV, ~ 40 V is sufficient to block the
passage of the positive ions while a much bigger AV, ~ 150 V is required to block
also the incoming electrons. In the open state, the grid is transparent to the drifting
charged particles. When closed, positive ions are kept off of the drift volume. The
gate is opened 3 us before every beam crossing. If a positive trigger signal arrives,
the gate is kept open for the maximum 45 ps drift time of the electrons in the TPC,

otherwise the gate is closed.

The cathode wires keep the end-plates at null potential and, together with the

central membrane, create the electric drift field.

The sense wires are kept at a positive potential to provide avalanche multi-
plication. They are read out to give the energy deposition (dE/dx) for particle
identification and the z measurements of the tracks. For the estimation of the
dE/dx a truncated mean algorithm is used, taking the mean of the 60% smaller
pulses associated with a track. The estimator will be normally distributed and will
be sensitive to the particle velocity. The achieved resolution is 4.6% for electrons
in hadronic events (slightly better for low multiplicity events). The field wires are

kept at null potential to create equipotential surfaces around the sense wires.

The ionization avalanches created around the sense wires are read out by the

signal induced on cathode pads at a distance of 4 mm from the sense wires.

The Electromagnetic Calorimeter

The ECAL [45] is located around the TPC and inside the coil. It is divided into

a central barrel region closed at both ends with end-caps, as shown in figure 3.11.
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Both barrel and end-caps are divided into modules of 30° in azimuthal angle ¢ with
the end-cap modules rotated 15° with respect to the barrel modules. The entire
calorimeter is rotated a little bit with respect to the HCAL in order to avoid the
overlap of crack regions. The barrel is a 4.8 m long cylinder with an inner radius
of 1.85 m and an outer radius of 2.25 m. Each module consists of 45 layers of
lead and wire chambers. The wire chambers are made of open-sided aluminium
extrusions and filled with a gas mixture of xenon (80%) and carbon dioxide (20%).
Ionization from an electromagnetic shower developed in the lead sheets is amplified
in avalanches around 25 pm diameter gold-plated tungsten wires. The signals are
read out via the extrusions open faces with cathode pads covered by a graphited
mylar sheet. The structure of a typical single layer of the calorimeter is shown in

figure 3.10.

The cathode pads are connected internally to form “towers” which point to the
interaction point. Each tower is read out in three sections in depth (“storeys”).
The size of the pads is approximately 30 x 30 mm? leading to a high granularity
very useful to identify photons.

The achieved energy resolution for electrons and photons is

0.18
78— 0 1 0.009

K JE/GeV

The Hadronic Calorimeter and p-chambers

Surrounding the superconducting coil one finds the main mechanical support of the
ALEPH detector: a large iron structure which returns the magnetic flux of the

magnet and constitutes the passive material of the HCAL [46].

The Hadronic calorimeter is a sampling calorimeter made by iron layers and
streamer tubes, which are the active elements of the calorimeter. The mechanical
structure is very similar to the ECAL one, with a 6.3 m long barrel that extends from
an inner radius of 3 m to an outer radius of 4.68 m (see figure 3.11). It is segmented
in 12 modules, each one with 22 layers of 5 cm iron sheets and 23 streamer tubes
filled with a mixture of argon (21%), carbon dioxide (42%) and isobutane (37%).
The radial length of the barrel corresponds to about 7.2 interaction lengths, which

is enough to contain the hadronic showers at LEP energies.
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Three different kind of signals are read out in the hadronic calorimeter: signals
from the pads situated outside the modules containing the streamer tubes, which
are used to measure the energy of the showers; signals from the strips situated
along the streamer tubes modules, which give the pattern of the streamer tubes in
the event and are used as a “tracking” of the showers and to identify muons (see
section 3.3.2); and the signal from the wires, which measures the energy released in

the planes and is used mainly for triggering.
The energy resolution for pions at normal incidence is given by

0.85
78— 2 1 0.009

L VE/GeV

The digital information on individual strips in the HCAL is already an essential
part of the muon detector. In addition, surrounding the HCAL calorimeter, (both
in the barrel and in the end-caps), two double layers of streamer tubes filled with a
mixture of argon (13%), carbon dioxide (57%) and isobutane (30%) (called, in the

following p-chambers) were installed to identify tracks crossing the full iron and to
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Figure 3.10: View of an ECAL stack layer.
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Figure 3.11: Overall view of the ECAL and HCAL calorimeters.

measure their angles.

Since the layers backing the barrel and the end-caps reproduce the structure of
the hadron calorimeter, additional streamer tubes (called middle-angle chambers)
are needed to cover the gaps left open in the boundary region. Each layer of tubes
has, on one side, strips that are parallel to the wires (a-strips), 4 mm wide with
a 10 mm pitch; on the other side there are strips which, being orthogonal to the
wires (y-strips), are 10 mm wide with a 12 mm pitch to get an appreciable induced

signal. As the muon chambers constitute a tracking device, no pads are provided.
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3.3 Event reconstruction and simulation

In this section we briefly describe the performance of the ALEPH detector recon-
structing the relevant physical parameters in this analysis: track reconstruction,
muon and photon identification. A description of the event simulation process and

its limitations is also given.

3.3.1 Tracking in ALEPH

Tracks are reconstructed starting in the TPC. Nearby hits are linked to form track
segments, and the segments are connected to make tracks by requiring consistency
with a helix hypothesis. These tracks candidates are extrapolated to the inner
detectors where consistent hits are assigned. Coordinate errors are determined using
the preliminary track parameters. The final track fit based on Kalman filter [47]
techniques uses these errors and takes into account multiple scattering between each

measurement.

The track finding efficiency in the TPC has been studied using Monte Carlo
simulation. In hadronic Z events, 98.6% of tracks that cross at least four pad
rows in the TPC are reconstructed successfully; the small inefficiency, due to track
overlaps and cracks, is reproduced to better than 0.1% by the simulation. The
efficiency of associating a vertex detector hit to an isolated track is about 94% per

layer, within the geometrical acceptance.

The performance of the track reconstruction is studied using dimuon events.
Figure 3.12 shows the ratio of the beam energy to the measured momentum. Here
a track is required to have at least 19 TPC hits, at least six ITC hits and at least
one VDET hit in the r¢ plane. The acollinearity angle between the positive and
the negative muon is required to be smaller than 0.2° in order to eliminate radiative
events. These events are also removed by requiring the sum of the energies of all
clusters in the electromagnetic calorimeter which are not associated with the two
muons to be less than 100 MeV. In this way, one obtains the already mentioned

several times transverse momentum resolution of
o(1/pr) = 0.6 x 107%(GeV/c)™! (3.1)

for 45 GeV muons in the angular acceptance | cos < 0.8 |. Table 3.1 summarizes

the measured resolution for TPC only, for TPC and drift chamber, and for all three
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Figure 3.12: The ratio of the beam energy to the track momentum in the tracking system for
muons.

detectors together. At low momentum multiple scattering dominates and adds a

constant term of 0.005 to o(pr)/pr.

Detector  o(1/pr) (GeV/c)™
TPC 1.2 x107°
+ ITC 0.8 x 1072
+ VDET 0.6 x 1072

Table 3.1: Momentum resolution of the tracking system. The successive rows show the effect of
including the detectors indicated in the fit.

The angular resolution of the tracking is really good. For instance the resolution
achieved in the measurement of the polar angle (cos ) of dimuon events is better

than 0.3 x 107 with a negligible impact on the analysis presented here.
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3.3.2 Particle identification: p and ~

Muon identification

Muons are identified by making use of the tracking capabilities of the HCAL, togeth-
er with the muon chambers information. Muon identification in the calorimeter uses
the digital readout (described in section 3.2.2) to check whether particles penetrate
through the whole depth of the calorimeter.

Tracks are extrapolated (as if they were a muon) through the calorimeter mate-
rial taking into account a detailed magnetic field map and estimated energy losses.
A “road” is opened around the extrapolated track, with a width of three times
the estimated extrapolation uncertainty due to multiple scattering. A calorimeter
plane is said to be expected to fire (Nexpected) it the extrapolated track intersects
it within an active region, and the plane is said to have fired (Ngpeq) if a digital
hit lies within the multiple scattering road. For a hit to be counted, the number of

adjacent firing tubes must not be greater than three.

A track is defined to have hit the muon chambers if at least one of the two
double-layers yields a space point whose distance from the extrapolated track is

less than four times the estimated standard deviation from multiple scattering.

The identification is performed by selecting tracks that penetrate through the
whole depth of the hadron calorimeter without showering. The identification ef-
ficiency does not vary significantly with momentum. The cuts used to define a

penetrating track are:

Nre
( _ - fired ) > 0.5 (3:2)
Nexpected allplanes
Nre
(&) > 0.3 (3.3)
Nexpected last10planes

in this way, a track is identified as a muon if it satisfies equations 3.2 and 3.3, or if it
has at least one hit in the muon chambers. Monte Carlo simulation predicts a muon

identification inefficiency below 0.05% inside the angular acceptance | cos 8 |< 0.9.
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Photon identification

The three-dimensional segmentation of the electromagnetic calorimeter allows a
good spatial resolution to be achieved for photons up to the highest energies avali-
able at LEP. The algorithm to identify photons in ALEPH, (GAMPECK [48]), uses
the facts that electromagnetic showers generally start in the first segment in depth
of the electromagnetic calorimeter and that storeys receiving energy from a photon
have a compact arrangement and most of them share a face with another storey

associated to the same photon.

The storeys of the first segment in depth of the electromagnetic calorimeter
are scanned in the order of decreasing energy. A storey without a more energetic
neighbour defines a new cluster. Other storeys are assigned to the cluster of their
highest energy neighbour. To take advantage of the compact nature of electromag-
netic showers and of the projective geometry of the calorimeter two storeys are
considered neighbours only when they share a common face. The same procedure
is then applied to the storeys of the second and third segments in depth but then,
when processing a storey, the algorithm looks first for a neighbour in the previous
segment. The clusters found by the algorithm are retained as candidate photons if
their energy is greater than 0.25 GeV and if there is no charged track impact at a

distance of less than 2 cm from the cluster barycenter.

The position of a photon impact point is computed in two steps. A first ap-
proximation is given by the cluster barycenter i.e. the energy-weighted mean of the
coordinates of each storey centre. This position is corrected for the finite size of
the calorimeter cells using a parameterization of the typical S-shape curve that al-
ways appears when the calorimeter granularity is comparable to the electromagnetic

shower size.

In order to reduce the sensitivity of the energy measurement to hadronic back-
ground and clustering effects, the photon energy is computed from the energy col-
lected in the four central towers of the cluster, and the expected value of the fraction
of energy in the four towers, F;. This fraction is computed from a parameterization
of the shower shape for a single photon in the calorimeter. The computation takes
into account the calorimeter pad area and the distance between the photon impact
and the nearest tower corner, as well as the variation with energy of the expected

Fy. Corrections to the energy are computed for energy losses before and after the
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calorimeter and energy loss in the overlap.

The angular resolution for an isolated cluster is

2.
Op6 = (75 + 0.25) mrad.

\ E/GeV

The use of only a part of the storeys to measure the energy degrades the energy

resolution to

o5 _ 0.25
L VE/GeV

0.18

from the previous quoted & = .
VE/GeV

3.3.3 Monte Carlo simulation

The selection procedure and the resolution of the ALEPH subdetectors modify
the expected distributions. In order to evaluate these effects and the possible back-
ground contamination Monte Carlo simulated events are used. The chain to produce

such kind of events is as follows:

o (Gleneration of the event kinematics. The particle four-momenta are generated
according to the different physics process that could produce similar final

states in the detector, (in parenthesis the names of the computer program
used):

— etem — ptp” (KORALZ 4.0 [49])

— e¢te” = 7777 (KORALZ 4.0)

— etem = ete” (BABAMC [50])

— e¢te” = efe ptu™ (PHOPHO [51])

In ALEPH, all these programs have been unified through the common inter-
face KINGAL [52].

o Simulation of the detector response. This is done using a GEANT [53] based
program (GALEPH [54]) where all the information about the geometry and

materials involved in the experimental setup are simulated. For the tracking
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simulation, the primary long-lived particles are followed through the detector.
Secondary particles are also produced by interaction with the detector ma-
terial. Bremsstrahlung, Compton scattering and ionization are some of the
processes simulated. GEANT and GHEISHA [55] are used to simulate the
electromagnetic and nuclear interactions respectively. The energy depositions

are converted to measurable electrical signals.

e Reconstruction. The same reconstruction program (JULIA) used for the real
data is used in the simulated events. Thus, the output of all the simulation

process has the same format as the real data.

Physics limitations of the simulation

KORALZ 4.0 is a Monte Carlo generator that treats the generation of hard photons
in the initial state to O(a?), and the radiation of soft ISR photons is considered
to all orders in perturbation theory by exponentiation. The program has also the
possibility to exponentiate FSR, and in an approximate way it can generate up to
two hard photons in the final state. Moreover, non-photonic radiative corrections
are taken into account at the one loop level, with resummation of leading top

dependences.

The main physics limitation is that QED initial-final state bremsstrahlung in-
terference in the presence of multiple QED hard bremsstrahlung is not included. In
other words, as long as there is no strong cut on the radiated energy (see figure 2.8)

the simulation is good enough.



Chapter 4

Data analysis

In chapter 2 we have seen how the current measurements taken at the nominal LEP
centre-of-mass energy, are a centre-of-mass average of the “hard scattering” process,
because the ISR energy loses are effectively “scanning” the effective centre-of-mass
energy (v/s'). We have seen that we can define s’ theoretically being the square of
the four-momentum of the intermediate boson as long as the effect of the I-F QED

interference can be neglected, (whis is the case if z > ]1\}—22 ~ 0.03).

In this chapter we consider the problem of determining the effective energy
(\/y) experimentally. The approximations used and a Monte Carlo study of the
performance of the method are discussed in section 4.1. Section 4.2 is devoted to
explain the selection procedure necessary to separate the process we want to study
ete™ — ptp~ (ny) from potencial sources of background. This procedure inevitably
distorts the probability density dxfﬁ(s) introduced in equation 2.17. Section 4.3
deals with the corrections, to remove this distortions while in the last section we

built the final loglikelihood function as a function of the electroweak parameters.

4.1 Determination of the effective centre-of-mass
energy

The first idea that one could think of would be to compute the effective centre-
of-mass energy from the invariant mass of the detected particles in the final state
(T~ (7). This is the simplest approach experimentally, but the resolution is not

so good. For instance, if we only consider the invariant mass of the muon system
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(i.e. neglecting FSR), and we neglect the experimental error in the determination
of the polar angles, the total energy resolution is completely determined by the
resolution on the transverse component of the momentum. In this case, if we quote

the total energy F, in GeV, we have:

s = 2B+ F,~(1 —cosf,4+,-)
As’

/

= 0.6 %107 (GeV) ™" /E2, sin? 0+ + B2_sin® 0,

S

which is a good approximation of the ALEPH tracking system resolution in the

angular acceptance | cos |< 0.8, as we have shown in section 3.3.1. This gives

a precision of approximately Asf/ ~ Az ~ 0.03 — 0.04, which is of the same order
as the “optimal” size of the binning needed to be as insensitive as possible to I-F
QED interference effects. Moreover, if we don’t neglect FSR, the resolution will

be much worse because we need to introduce the resolution of the Electromagnetic

calorimeter (ECAL).

On the other hand, if we consider that the predominant effect of the initial-state
photon radiation is to boost the centre-of-mass system, (i.e. the photons are emitted
along the direction of the beams), we can compute the radiated energy, EWISR, from
the measured directions of the final state particles, which are determined with very
good precision as has been described in section 3.3.1. In this approximation, all

photons detected in ECAL are presumed to be radiated in the Final State.

The radiated energy can be calculated in terms of the boost , 3 = %, that relates
the LAB system and the C'M system through:

BT = %\/E (4.1)

where /s is the nominal centre-of-mass energy. Moreover, if we neglect the possi-

bility to radiate two or more photons in opposite directions, we find:

o o 1SR
s = s(1— \}g )
2[5
x m (4.2)

so that the desired variable x is related in a simple manner with the boost of
the LAB system. The explicit demonstration of these formulae can be found in

appendix B.
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In the case where there is no signal in ECAL, we can assume that there is no
relevant Final State Radiation, and we can impose the condition that the two muon
candidates have to be back-to-back in the C'M system. If we call 65 the relative
angle between both muons measured in the LAB system, and 6}, the relative angle
in the C'M system, we can derive from the Lorentz invariance of the scalar product

the relation:

(PP = (PP

(1= 5%)(1 = cos )
(1 + Bcosb;)(1 + Bcosb;) (4.3)

r_
COS(gij = 1-

With the constraint #], = m, this equation can be solved analytically and gives as

a result:

g = Lonlbitl)] (4.4)

sin 8y + sin 6,

8

w— %, =0.5rad

n =3, =0.2 rad

7w —1,=0.1rad

S ™ — ¥, = 0.05 rad

_2 n — ¥, = 0.02 rad
lO i 12
r w =%, =0.01rad

| P
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
cost,

Figure 4.1: | 8| as a function of the acollinearity () defined as n = © — 15 and cos 0y, in the
absence of Final State Radiation.
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This is shown in figure 4.1, where one can see how the magnitude of the boost
(or the radiated energy) depends not only on the acollinearity of the two particles,

but it also depends on their angular distribution.

In the most general case, there will be FSR. If we consider also the possibility
to have one radiated photon in the final state, the three particles (¢t~ vyrsr) will
be contained in a plane in the C'M system. So, from the relative angles measured
in the LAB system ( see fig. 4.2 ), 6;;, and the event orientation, §;, we compute 3
such that the angles in the C'M system, 0;. satisfy the condition:

‘9/12 + ‘9/23 + ‘%1 = 27 (4-5)

LAB system C' M system

Figure 4.2: Definition of the angles used to compute 8. The measured angles in the LAB system
(6i;), are used to determine the magnitude of the boost along the beam direction, that satisfies
that the transformed angles (0;;) are contained in a plane.
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Vs = 91.2 GeV.
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Figure 4.3: MonteCarlo study of the performance of the s’ = s(1 — z) reconstruction at /s ~
91.2 GeV. The size of the squares is proportional to the logarithm of the number of events.

Note that (¢ is found from the measured directions of the particles, and we are
not limited by the energy resolution in ECAL, or by the momentum resolution of
the ALEPH tracking system. Actually, the resolution on z is very good and, as can
be observed in fig. 4.3, the RMS of the differences between the reconstructed (x,..)
and the generated (x,.,) radiated energy is around Az ~ 0.01 ( to be compared
with a binning size of Az ~ 0.04). The selection procedure that has been applied

to determine x,.. is explained in the next section.

One can see in this figure two bands at x,.. = 0 and at ., = 0. The horizontal
band (z,e. = 0) is mainly due to the approximations used to define & experimentally,
i.e. only one hard collinear photon in the initial state. The vertical band (2., = 0)

is mainly due to events that have radiated in the final state, but the photon has
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not been reconstructed properly in ECAL.

For three particles lying in a plane, their energies can be expressed in terms of

their total energy and the angles between them (see for instance [56] or appendix B).

In particular the energy of the final state photon, EfSR/ can be calculated in this

b
way from the computed § and the nominal centre-of-mass energy /s, through:
sin 0/,

FSR' __
EFSE = /s (4.6)

sin 85 + sin 05 + sin 6%,

where, as usual, the primed quantities refer to the C'M system, while EfSR is
computed from equation 4.6 and the Lorentz equations that relates both reference
systems. This usually results in a smaller uncertainty that the expected 25%vE
which is obtained from the ECAL energy resolution, and therefore can be used to

cross-check the consistency of the calculation on an event-by-event basis.

4.2 Event selection

In order to study the effect of the experimental cuts, we have generated and recon-
structed around 10° MC events at different energies with KORALZ 4.0 (KORL07).
This Monte Carlo program [49] treats the generation of hard photons in the initial
state to O(a?), and the radiation of soft ISR photons is considered in all orders by
exponentiation. The program also has the possibility to exponentiate Final State
Radiation, and in an approximate way generates up to two hard photons (param-
eter KEYRAD set to 12). However, we have generated FSR computing only to
O(a), (parameter KEYRAD set to 112), and therefore allowing only the possibility
to have up to one photon coming from FSR. This is a technical detail that simpli-
fies the computation of z4.,, and allows the comparison with most of the official
ALEPH MC that was generated using this conditions. In any case, the formalism
developed in the previous section is only valid when we assume that the maximum
number of photons in the Final State is one, and therefore the possibility to have
more than one hard photon in the Final State will be suppressed in the data with
appropriate cuts. Moreover, even from a pure theoretical point of view, there are
good reasons to eliminate such events, because when there are two hard photons
in the FS and there is one hard photon in the IS, one needs to know the theory at
least to O(ca?).
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The effect of [-F QED interference is neglected in KORALZ when one considers
corrections higher than O(«), allowing the straightforward definition of @, =

1— /s, where s/ is the generated invariant mass of the p*p~(yrs) system.

gen en

An appropriate value for the limit between the soft and hard photon emission,
xg, has been carefully choosen. The program only generates the full kinematics
of the event for values of ©+ > xg and we have chosen xo = 0.001, which is far
enough from the experimental resolution in this variable, and not the default value

xo = 0.01.

Table 4.1 shows the total statistics generated for each energy point, and also the
official ALEPH MC statistics used to study possible sources of background.

‘ Energy (GeV) ‘ Process ‘ Number of evts. ‘ Generator ‘
91.200 (PEAK)
91.250 (PEAK) ete” — ptp~ 600000 KORLO7
91.270 (PEAK)
90.200 (P-1)
92.000 (P+1) ete” — ptp~ 100000 KORLO7
89.450 (P-2)
93.000 (P+2) ete™ = utp” 160000 KORLO7
88.450 (P-3)
93.700 (P+3) ete™ = utp” 85000 KORLO7
130.0 (HE)
136.0 (HE) ete” — ptp~ 20000 KORLO7
91.250 (PEAK) ete” — 7tr~ 100000 KORLO06
91.200 (PEAK) ete™ — ete™ 100000 BHABO1
91.250 (PEAK) | ete™ — (ete )utu~ 20000 PHOTO1

Table 4.1: MonteCarlo statistics used for several energies and processes.

In order to separate the signal process from potential sources of background, we
have optimized a selection procedure. An event is accepted if the relevant detectors
for the analysis were operative (XLUMOK criteria [40]), and it fulfills the following

requirements:

o Two charged tracks with at least 4 TPC pad row hits.
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The two charged particles are contained in the angular acceptance of the TPC,

(| cos; |< 0.90).

Both tracks are originated in a cylinder of radius D0 = 0.2 ¢cm and length

| Z0 |< 3 ¢cm around the interaction point.

The tracks have opposite electric charge, (¢l + ¢2 = 0).

The sum of the momenta of both charged particles does not exceed 150% of
the nominal LEP centre-of-mass energy, (pl 4+ p2 < 1.5 x /s).

o There is at least 1 I'TC hit within both tracks.

Muon candidates are selected using the HCAL digital readout and the muon
chambers information, as explained in section 3.3.2. An event is selected if at least

one of the two tracks satisfies the requirements to be identified as a muon.

Figure 4.4 shows the Monte Carlo predictions for the distribution of the mo-
mentum of the most energetic track, (normalized to the nominal centre-of-mass
energy), for events that have been selected. One can see that there is a consider-
able background from tau and two-photon processes, due to the fact that we have
not applied any cut on the momentum or acollinearity of the two tracks selected.
Nevertheless, if we require the momentum of the most energetic track (pl) to be
greater than 35 GeV there is essentially no loss in the signal, while the two-photon

background is eliminated. Therefore, we require

o pl >35x XL

91.2?

Moreover, as we have already mentioned, the formalism developed in section 4.1
is only valid when there is only one photon in the Final State. In order to be
consistent, we require to have a maximum of one identified photon in ECAL with
an energy larger than 0.3 GeV, with the criteria described in section 3.3.2.

Now, we can compute = for each selected event as described in section 4.1.

EfSR using the Lorentz transformation of equation 4.6,

This allows to compute
and compare with the measured energy in the ECAL. In fig. 4.5 one can see how
the MC is able to reproduce the measured energy in ECAL, (although it seems
not to reproduce so well the possibility to emit high energy photons), and also the

performance of the calculation of EfSR compared with the energy reconstructed in
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Vs = 91.2 GeV.

- 1 p'w M
- cut TT M
3 = e'e” MC
B vy M
103
1021
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15
: T \‘\\\\‘\\ ‘\\ ‘\\\\
0 01 0.2 03 04 05 06 07 08 09 1
(pl/91. 2)

Figure 4.4: Momentum of the most energetic track normalized to the nominal centre-of-mass
energy, that have survived the acceptance and digital selection.

ECAL from Monte Carlo simulation. We require these quantities to be consistent

at the level of four times the energy resolution in ECAL,
o (EfSR - ECAL) < 4o

In this way, most of the photons detected in ECAL, (and therefore at a polar angle

larger than 26°) that were coming from ISR are removed from the data sample.

After the cut on particle momentum is applied, the only non-negligible back-
ground is tau events, with at least one of them decaying into a muon. This is

a potentially dangerous background, because it can be confused with a radiative
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Figure 4.5: The upper figure compares the measured energy in ECAL for the photon candidate
with MC simulation. The lower figure compares the computed energy of the FSR photon using
the angular information and the actual energy measured in ECAL. The size of the squares is
proportional to the logarithm of the number of events.

dimuon event, and can modify drastically the energy dependence we want to deter-
mine. However, it can be eliminated taking profit of the missing energy in the tau
decay carried by the neutrinos. We require that the total energy left after radia-
tion, (/s — EWISR), has to be consistent at the level of four times the total energy
resolution in the ALEPH detector.
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o (V3= EI) - (p +p,- + ECAL) < o

As can be seen in table 4.2, the remaining background after all the cuts have
been applied is completely negligible, and dominated by missidentified Bhabhas
(0.09%), while the total selection efficiency is 0.80337 + 0.00051 at the 7 peak.

Vs =91.2 GeV ete” = utu™ | efe” =777 | efe” = efe™ | ete” = (eTe )utp™
total 600000 100000 100000 20000
Accept. cuts 495883 42476 47682 5119

pl cut 495411 5417 45735 1

Dig. Sel. cuts 495374 2366 62 1

N, <2 in ECAL 494373 1707 62 1

(EfSR — FECAL) cut 489863 1673 57 1

(\/s — EPT cut 132021 6 33 1
Efficiency (€) 80.337% 0.006% 0.03% 0.005%
Purity 99.89% 0.01% 0.09% 0.01%

Table 4.2: Breakdown of the effect of the selection cuts on the signal and on possible sources of
background.

This selection procedure has been applied both to real data and Monte Carlo
simulation for the different LEP nominal centre-of-mass energies that appear in
table 4.1. The resulting efficiencies obtained from the MC simulation are shown in

table 4.3.

The efficiency for the HE run at 130-136 GeV is much lower due to the inclusion
of new cuts to deal with the new experimental conditions at these energies [58]. The
invariant mass of the muon system is required to be greater than 80 GeV in order
to reduce the substantial background from v+ processes. Moreover, there is a high
“radiative return” to the Z peak that produces an increase on the number of events
with ISR photons emitted at large angles and, therefore, visible in the detector.
Some of them are not removed by the consistency check between the computed
photon energy with Eq. 4.6 and the measured one. Therefore, the invariant mass
of the muon system is required to be greater than 110 GeV in events where the

reconstructed z,.. 1s below 0.25.
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Energy (GeV) ‘ Efficiency ‘

91.2 (PEAK) |80.337 £0.051%
90.2 (P—1) 80.81 & 0.18%
92.0 (P+1) 79.93 £ 0.18%
89.4 (P—2) 80.59 £ 0.13%
93.0 (P+2) 79.38 £ 0.17%
88.4 (P—3) 80.17 £ 0.18%
93.7 (P+3) 79.04 £ 0.22%
130.0 (HE) 55.71 £ 0.53%
136.0 (HE) 54.96 + 0.53%

Table 4.3: Computed efficiency from Monte Carlo simulation at the different LEP nominal
centre-of-mass energies.

4.3 Correction functions (cp(p)(s,z))

So far we have defined the experimental procedure that allows to obtain for each
dimuon event = and cos#, with high efficiency and negligible background, where

cos # is the scattering angle in the C'M system, computed from Equation 2.18.

The probability to obtain a specific value for these two variables, is given by the

two-dimensional density function in equation 2.17, (dl,fm( ))s

However, the selection cuts distort the probability density and we need to con-
sider in addition the efficiency as a function of  and cos # at each nominal centre-

of-mass energy, €(s,x, cosf).

In the next section we will explain why, we will use the probability density as a
function of cos 8, but we will integrate it in the forward and backward hemispheres.
In other words, the forward-backward asymmetry is computed counting the number
of events in the forward and backward hemispheres, instead of using the angular
distribution. In this way we only need to know, as a function of the radiated energy,

the efficiency to find an event in each hemisphere

1(0)
crBy(s,r) = /(J(_l)c(s,x,cosé)dcose

where e denotes the efficiency in the FORWARD hemisphere and eg in the BACK-
WARD hemisphere.
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These correction functions are computed using the generated Monte Carlo events
in table 4.1. The distribution in z is binned in intervals of Az = 0.04, which is

four times the experimental resolution, and satisfies the criteria (Az > F—Z), and

Mg
in intervals of Az = 0.08 when (0.16 < = < 0.64) due to the small number of
events there. The analysis is restricted up to xmax. = 0.64 which corresponds to

an effective centre-of-mass energy of 55 GeV, at /s = 91.2 GeV. This lower limit

spans the energy region not covered by present accelerators.

The computed efficiencies at the different LEP nominal energies (6%(B)(S)) to
find and event in the interval z; < = < x;4; are shown explicitly in Appendix C,

and some of them are plotted in figure 4.6, where

Z B i 2 Trm)(s) L7
6F(B)(S) = Z GF(B)(S)M (s) (4.7)
j=1,nbin F(B)
with
7 Nsel(S Zi S Trec < Lit1, COS erec Z (<)0)
i — ’ ’ 4.8
GF(B)(S) Ngen(saxj S xgen < J/']‘_|_1,COS 09571 Z (<)0) ( )
and

Q>
/E&
=
&

Il

[ dwti(s,)ow (s 0)

where the radiator function H(s,z) and the total cross section &(s" = s(1 — x))

have been introduced in chapter 2.

The efficiency of the selection is not independent of x, and in fact its dependence
is far from being trivial. This is due to the cut on the angular acceptance (cos§ <

0.9), and the cuts on the reconstructed photon in the detector.

The different shape in both hemispheres can be explained as a kinematic effect,
due to the fact that events are produced asymmetrically, (AFB # 0 when x # 0),
and therefore the acceptance cut is less effective in one hemisphere or the other
depending on the sign of the asymmetry. Moreover, events produced at low angles
that would have been accepted in the C'M system, can be lost due to the effect of

the boost, because one of the two tracks lies outside the acceptance.

There is a common characteristic in the qualitative behaviour at the different
nominal centre-of-mass energies, that is a sizable drop in the efficiency after the

first bin. This can be traced back to the cuts on the number of photons detected
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Figure 4.6: erp g(z) at different nominal centre-of-mass energies.

and the cuts on the consistency of the computed energy radiated with the radiative
dimuon hypothesis. It is clear that when = ~ 0, the effect of these cuts on the
radiated photon is much lower, essentially because there are no photons detected

in most of these events.

The relative change of ¢p(p) from bin to bin computed from the numbers in
table C.1, will be used in the next section to correct the probability density of
equation 2.17.
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4.4 The loglikelihood function

As we have explained in section 2.17, the process ete™ — putp™ in a wide range
of energies can be parameterized in the S-matrix language as a function of six

parameters,

MZ7 FZv TZOtvjfLOtv ribvjib
In principle, we could use directly formula 2.17 corrected for the experimental
efficiency to built a loglikelihood function and extract the S-matrix parameters from

the measured cos f# and = in an event-by-event basis.

However, as we have explained in section 2.1.1, the probability density of e-
quation 2.17 is well defined only when | Afb |< 3/4. This implies that when one
tries to extract the forward-backward asymmetry from a loglikelihood fit using e-
quation 2.17, one is “condemned” to get a value lower than this limit, because the
probability to have a higher value is strictly zero if there are events found in all the

angular range.

In fact, there are two regions in energy, (1/s ~ 80 GeV and /s ~ 113 GeV),
where the SM predictions for the forward-backward asymmetry is very close ! to
| Afb |~ 3/4. This implies that the parameter-space of the S-matrix parameters is
heavily reduced at these energies, and they will be strongly correlated. To be more

precise, if we consider that rfft

and rib are determined by the measurements taken
at * ~ 0, the forward-backward asymmetry at an effective centre-of-mass energy

around 80 GeV will be given by,

3 (80 GeV)? — My)Jn,

Ap((80 GeV)? 2
l P T 0 (0 Gev By

with a “constant” contribution from the Z° and ~ interchange to the total cross-
section at the level of C ~ (39.5 GeV)2. In this case the ratio between brackets is
very close to one, and we can write for a small variation in the forward-backward

asymmetry

A 3
AAg ~ m(AwaAJm)

Y Afb | is slightly lower than 3/4 due to the inclusion of non-photonic radiative corrections.
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It is clear from the above expression that Jy, and Ji, are not independent from
each other due to the limit | A, |< 3/4. In this way any fluctuation in J;, upwards
will necessary be compensated by a fluctuation downwards, and in fact, they are

almost 100% anticorrelated.

Strictly speaking, this is not a problem. The correlation is what it is, and it just
complicates the interpretation of the extracted electroweak parameters. However,
there is an alternative way in which these correlations are removed. The limit on
| Afb | is a consequence of the angular distribution imposed, but it is not present if
we come back to the “original” definition of the forward-backward asymmetry,

. 6f—06, Np— Np
- 6;+6,  Np+ Np

Afb =

computed from the difference in the number of events in the forward and backward
hemispheres. This also has the advantage of simplifying the corrections due to
the experimental cuts, and the loss of sensitivity in the electroweak parameters is

negligible small.

In this case, the probability density for an event being in the interval z; < x <

x;41 will be given by:

P%(x;,cos0>0,s) = %6%(8)(5’%8) + &}b(s))
PO(ei, cosf < 0,s) = %eg(s)(&i(s) _5t(s) (4.9)

and

/I“rl deH(s,2)6(s,x)

B

5(s)
P = [ deli(sa)ae)

where the radiator functions H(s,z) and [:[(3,:1;), the total cross section &(s’ =
s(1 —a)) and 64(s" = s(1 — x)) have been introduced in chapter 2, whereas the

correction functions 6}?(3)(3) have been introduced in the previous section.

With this definition, the forward-backward asymmetry is just bounded to be
| Afb |< 1, and the probability density in equation 4.9 is well defined in a wide

region of the parameter space.

On the other hand, as we have discussed in section 2.1.2, the effect of the I-

F QED interference on & is completely negligible for a convenient minimum size
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of the binning as the one we have choose (Ax ~ 0.04). But even with this bin
size, the effect on &y, cannot be completely neglected, and we should not forget
that this effect is not present in the Monte Carlo simulation, and therefore the
correction functions 6%(3)(3) are not correcting the theoretical probability density
for this effect.

In order to take the I-F QED interference into account, equation 4.9 is modified
with

Gppls) = Gp(s) + Opp(s)

where d%5(s) is the contribution of the I-F QED interference to the antisymmetric
cross section, in the angular acceptance | cosf |< 0.9 and in the interval z; < 2 <
xiy1. This is computed from an analytical calculation up to O(«), integrating the
expression for the interference (6(o; — o)) in cos § up to the limit in the angular
acceptance (| cosf |< 0.9) and = between the corresponding limits (z; and x;41).
These corrections are essentially independent of the electroweak parameters we want
to measure, except from the Z° width. But as we will show later, I' is constrained
by the hadronic lineshape with high precision, so that the uncertainty in %5 is

negligible.

We have cross-checked the computed effect §%.5 by generating and reconstruct-
ing 3 x 10° MC events with KORALZ 4.0 [49], using the complete calculation to
O(«) that includes I-F QED interference, (parameter KEYRAD set to 1). In this
conditions, the one dimensional probability density %(3) is not well reproduced,
due to the importance of higher order corrections, but the effect of including or not
the I-F QED interference is confirmed to be negligible for & and compatible with
the analytic calculation for 655, at least for the first bins where there is enough
statistics to do these checks and where the corrections are non-negligible. These
corrections have been computed for each of the nominal LEP centre-of-mass ener-
gies, and as an example of their size, table 4.4 shows the SM predictions for &j}b

(corresponding to the central values quoted in table 2.1), and the computed &5 at

Vs ~91.2 GeV for the first four bins in x.

In addition, since we are going to extract the electroweak parameters on an
event-by-event basis, we need to know the nominal centre-of-mass energy of each
individual collision. We have already mentioned in section 3.1.1 that there is a

sizable beam energy spread between the individual electron and positron collisions
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T S < Tigy G Srp 0y (MC)

0.00 <z < 0.04 | 0.00606 | +0.00352 | +0.0048 £ 0.0031
0.04 <2 <0.08 | -0.00271 | 40.00012 | —0.00047 £ 0.00027
0.08 <z <0.12 | -0.00104 | +0.00002 | +0.00001 £ 0.00001
0.12 <2 < 0.16 | -0.00057 | 4-0.00001 | +0.00001 £ 0.00001

Table 4.4: 1-F QED interference corrections to the antisymmetric cross-section at /s ~
91.2 GeV, when | cosf |< 0.9 and #; < # < @;41. The last column shows the results obtained
from the 3 x 10° MC events.

of about 55 MeV (depending on the year of data taking). This effect is taken into

account by convolving equation 4.9 with a gaussian probability density

[o'e) _ _ 12
P(x;,cos60 > (<)0,5) = / ds" P°(x;, cos 0 > (<)0,s") exp{ (\/_2 2\/8_) }
- Tps
where o5 is the centre-of-mass beam energy spread that is different from year

to year. In practice, the numerical integration is only performed in the interval

[—60‘55, —|—6Ubs].

The probability to find in the data sample an event with nominal centre-of-mass
energy ./s; is proportional to the integrated luminosity taken at this energy, L.
The final probability density to find an event with: centre-of-mass energy /s,

effective centre-of-mass energy /s; = 1/s;(1 — ;) and polar angle cos §; is given by
the product

L;- P(x;,cosb;,s))

In this way, we can find those S-matrix parameters that maximize the normalized
product of probabilities, (equivalently the normalized sum of the logarithms of the
probabilities), or introducing a negative sign those that minimize the loglikelihood

function

> > In(L;P(wi,cos0;,s;)) (4.10)

Normal TN, =1 N

where N, is the number of energy points to analyze, N, is the number of selected
events at each energy point, and “Normal.” is the sum of the probabilities for all
the possible values of | /57, x; and cos ;. The factor two is introduced in order to

have the same definition of errors as if we were using a y* minimization.
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Total normalization constraint (x?)

Note that in this process the S-matrix parameters are extracted from the “shape”
of the loglikelihood function we have just introduced. This is the reason why we
don’t need to know the total efficiency of the selection, and we are only concern
with the relative changes as a function of the three quantities that enter in the

loglikelihood function, namely: /s, x and cos 6.

In this way, one can introduce a constraint computed from the total cross section

measurements [58] and [59] in ALEPH (o),

J

exr 2
a (Z]‘:LNP 'Cj(aj F— U;L‘h))
Xl - AQ

(4.11)

th
g

as a function of the S-matrix parameters. The error in the denominator, A?, is

where is the total cross-section, (convolved with ISR), for each energy point

computed from the errors on the total cross-section (05" £ Ao?*’ £ AU;ySt), and
the luminosity measurements (£; £ ALY & A,C;wt), with

A* = 3 T (LA0) 4 (05PAL) + (o AL

J=1,Np k=1,Np
exp _exp th _th
,Ojko']‘ 0 A,C]A,Ck + ,Ojko']‘ g A,C]A,Ck +
) syst syst
L;LyAc” Aoy,

where AU;ySt are considered to be 100% correlated between different energy points,

and pjj is the luminosity correlation matrix shown in table 4.5.

90 data 91 data 92 data 92 (SI) 93 data 94 data 95 data 95 (HE)
90 data 1.000 0.376 0.376 0.202 0.247 0.000 0.000 0.000
9] data 1.000 0.629 0.269 0.331 0.000 0.000 0.000
92 data 1.000 0.269 0.331 0.000 0.000 0.000
92 (SI) 1.000 0.685 0.630 0.667 0.000
93 data 1.000 0.764 0.810 0.000
94 data 1.000 0.837 0.000
95 data 1.000 0.000
95 (HE) 1.000

Table 4.5: Luminosity correlation matrix between different years of data taking. 92(SI) corre-
sponds to the data taken in 1992 after the installation of the SICAL luminosity detector.
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p

The experimental measurements of 0;"” and the integrated luminosity at each

energy point £; are shown in table 4.6 from references [58] and [59].

This constraint determines rfft with high precision, and therefore this parameter

is essentially uncorrelated with the others.
Hadronic lineshape constraint (y3)

The 7 mass and the 7 width are determined with high precision from the
ALEPH hadronic lineshape in reference [57], and therefore it does not make too
much sense extracting these two parameters from the muon lineshape. So that,
the ALEPH measurements of Mz and I'z in the S-matrix formalism, (M;" =
91.1978 £ 0.0074 GeV and I';” = 2.4928 4+ 0.0049 GeV) are used as a second con-

straint with

2 (M7 —Mz")? (7 —157)?
= 4.12
X2 (AMy)? (AT (4.12)

In this way, the final function to be minimized is:

—

S > In(L;P(x,cos0;,5;)) | + X7+ x> (4.13)

Normal JETN i1 Vo
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‘ Vs (GeV) ‘ LE+AL (nb™) ‘ o (nb) + stat. + syst. ‘ Nevt ‘
88.223 480.2 £ 2.7 0.248 + 0.025 £+ 0.0012 94
89.217 520.4 £+ 3.0 0.503 £ 0.034 £ 0.0025 190
90.217 444.0 £ 2.5 0.908 £ 0.049 £ 0.0045 302
90 data 91.215 3632 £+ 21 1.429 £ 0.022 £ 0.0071 3950
92.207 553.9 £ 3.2 1.006 £ 0.047 £ 0.0050 426
93.209 594.2 £ 3.4 0.638 £ 0.036 £+ 0.0032 282
94.202 641.7 £ 3.7 0.437 £ 0.029 £ 0.0022 208
88.464 670.6 £ 2.9 0.262 + 0.022 £+ 0.0013 137
89.455 798.4 £ 3.4 0.542 4+ 0.029 + 0.0027 335
90.212 748.2 £ 3.2 0.926 £+ 0.039 £ 0.0046 526
91 data 91.207 2939 £+ 13 1.540 £ 0.025 £ 0.0077 3659
91.238 4608 + 20 1.479 £ 0.020 £ 0.0074 5458
91.952 693.8 + 3.0 1.212 4+ 0.047 4+ 0.0061 662
92.952 679.6 + 2.9 0.665 £+ 0.035 £ 0.0033 342
93.701 764.6 £ 3.3 0.517 4+ 0.029 4+ 0.0026 295
92 data 91.270 8749 + 19 1.484 4+ 0.016 4+ 0.0074 | 10192
91.276 13684 + 59 1.499 + 0.012 £ 0.0075 | 14390
89.430 8065 + 15 0.484 + 0.009 + 0.0011 3055
93 data 91.184 9131 £ 17 1.480 £ 0.015 £ 0.0033 | 10718
91.284 5331.9 £ 9.7 1.471 £ 0.019 £ 0.0033 6176
93.012 8693 + 16 0.674 4+ 0.0099+ 0.0015 | 4539
94 data 91.194 42704 £ 75 1.47924+ 0.00684 0.0035 | 50077
89.438 8295 + 16 0.491 £ 0.0086+ 0.0011 3178
91.280 4961.3 £+ 9.3 1.465 4+ 0.019 4+ 0.0033 5750
95 data 92.970 9355 £ 17 0.7132+ 0.0096+ 0.0015 | 5174
130.24 2877 + 23 0.02294 0.00344 0.0004 35
136.21 2863 £+ 23 0.02064 0.00324 0.0003 28

Table 4.6: Inclusive cross-section and luminosities used in the evaluation of the normalization

constraint,y7. The total number of events selected are shown in the last column.



Chapter 5

Results and systematic studies

In the previous chapter we have described the experimental procedure to determine
the effective centre-of-mass energy, (v/s' = y/s(1 — )), in an event-by-event basis.
We have also built a loglikelihood function based on the probability that one selected
event has a particular value for s,z and cos § as a function of the S-matrix parameters

introduced in chapter 2, (Mz, I'z, v}/, ji*", rib, ]ib)

In section 5.1 we present the specific results of this analysis in terms of the S-
matrix electroweak parameters, and a specific study of the systematic uncertainties

in the extraction of these parameters is shown in section 5.2.

As we have mentioned before, the SM predicts a cancellation of some helicity
amplitudes at v/s' ~ 80 GeV and v/s' ~ 113 GeV. This means that in these energy
regions we have minimal “background” from the SM for the search of new physics

effects. A specific study in terms of helicity cross sections is presented in section 5.3.

Finally, once we have confirmed the agreement of the observed energy depen-
dence with the SM predictions, we can extract restrictions on new theories that
would predict the existence of extra 7Z bosons. The last section is devoted to show

these limits for a specific set of theoretical models.

5.1 Extraction of the S-matrix parameters

The data sample used was recorded in the years 1990 to 1995 at nominal centre-of-

mass energies from 88.2 GeV up to 136.2 GeV, and corresponds to a total integrated
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luminosity of 143.5 pb™*. A total of 130,178 events pass the selection cuts. Table 4.6

shows the number of muon pair candidates selected at each energy point.

Equation 4.13 is minimized with respect the S-matrix parameters and the results

are shown in table 5.1.

‘ ‘ SM predictions ‘ Fit results ‘ Correlation matrix
et 0.14298 0.14186 + 0.00080 { 1.00 0.04  0.04  0.11
e 0.004 —0.033 £+ 0.022 1.00 —0.04 —0.34
rﬁb 0.00278 0.00273 £ 0.00054 1.00 0.13
jib 0.800 0.807 £+ 0.026 1.00

Table 5.1: Results obtained for the electroweak parameters from a maximum log-likelihood fit
to the events selected. The SM predictions are computed with Mz = 91.1863 GeV, a=}(M2) =
128.896, M;op = 175 GeV and My = 150 GeV.

The results are in good agreement with the SM predictions, and the statistical
precision of the measured 51 and ]ib has improved by a factor % from the previous
measurement in ALEPH [57] using the same data (j;°' = —0.011 £ 0.033, ]ib =

0.823 £ 0.038), equivalently to have effectively doubled the statistics.

In particular, the “apparent” problem that was observed in the past in ALEPH
with the energy dependence of the leptonic forward-backward asymmetries [60],
where ]ib was higher than the SM predictions by more than two gaussian sigmas
with the data recorded up to 1993, (or almost four gaussian sigmas when combining
the three leptonic species), seems to be compensated with the addition of 1995 data

and the new information added by our method.

For instance, almost 50% of all the data taken at LEP was accumulated in 1994
at a single centre-of-mass energy /s = 91.194 GeV, so that there was no information
in this data for the parameters that describe the energy dependence: j/?* and ]ib
In table 5.2 one can see the results obtained for the S-matrix parameters when
only 1994 data is used, and when the rest of the data is added in successive steps.
Although it seems that the data taken before 1994 prefers a higher value for jib,
the different measurements are statistically compatible with a y* = 5.4 for the
combination of seven periods of data taking, and therefore one can conclude that

we were victims of a statistical fluctuation.

One can compare directly the number of events observed in each bin of energy,
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| r | i iy | g
94 data 0.14185 4+ 0.00100 | -0.037 £+ 0.052 | 0.00227 £ 0.00088 | 0.753 + 0.074
93 — 94 data 0.14132 4+ 0.00097 | -0.065 £+ 0.033 | 0.00321 £ 0.00073 | 0.820 £ 0.042
92 — 94 data 0.14160 £ 0.00086 | -0.075 £+ 0.030 | 0.00313 £ 0.00063 | 0.821 + 0.037
91 — 94 data 0.14176 4+ 0.00083 | -0.075 £ 0.029 | 0.00281 £ 0.00059 | 0.830 £ 0.036
90 — 94 data 0.14166 £+ 0.00083 | -0.073 £ 0.027 | 0.00277 £ 0.00058 | 0.839 + 0.034
90 — 95 data 0.14188 £ 0.00080 | -0.036 £ 0.023 | 0.00272 £ 0.00055 | 0.808 £ 0.028
90 — 95 (+HE) | 0.14186 + 0.00080 | -0.033 + 0.022 | 0.00273 £ 0.00054 | 0.807 + 0.026

Table 5.2: Results obtained for the electroweak parameters for different samples of data as a
function of the running period.

with the predictions of the fit results. The results of this direct comparison are
shown in table 5.3 where we have accumulated events coming from different nominal

centre-of-mass energies in single bins of /s’

| Vs GeV [ (V) GeV | Ng* | NI* | Pull| Ng* [ NLT [ Pull|
55 — 65 63.13 11 ] 105 [+01] 17 [ 199 [-0.5
65 — 75 72.18 22 | 169 | +1.1| 37 | 399 |-05
75 — 80 78.29 17 | 123 | 412| 35 | 38.0 |-0.5
80 — 84 82.50 26 | 232 |406| T4 | 769 |-03
84 — 86 85.20 70 | 649 | 4+0.6| 169 | 168.1 | +0.1
86. — 87.8 87.49 160 | 1532 | 405 | 306 | 297.5 | +0.5
87.8 — 88.6 | 88.37 89 | 89.0 | 0.0 145 | 143.9 | +0.1
88.6 —89.6 |  89.42 | 3336 | 3399.4 | —1.1 | 4683 | 4562.9 | +1.8
89.6 — 90.3 | 90.21 376 | 378.7 | —0.1| 459 | 438.4 | +1.0
90.3 — 91.3 | 91.22 | 55258 | 54873.5 | +1.6 | 53974 | 53778.6 | +0.8
91.3 = 92.3 | 92.05 619 | 609.8 | +0.4| 511 | 536.8 | 1.1
92.3 —93.3 | 9299 | 5268 | 5216.3 | +0.7 | 4036 | 3985.3 | +0.8
93.3 — 100 |  93.96 239 | 228.0 | 4+0.7| 183 | 1541 | +2.3
100 — 127 | 110.25 7 6.1 | +02| 1 L7 0.0
127 — 133 | 130.17 17 | 138 |407] 3 24 | 40.2
133 — 136 | 136.21 13 93 | +1.0| 3 1.8 | 40.6

Table 5.3: Number of observed events in the different intervals of v/s’ compared with the number
of events predicted from the fit results.

From the loglikelihood fit we have obtained the most probable values for the

S-matrix parameters, but we cannot say anything on the actual goodness of the
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fit. In order to quantify the confidence level of the fit, we have used a Poisson
distribution to compute the probability, P(NZ»ObS,NZfﬁ), to see N events in the
interval 4/si,; > Vs > \/Q when the expected number is Nifﬁ. This probability
can be interpreted in terms of a “gaussian” error, which can be used to build a y?

summing the square of the “pulls” (§;) defined with the implicit equation,

PN NI = 2 [T exp | 25| 4
(iai)—EOGXPTUC

and the contribution of the two constraints introduced in the previous chapter.
o= 20

The confidence level of the results shown in table 5.1 is 35% with a % = %3%7.

We have checked that the parameters obtained from the loglikelihood fit and shown

in table 5.1 minimize this y? too.

The statistical behaviour of the results shown in table 5.3 is quite reasonable.
The number of measurements that is expected to be at more than one sigma is 10.1

while we found 9, (1.4 expected to be at more than two sigmas and we found 1).

The results shown in table 5.3 are the direct measurements of our analysis but,
usually, one wants to give “universal” measurements which are deconvolved from
the specific selection procedure and that can be compared directly with theory.

With this philosophy, we can define & and Afb as:

X o Nobs
Gr((Vs) = UF(<\/?>)'N% (5.1)
F
i Ny
op((Vs)) = &ff (<\/;>)'Nfit (5.2)
B
6 = 0Fp+08
&fb = a'F_OA'B
A a'fb
Ay = 2
fb 5

where &IJ;ZZB) is the predicted cross section from the fitted S-matrix parameters, in
the forward (backward) hemispheres at the mean centre-of-mass energy quoted in

table 5.3.
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In this way, we have a measurement of the deconvolved cross section and forward-

backward asymmetry in a wide range of energies. The results are shown in table 5.4.

In fig. 5.1 and fig. 5.2 one can compare also this measurements with previous
measurements made at PEP [62], PETRA [63] and TRISTAN [64] at lower energies.
These measurements were quoted with o evaluated at ¢* = 0, i.e. correcting for
the running of the fine structure “constant” a. In order to be consistent with
the S-matrix formulae introduced in chapter 2, which includes this running in the

definition of 7, we have corrected them back.

In these figures, one can observe a nice agreement between the results of the fit

in a wide region of energies, spanning from 20 GeV up to 136 GeV.

‘ <\/§> GeV ‘ o (nb) ‘ ofit ‘ pull ‘ Al g A?}; ‘ pull ‘
63.12 0.0253 £ 0.0085 | 0.0278 | —0.3 —0.3570%2 —0.435 | +0.5
72.18 0.0263 4 0.0037 | 0.0263 | 0.0 —0.527013 —0.637 | +1.0
78.29 0.0325 £ 0.0048 | 0.0330 | —0.1 —0.60197 —0.716 | +1.0
82.50 0.0520 £ 0.0053 | 0.0525 | —0.1 | —0.593705%5 | —0.641 | 4-0.6
85.20 0.0956 + 0.0061 | 0.0934 | +0.4 | —0.4727355% | —0.499 | 4+0.5
87.49 0.219 £0.010 | 0.2118 | 40.7 | —0.317%503% | —0.324 | +0.1
88.37 0.336 +0.022 | 0.3341 | +0.1 | —0.250 £0.067 | —0.246 | —0.1
89.42 0.6759 £ 0.0075 | 0.6710 | +0.6 | —0.171 £0.011 | —0.149 | —2.0
90.21 1.276 £0.044 | 1.2487 | +0.6 | —0.101 +0.036 | —0.075 | —0.7
91.23 2.0018 £ 0.0060 | 1.9911 | +1.8 | 0.0216 4 0.0030 | 0.0199 | +0.6
92.05 1.322 £0.040 | 1.3403 | —0.5 | 0.128 £0.030 | 0.096 | +1.0
92.99 0.6570 4 0.0068 | 0.6498 | +1.1 | 0.178 +£0.010 | 0.179 | —0.1
94.03 0.381 £0.018 | 0.3466 | +1.9 | 0.201 +£0.049 | 0.260 | —1.2
110.46 0.019 £0.010 | 0.0175 | +0.1 0.7515:3¢ 0.788 | —0.2
130.20 | 0.0102 4 0.0028 | 0.0083 | +0.7 0.7315:38 0.736 0.0
136.21 | 0.0104 £ 0.0026 | 0.0072 | +1.2 0.6613%0 0.712 | 4+0.2

Table 5.4: Measured cross sections and asymmetries compared with those predicted from the fit
results.
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Figure 5.1: Measured cross sections of muon-pair production compared with the fit results. For
comparison the measurements at lower energies from PEP, PETRA and TRISTAN are included.
The region around the Z pole has been amplified in the inserted box.
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Figure 5.2: Measured forward-backward asymmetries of muon-pair production compared with
the fit results. For comparison the measurements at lower energies from PEP, PETRA and
TRISTAN are included. The region around the Z pole has been amplified in the inserted box.
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5.2 Systematic studies

In this section we have evaluated the systematic uncertainties in the extraction of
the S-matrix parameters. The main systematic errors are due to the limited MC

statistics used, and the uncertainty on the effect of the I-F QED interference.

Monte Carlo statistics

One obvious source of systematic errors on the fitted electroweak parameters, is the
limited MC statistics used to determine 6%(3). In order to evaluate this error, we
have generated different samples of €p(B) according to a multinomial distribution
with the generated statistics at each energy point in table 4.1. We have generated a
total of fifty different samples of efficiencies, and repeated the loglikelihood fit fifty

times.

The results of these fits are distributed around the central values quoted in
table 5.1 following a gaussian distribution. The R.M.S. of these distributions are
taken as a systematic error for each of the electroweak parameters, due to the

statistical uncertainty on 6%(3). Table 5.5 shows the specific values.

Precision of the I-F QED interference corrections

We have already mentioned that the analytic computation of 8%z in Eq. (4.10) has
been cross-checked with 3 x 10° MC events generated with KORALZ at O(«). In
any case, this is just a computation to O(«a) and, likely, effects of higher orders
could affect sizably these corrections. In order to have an idea of how well they are

known, we can use the data itself.

The trick is that this effect is more and more important when the asymmetry is

computed with a decreasing value of ™", (see fig. 2.9). So that, we can compute

max
K3

max

the forward-backward asymmetry when » < z"*?, and when = < 2{}7", and compute

the relative change,
Ap(z <) — Ap(z <27y
Al‘i

This quantity is different from zero due to the energy dependence of the forward-
backward asymmetry, and if ™ is small enough due to the effect of the I-F QED

interference corrections.
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(Ap(x < x5 - Ay(x < X™)) 18X
0 F » ]
-0.02 |
-0.04
-0.06
C n KORALZ 4.0 (with I1-F QED)
-0.08 A KORALZ 4.0 (without I-F CED)
-0.1 ; _— Zfitter 4.8 (with I-F QED)
2012 ; 777777 Zfitter 4.8 (without |-F QED)
_0_ 14 E 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1
0.1 0.2 0.3 0.4 0.5 max 0- 6
X;
(
0 F .
-0.02 [
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-0.1 ;+ 777777 Zfitter 4.8 (without |-F QED)
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X

Figure 5.3: Relative change in the asymmetry as a function of @,,4,. The lines correspond to
the analytical calculation (ZFITTER 4.8) [61], and the points correspond to the MC predictions
in the upper figure, and to real data at the Z peak in the lower figure.

In fig. (5.3) one can see how the analytic calculation of ZFITTER [61] agrees
nicely with the MC, as we have already said. But, the lower figure shows also
how the data apparently is much less affected than the analytic O(«) predictions.

? indicates

The fact that the discrepancy is only observed at low values of ™
that the problem is related with the effect of I-F QED interference, and not with
the data prefering a different value for Jg,. It looks like higher order corrections
(with opposite sign) decrease the size of these corrections, assuming that ISR is
well reproduced by the MC. As we don’t know the origin of such discrepancies, we
are forced to consider as systematic error these differences. This has been done

assuming that the corrections 655 are not known better than a 60%, which is the
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difference between the predicted shift when 27 = 0.04 by ZFITTER and the

one observed in the data itself. The maximal deviation of the electroweak fitted

parameters is quoted in table 5.5.

A similar conclusion on the size of these discrepancies between data and the
O(a) I-F QED interference predictions can be found in ref. [17].

Final State Radiation simulation

We have already mentioned that the MC used to compute the efficiencies was gener-
ated with KORALZ 4.0 with the option of single final state bremsstrahlung, (param-
eter KEYRAD set to 112). We have applied the selection procedure described to a
sample of 10> MC events generated with exponentiated FSR, (parameter KEYRAD
set to 12), and the resulting 6%(3) are compared with the previous ones in fig. (5.4).
Both samples of efficiencies agree within the statistical errors and no systematic

effect is seen.

As we have shown in fig. (4.5), the energy distribution of the detected photons,
(mostly FSR), is well reproduced by the MC. The angular distribution of such
photons, (that is the relevant information in our case), is well reproduced too,
except in the case of hard photons (£, > 2 GeV) that are emitted at large angles
(cos(f13) > 0.2). This is shown in fig. (5.5), where we have plotted the angle between
the measured object in ECAL and the most energetic charged track, (cos(fy3)). This

is most probably due to the approximate treatment in the MC of this situation.

In order to evaluate if there is a systematic bias due to this problem, we have
removed those events where an KCAL object is detected with more than 2 GeV,
and cos(fq3) > 0.2. This cut is indicated with an arrow in fig. (5.5). The difference
on the fitted EW parameters obtained is perfectly compatible with zero, so to be
conservative and, as we suspect that these events cannot be reproduced perfectly
by the MC simulation, we have taken as systematic errors the statistical errors of

these differences. These are shown in table 5.53.

Background

In table 4.2 we have shown that the non u* ™~ background that survives the selection

procedure is at the level of 0.1%, and completely dominated by electrons that leave
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Figure 5.4: Comparison of the efficiencies computed with KORALZ when FSR is exponentiated,
(parameter KEYRAD set to 12), and when FSR is calculated to O(a), (parameter KEYRAD set
to 112).

enough signal in the last planes of HCAL.

We can study the effect of this background cutting on the total energy left in
ECAL by the two charged tracks selected, requiring ECAL1 + ECAL2 < \/72 This
removes most of the Bhabha events and not signal as can be seen in figure (5.6),

where we have separated both contributions.

We have removed these events from the data sample, and refited again the S-
matrix parameters. The differences are very small, and are considered as systematic

error. Table 5.5 shows the magnitude of this effect.
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Figure 5.5: Distribution of the angle between the most energetic charged track, and the photon
candidate when the measured energy of the photon is greater than 2 GeV. The arrow indicates
the cut applied to study the effect of the discrepancies between data and MC.

Uncertainty on the Beam Energy Spread

As we have explained in section 3.1.1, the energy spread of the beams is determined
from the measurement of the length of the luminous region, (o), through the

relation:

S
Ops = %QSUZ

The error on this measurement is completely dominated by the systematic due
to the Synchroton tune determination (();), and gives an uncertainty at the level

of 2.5% in the beam energy spread [35].

We have changed the values of o4 in eq. (4.10) by +2.5%, and the changes in
the EW parameters are completely negligible.
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Figure 5.6: Sum of the energy deposited by the two charged tracks selected in the Electromag-
netic CALorimeter (ECAL). The agreement between data and MC is reasonably good.

‘ Source of Syst. ‘ Ary! ‘ Ajl Arib ‘ Ajj:b ‘
MC statistics 0.00003 | 0.006 | 0.00003 | 0.009
[-F QED interf. | 0.00002 | 0.002 | 0.00032 | 0.009
FSR nil 0.003 | 0.00005 | 0.004
Background nil 0.001 | 0.00002 | 0.003

| TOTAL SYST. [ 0.00004 | 0.007 | 0.00032 | 0.013 |

Table 5.5: Breakdown of the different contributions to the total systematic errors.
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5.3 Analysis of the helicity cross sections and new
scalar interactions

An alternative way of presenting the angular distribution information is in terms

of helicity cross sections. Let’s define:

oy = €reh = ppph
Ohp = €R€f = Hpii
Olr = epch — pupii
Onr, = €Rei — HLIh

where the symbols L(R) stands for the left (right)-handed helicity. Then, we can

write the total and antisymmetric cross sections as
o’ = l(00 4+ 0%, + 0%, + o )
= 5\9LL T 9RR T 9LR T 9RL
0o _ 0 0 0 0
Opp = g(ULL—I'URR_ULR_URL)

the factor 1/2 corresponds to the spin averaging for unpolarized initial beams.

In the context of the SM, the interference between the 7 contribution (dominated
by the axial coupling) and the 5 contribution (that is only vector coupling) is
destructive or constructive as a function of v/s’. One can compute the different Vs

that corresponds to the zeroes of of;. From reference [8], we have that at lowest

order
o = Vs =76.9 GeV
o9, = Vs' = 80.0 GeV

Vs =113.1 GeV

0 =
0 =
0 =
0 = Vs =113.1 GeV

and this is the reason of the two maxima seen in the forward-backward asymmetry

in figure 5.2. In fact, higher order corrections prevent to have exactly a zero for U%,

but this is not relevant for the discussion here.

We can take profit of the fact that the SM predicts nearly zeroes at /s’ ~
80(113) GeV, to search for scalar particles, which will not interfere with the gauge

boson contribution due to the conservation of helicity in the massless fermion limit.
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The best place to look for such a signal is at the minimum of the gauge contribution,
because there the “background” from the SM will be minimum, while at the Z peak
(or at energies close to the photon peak at Vs~ 0) the potential signal will be

diluted. Having this in mind, we can write,

1
ohrt ol = §(7U%_0103)
1
U?%L"‘U%R = §(7U?3 _U%)

and therefore we can define the ratio Ry = (c%p +0%.)/ (0%, + 0lz) as a function
of 65 and 6 defined in Eqgs. (5.1) and (5.2) from the observed number of events. At
energies greater than 100 GeV the ratio is inverted in order to have a finite number

for all the energy range studied.

In figure 5.7 we can see this ratio of helicity cross sections as a function of the
effective centre-of-mass energy obtained with our analysis, together with the results
obtained by previous experiments at PEP [62], PETRA [63] and TRISTAN [64].
The continuous line corresponds to the SM predictions. Note, that this figure is very
similar to figure 5.2 because, as we have already mentioned, it is another way to look
at the angular distribution information, but now we have much more sensitivity to

potential new scalar interactions in a single observable.

Although the SM describes well enough the data in all the energy range studied
(x* = 21.0 corresponding to 32 measurements, 16 from ALEPH (y? = 13.3) and 16
from the low energy experiments (y? = 7.7)), it’s somehow intriguing the apparent
disagreement that can be observed in the energy region where the sensitivity to new
scalar particles is maximal. In order to quantify a little bit more this statement,
we have considered the possibility to have a narrow scalar resonance with negligible
width, with mass (Mscar,) and dimensionless residua Rscar. In this case,
2N [ Rscar ]

GE [s(s — Mioar)?
Gppscany(s) = 0 (5.4)

and therefore, the ratio Ry would be modified with,

OA'SCAL(S) = (53)

10p — 0B + 30scAL
R = — — — 5.9
H 70 — 0p + 30scAL (5:5)

oscar 1s normalized with the Fermi coupling constant that fixes the weak energy

scale. In this way, the parameter Rgsc 4y, does not have dimensions.
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Figure 5.7: Computed helicity cross sections from the measured total cross sections and forward-
backward asymmetries of muon-pair production. The continuous line corresponds to the SM
predictions while the dashed line corresponds to the best fit when an hypothetical scalar interaction
is allowed, (see text).

If we minimize the y? with respect to the mass and residua of the hypothetical
scalar particle, we find a minimum (y? = 17.0 with x* = 9.9+ 7.1 from ALEPH and
the low energy experiments respectively) at Mgscar, = 101 GeV and Rscar = 1.4
1077, In figure 5.8 we have plotted the contours that contain the 39% (Ax? = 1.00)
and 68% (Ax? = 2.30) probability around the minimum. At 95% confidence level,

the data is compatible with the absence of any kind of scalar interactions and its
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contribution is constrained to be dscar, < 0.0092 nb at /s’ = 78.3 GeV with 95%

confidence level.

Note, that in fact the SM itself predicts a scalar interaction through the inter-
change of a Higgs. However, in the hypothesis of massless fermions the SM Higgs
contribution is zero, and even in the case of considering the mass of the fermions

Rscar is suppressed with a factor (m.m,)*G} and therefore Rscar, ~ 10751,

RSCAL(X 1 0-7)

39% | ]
' 68%

10

—2
’IO \ \ \ I \ \ I \ I \ \ I \ I
80 85 90 95 100 105 110 115 120 125 130

Msca (Ge\/)

Figure 5.8: Contours of equal probability in the plane Rgcar vs Mscar. At 95% confidence
level data 1s consistent with no new scalar interactions.
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5.4 Limits on extra Z bosons

As we have mentioned in section 2.3 the existence of a new neutral gauge boson 2’
will modify the predicted energy dependence of the total cross section, and specially
the energy dependence of the forward-backward asymmetry. In this case, there’s
no gain in the analysis in terms of helicity cross sections, but we can take profit of
the measurement of the energy dependence to improve the limits on the mass of

new gauge bosons from LEP.

After specifying the model (and without any assumption on the structure of
the Higgs sector), only two free parameters remain: the mixing angle 5 between
7 — 7" and the mass of the heavier-mass eigenstate, Mz. If we want to test one of
this particular models, and extract the corresponding limits on these parameters,
we can replace the model independent parameterization of &,:(s") and 64,(s") in

Eq. 2.17 by the specific prediction of the model as a function of My and 65.

This procedure takes into account all the possible information in an event-by-
event analysis, but at the expenses of being extremely CPU demanding. We have
checked that one obtains identical results, if the fit is made, instead, directly to the
cross section and asymmetries that appear in table 5.4. This procedure is much
faster that the previous one, being the only approximation used that the cross

section and asymmetries behave like their SM expectation within the energy bins

defined.

We have considered four of the most popular models that introduce a new 7
boson, which have been discussed in section 2.3. Three of them (x-model, »-model
and n-model) are superstring-inspired models based on the Fg symmetry group.
The other one, is a left-right symmetric model that includes a right-handed SU(2)g
extension of the Standard Model gauge group SU(2), @ U(1). This kind of models
are characterized by the parameter ay_p that describes the coupling of the Z’ to
fermions, and it can be expressed in terms of the SU(2)r g coupling constants and

the weak mixing angle. We have chosen the specific value ar_p = 1.

The effects of the Z’ for the [.-R and Eg models on the cross sections and asym-
metries were calculated using an addition to the ZFITTER program, called ZEFIT
(vers. 3.1) [65], that provides radiatively corrected cross sections and asymmetries

for the process ete™ — uTp~. As the standard Z mass changes due to the presence
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of a mixed 7', My was also fitted (using the direct Mz measurement constraint)

along with the mixing angle 5 and the Z’ mass.

To obtain exclusion limits, we have computed a y? comparing the values that
appear in table 5.4 with the different theoretical models. The ALEPH measure-
ments of the hadronic cross section reported in [59] and [58] are also included,
but they only improve the sensitivity to the mixing angle. The region defined by
X2 < X2, +5.99 correspond to 95% confidence level for one sided exclusion bounds
for two parameters. This is plotted in fig. 5.9 for the models considered, and in
table 5.6 the explicit limits are given. In fig. 5.9 the exclusion limits published by

CDF [66] in a direct search for Z' bosons are shown.

In order to asses the impact of the measurements obtained with the analysis
of radiative events, we can compute these exclusion limits using only those events
that are in the first bin (x < 0.04), so that /s’ ~ /5. This is not exactly the same
situation that using the inclusive measurements at /s, that would have been even
less sensitive to the effects of new physics, but can give us an idea on the effect. We
have done this exercise for the y-model as an example, and the limits in this case
are: Mz >222 GeV while the limits on 63 are exactly the same (—0.0016 < 65 <
+0.0036).

Table 5.6: 95% confidence level limits on My and 65 from fits to the predictions of several

models.

Le(x) | Es(v) | Ee(n) | LR(arr =1)
My (GeV) > | 236 160 173 190
05 (rads) > | —0.0016 | —0.0020 | —0.021 —0.0017
05 (rads) < | 40.0036 | +0.0038 | +0.012 +0.0035
2/ dof | 25.8/39 | 26.0/39 | 27.0/39 | 25.9/39
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Figure 5.9: Curves corresponding to 95% confidence level contours. a) x model, b) v model, c)

n model and d) L-R model.
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Chapter 6

Summary and conclusions

The actual scan due to initial state radiation in muonic events has been used to
perform a precise measurement of the total cross section and the forward-backward
asymmetry in a range of energy still uncovered by present accelerators, spanning
from 60 GeV to 136 GeV. These measurements are found to agree reasonable well

with the Standard Model expectations.

Our method uses the full statistical power of the event sample by reconstructing,
for all events, the effective centre-of-mass energy v/s’ in an event-by-event basis.
This allows the precise analysis of the energy dependence and hence, as a result,
the electroweak parameters that describe in a general way the energy dependence
of these observables are determined with an unprecedented precision equivalent to

have doubled the statistics in ALEPH using the standard analysis.

The energy dependence of the total cross section and the forward-backward
asymmetry has been parameterized in a general way using the S-matrix formalism.
The accuracy of such approach has been cross-checked with the most up to date

SM calculations, and found to cope with the experimental precision.

The results obtained for the S-matrix electroweak parameters are

rot = 0.14186 + 0.00080 4= 0.00004

jff’t = —0.033 £0.022 £ 0.007
rib = 0.00273 £ 0.00054 +£ 0.00032

jib = 0.807 £0.026 £ 0.013

where the second error corresponds to the systematic uncertainty in the extraction
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of these parameters.

The precise measurements of the helicity cross sections at centre-of-mass ener-
gies around 80 GeV, allows to search for new scalar interactions that are highly
suppressed at the 7 peak. At 95% confidence level, the data is consistent with the
SM predictions.

The improved precision on the measured energy dependence, especially the en-
ergy dependence of the forward-backward asymmetry jib, allows the existing limits
from LEP on Mz to be improved. The sensitivity to the mixing angle 63 is com-
pletely determined by the existing measurements at the 7 peak, and does not benefit

from the inclusion of the radiative events.



AU

Appendix A

Writting the helicity cross sections
in the S-matrix language.

As we have introduced in section 2.2.2, the helicity amplitude for the process
ete™ — utp~ is written in the S-matrix language as
R, B

S S — Sy

Ml

where ¢ (7) stands for the polarization of the incoming e~ (outgoing p ™).

Therefore, the helicity cross section &5 is

| R, |* | s| Ry
2s 2| s—sy|?
2R(R:RS)(s — My) + 23(R:RE)M 4T,

2| s—sy|?

A S i
m]‘(s)E§|M] > =

_|_

| &, 2
2s ~
s (I RS 2 +23(R: RY) 1)
2| s—sy|?
w72 * DU w« P\ T
(s = M3) (2R(R: RY) — 23(R; RY) =)

2|s— sy |?

_|_

where sy is defined to be 55 = MZZ — Ly M.
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If we introduce now the notation,

3
v 2
r - 47Ta2 | Y |
3 i (2 rZ * pij
T = 5 |om(R*RY F (R R
T P ( v Z) - M—Z\s( )
then it is obvious that
) 2 r 8ri; + S—Mz Jis
Gij(s) = gma’|—+ ]—(2 ; —Zl—]z
5 (s—=My)2+ Myl

From the definition of the total cross section and antisymmetric cross section,

1
o = §(ULL‘|‘URR‘|‘ULR‘|‘URL)
o = g(ULL+URR_ULR_URL)
we have,
Tiot = §(TLL +rrRr + LR + TRL)

1
Jiot = §(JLL + Jrr+ Jor + JrL)

T = g(TLL +rRR — "LR — T'RL)

3
Jp = g(JLL + Jrr — Jor — JrL)

and therefore we have the expressions shown in equations 2.26 and 2.27

o = e[ T

s (s— M)
Sbe—I-(S—MZ)
(S—M )2 +M22r
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If we neglect the small contribution from weak boxes diagrams in the SM, and
we neglect the energy dependence of the effective couplings that absorb higher order

corrections, we can write the SM prediction for the complex helicity amplitudes R,

and Rg as,
[4r
R,y = ?O{(S)
47
RLL — -
¢ - ()
[Ar [ GprM?2
RI;R — ? ( 2}:/57[_2) (gVe - gAe)(gVu - gAM)

(gVe + gAe)(gVu + gAu)

(gve + gac)(gvy — gau)

47
pBL — 2T Z —
7 3 ( e ) (gve — gae)(gvu + gan)

where the couplings gy and g4 are complex quantities, and a(s) is the effective

complex electromagnetic coupling constant, defined as:

(a4

o) = T

where I17(s) is the photon self energy.

In this way, the SM predictions for the S-matrix parameters are approximately

proportional to:

Ttot X ((%(Qve)Q—l-

)
Jtot X %(gve)%(gw
rrp o R(gae)R(gve)R(gan)R(gv,)
Jp o< R(gac)R(gau)



Appendix B

Relativistic kinematics.

B.1 Effective centre-of-mass energy.

ISR
EV
~

(4 — EBISEYy (47

LAB system

C'M system

ERVE
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From the Lorentz equation that predicts the change in energy as,
E+[B] P
V1= 18P
one can compute the energy of the electron and positron in the C'M system as,
Vs (\/E_EISR) 14+ ]3]
V1= 18

E =

2 vy

2
Vs Vs 1-10]

> T 2 iar

Therefore, the radiated energy and the effective centre-of-mass energy can be

written as a function of the magnitude of the boost with:

ISR __ |6| S
B = s

P 8(1_|ﬁ|)
1+ 1[5

B.2 Final State Radiation in the C'M system.

For three particles lying in a plane, their energies can be defined in terms of their
total energy (v/s') and the angles between them (07;). In particular, the energy
of the photon (F%) can be calculated in this way when the position of the object
in ECAL is known. Conservation of momentum in the C'M system constrains the

three momentum vectors to form a closed triangle.

The interior angles of this triangle (a;;) are related to the angles between the
track vectors by a;; = m — 0;.. The conservation of energy constrains the sum of

the magnitude of the momenta to be v/s’, that is just the perimeter of this triangle.

Now, applying the law of sines,

sin(aqz) B sin(ays)
Ey K
and the relation sin(e;;) = sin(#?,) we have,

Sin(‘%z) '

sin(675) 2

Ey =
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SIH(G/IQ) / / !

= W) o g
sin(675) (\/8_ 3 1)
sin(67,) sin(65s)

- sm(agg)(\@_ BL(1 +

sin(67,) )

and solving the last equation we have,

in(0),)
B = 7 sm( 12
’ v (Sin(%) + sin(013) + sin(05;)
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Appendix C

Efficiencies computed from Monte
Carlo simulation.

The correction functions 6%(3)(3) are computed using Monte Carlo simulated events.

These functions are defined from the efficiency matrix eg(B)(s) trough,

' g O (8)
7 — 1 F(B)
6F(B)(S) = jZIZn:bin GF(B)(S)&%(B)(S) (C.1)
with
1] Nsel(saxi S Tree < 41, COS erec Z (<)0)
6F(B)(S) = 4 ,
Ngen(sv% < Tyep < Tjy1,008 05, > (<)0)
and

ni . Titl «
O'F(B)(S) = /90 deH(s,x)oprp)(s, )

where the radiator function H(s,z) and the total cross section &(s" = s(1 — z))

have been introduced in chapter 2.

They are given in table C.1 as a function of the nominal centre-of-mass energy,
and the percentage of radiated energy (x). The size of the bins correspond to the

ones choosed in the experimental analysis.
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NG 0.00 <z <0.04 0.04 <z <0.08 0.08 <z <0.12
(GeV) er (%) e (%) er (%) e (%) er (%) e (%)
91.2 80.904 + 0.073 | 81.051 £ 0.073 | 64.29 £0.82 | 61.71 £0.66 | 72.7+1.9 | 61.94+ 1.3
90.2 81.71 £0.21 80.91 + 0.19 61.0 £ 3.6 60.3 £ 2.8 68 + 10 66.7 + 5.4
92.0 80.16 + 0.20 81.60 + 0.22 63.7 + 2.1 58.0 £ 1.7 64.4+6.3 | 59.3 £ 3.9
89.4 82.28 +0.16 80.44 +0.13 66.6 + 2.4 62.5 + 1.7 70.0 £ 5.6 | 60.9 £ 2.8
93.0 81.64 + 0.20 84.14 £0.25 | 58.43 +£0.95 | 58.74 £ 0.88 | 60.6 = 2.8 | 56.6 £ 2.4
88.4 82.48 +0.25 80.46 + 0.18 64.6 £ 3.0 63.4 £+ 2.0 63.6 £6.1 | 56.6 £ 2.8
93.7 84.35 + 0.28 88.86 £ 0.41 | 57.42 4+ 0.88 | 58.74 £ 0.89 | 55.1 £2.3 | 55.9 £ 2.1
130.0 77.45+£0.85 92.0+1.9 68.4+4.4 88 +13 55.0 £5.2 59 + 14
136.0 79.51 +0.87 949+ 1.6 57.9+3.9 89 +12 58.3 £ 5.0 71+13
\/g 0.12 <2 < 0.16 0.16 <x < 0.24 0.24 < x < 0.32
(GeV) er (%) e (%) er (%) e (%) er (%) e (%)
91.2 87.3+2.9 65.2 + 2.1 78.9 £ 4.6 57.14+2.2 | 110.0 £6.7 | 60.8 £3.5
90.2 71+13 60.8 + 7.1 50 £ 18 68.7+ 7.5 150 £+ 61 54 + 11
92.0 7+ 13 50.0 £6.3 85 £+ 25 50.0+7.9 120 4+ 58 56 + 11
89.4 80.0 £ 8.7 60.8 +4.1 90 £ 12 53.6 £4.0 89 + 13 49.0 4+ 54
93.0 60.2 £ 6.8 50.2 £ 3.6 86 + 10 55.0 £5.0 100 £17 | 50.0+£7.5
88.4 7T+ 11 61.3 £+ 4.6 81 + 11 54.7+4.1 | 100.0 £8.8 | 60.2 £ 5.6
93.7 59.8 £6.1 50.2 +4.1 66.1 +£6.6 52.1 £5.3 111 +£26 |46.6 +£7.2
130.0 55.6 £5.4 62.1 £ 9.7 49.0 +4.1 60 + 10 55.3 +£4.7 63 + 12
136.0 59.7 £ 5.2 63 + 11 53.5 £ 4.2 53.1 £8.8 55.0 £4.5 93 +£19
NG 0.32 <z < 0.40 0.40 <z < 0.48 0.48 <z < 0.56
(GeV) er (%) e (%) er (%) e (%) er (%) e (%)
91.2 977+ 7.0 60.2 +4.4 115+ 11 62.4+5.3 60 + 11 48.6 £ 5.6
90.2 0*5! 33+ 11 166 4+ 61 75+ 15 43 + 19 25+ 13
92.0 67 + 47 60 + 18 80 + 47 70 + 28 100 4 50 30+ 14
89.4 57+ 14 55.5 £ 7.3 79+ 19 589+ 7.6 16.7+£9.4 | 30.3 £ 8.3
93.0 67 £ 60 34.5 4+ 9.7 62 £+ 17 41 +13 50 + 21 45 4+ 10
88.4 4+ 14 50.0 £ 7.5 80 £+ 20 49.0 £ 8.2 37+ 11 31.1+£7.1
93.7 133 + 38 36.6 £ 8.8 67 £ 60 50 +13 14 +13 45+ 11
130.0 56.7 +4.4 64.1 £9.6 59.8 £ 2.8 76.4 £ 5.5 36.5+1.0 | 39.3+£1.0
136.0 49.3 £4.8 48 £ 11 64.9 + 4.1 72.2+£9.2 376 £1.1 | 398+£1.3
s 0.56 <z < 0.64
(GeV) er (%) e (%)
91.2 45+ 11 44.6 £ 7.0
90.2 100 4+ 28 9.0+9.5
92.0 0750 25150
89.4 46 £ 16 243+ 7.1
93.0 57+ 24 29 £ 12
88.4 25.0 £9.6 28.1 £8.2
93.7 29 +£ 17 20 £ 12
130.0 226 £5.9 33.3+£3.5
136.0 27.6 +£ 2.0 303+ 1.8

Table C.1: Computed ep(B)(s, ) from Monte Carlo simulation at the different LEP nominal

energies.
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