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Abstract

A generalized nonextensive two-parameter entropy is developed, along lines which unify
current nonextensive frameworks. It recovers, as particular cases, the Tsallis and symmetric

entropies, as well as the Boltzmann-Gibbs entropy. The properties of the new (g, ¢’)-entropy are
analysed.
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Systems presenting long range interactions and/or long duration memory have been shown
to be not well described by the Boltzmann-Gibbs statistics. Some examples may be found in
gravitational systems, Lévy flights, fractals, turbulence physics, and even economics (see [1] -
and references therein). An attempt to deal with such systems was formulated by Tsallis [2].
He postulated a nonextensive entropy that generalizes the Boltzmann-Gibbs formalism through
an entropic index ¢. The usual statistical mechanics is recovered as a particular case in the
g — 1 limit. Tsallis formalism has been applied to a variety of systems, such as Lévy anomalous
diffusion [3], self-gravitating systems [4], peculiar velocities of galaxies [5], turbulence in pure
electron plasma [6], solar neutrinos [7], linear response theory [8], perturbative and variational
methods [9], Green’s functions [10], phonon-electron interactions [11], low dimensional dissipative
systems [12]. For an up-to-date bibliography, see [13]. Tsallis generalization is not unique. -
As a matter of fact, a generalization had already been suggested by Rényi [14] previously.
These generalized entropies (and also the Boltzmann-Gibbs entropy) were postulated and then
their properties investigated. It was recently proposed by Abe [15] a way to generate entropy
functionals. The procedure is rather simple. Consider the probabilities {p;} associated with W
microstates and consider the function g(a) = 21W=1 pY. Obviously g(1) = 1. It can be shown
[15] that the Boltzmann-Gibbs entropy is obtained by the action of the derivative operator on

g(a):

5, = k%@
do |,

w
= —k Z,-:lpilnpi , (1)

where k is a positive constant. Tsallis entropy is generated by the same procedure, but using
the Jackson’s g-derivative operator [16)

dyf(z) _ flaz) ~ f(z) (2)

dqsz gz — T
Applying it on g(a), yields
7 dea | _,
1- zva P?
le——— ) (3) .

where g is the entropic index and the limit ¢ — 1 recovers the Boltzmann-Gibbs entropy in the
same way that the Jackson’s derivative recovers the usual derivative.
Another particular case was analysed by Abe using this time the symmetric g-derivative

d f(=) _ f(az) = flg~'2)
djs (g—q7 ")z
that is invariant under q < ¢~!, a symmetry that plays a central role in the physical context of
quantum groups [17]. The entropy generated is, thus,
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In this Letter, we show that it is possible to use g(a) in order to obtain a family of nonex-
tensive entropies. We consider here the following derivative
dyqf(2) _ fgz) - f(d'z)

= , ¢, €ER 6
4,0 - )z 4,9 (6)

already proposed by Chakrabarti and Jagannathan [18], that is a generalization of the Jackson
(¢ = 1), symmetric (¢ = ¢~ ') and McAnally (¢ — ¢'~*,¢' — ¢~*, where ¢ and X are iie
parameters in McAnally [19] formulation) derivatives. We notice that equation (6) presents
invariance under the exchange g < ¢'. It follows naturally our proposal for a generalized (g, ¢’)-
entropy:

—k dgq9(2)
dq qIOL

S

9,9’
a=1

_ kz _pz . (7)
1=1

The two-parameter (g, ¢')-entropy may be expressed in terms of Tsallis entropy as

5= (1-¢)87 -(1-9)5; ®) '
q—q

Next we discuss some properties of this (g, ¢')-entropy.

i) Positivity. S, > 0,Yg,¢’. In the case of certainty (p; = 1,p;2: = 0), S = 0, for both
g>0andgq >0.

i1) Expansibility. If we add events with vanishing probabilities, the entropy remains invariant,
for both ¢ > 0 and ¢’ > 0.

111) Nonadditivity. If we consider a system composed by two independent sub-systems A and °
B, with factorized probabilities {p; 4} and {p; B}, it is possible to express the entropy of the
composed system in the following ways (hereafter we assume k = 1):

S(A+B) S(A +S(B)+(1 )(552)5(3)4_5( ) (A))+(q q)S(A)S(B) (9)

g,9' ?

and
ST _ 54 53 1 (1- sASE + (1 - )SEISH (10).

Of course we have 5, = S;‘r . When we put ¢’ = 1, these expressions yield the Tsallis nonaddi-

tivity rule (see equation (2) of [21]), SE(AJ'B) = S;I(A) + SE(B) +(1- q)Sz(A)S;T(B).
iv) Equiprobability. In the microcanonical ensemble (p; = 1/W, Vi) we obtain

w1 — wi-¢
(¢ -4q)

The (g,q')-entropy is monotonically increasing with W, Vq,q" except when both ¢ > 1 and )
q' > 1, and consequently, in this case, it is not possible to have a physical meaning for §g 4.

v) Power-law behavior. When considering the canonical ensemble, Curado and Tsallis [20]
introduced the generalized g-expectation value of the observable 0,

a w ~
(O)g=3_._ ri0i, (12)

Sqq[1/W]= (11)
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and the canonical distribution is obtained with the constraint (7{), =constant. In the work of
Abe [15], the canonical ensemble was obtained with the usual (%), expectation value. Here we
introduce a generalized (g, ¢')-expectation value of an observable O:

N w 1_1\ 2
(Oggr =D pl™" V0, - (13)

With this defl _.ion, the (g, ¢')-entropy may be rewritten as S, 4 = — (Ing o Pi>q o where the
(g, ¢')-logarithm follows from the functional form of the entropy for the microcanonical ensemble
(equation (11)),

) zl=7 — gl-¢'
Ny g T =& —————
9,9 /

’ q9-q

We find the following implicit canonical distribution

' . _ ~ .
- —q,q_ i3 - (- ¢)Be? N - qfq,p? 1= (g - )it

+ Bept 'l T —a=0 (14)

where {¢;} are the eigenvalues of the hamiltonian 7 and @ and 8 are the Lagrange multipliers
associated with the constraints 3, p; = L and (H ), o = U,.¢ = constant (U, o is the generalized
(g, ¢')-internal energy).

vi) Concavity. Let us consider 825, ,/dp? (or, alternatively, equation (8)). Sq,q' Presents a
definite concavity if one of the parameters lies between 0 and 1 (say, 0 < ¢’ < 1). It is concave
for ¢ > 1 and convex for ¢ < 0. S, is also convex when both ¢ < 0 and ¢’ < 0. For the
remaining regions (¢’ < 0, ¢ >1),(0<¢<1,0< ¢ <1)and (¢ >1, ¢ > 1), there is a
competition of effects and S, ,» does not present, in general, a definite concavity. If we fix one )
of the parameters equal to 1 (¢’ = 1), we are reduced to Tsallis entropy, and S, is concave
(convex) for ¢ > 0 (¢ < 0). Another particular case is when we fix one of the parameters equal
to zero. Now, S, 0 is concave (convex) for ¢ > 1 (¢ < 1). The two limiting cases Sy, and Sgp
are concave and convex, respectively (the former is the usual Boltzmann-Gibbs entropy).

vii) H-theorem. The time evolution of the probability distribution is given by the master
equation

dp; il
5 = Y (Ajipi — Aijpi) 5 (15) -
i=1

where A;; is the probability of transition, per unit time, from the microscopic state j to the
microscopic state 7. Tsallis entropy satisfy the H-theorem, that is dS:{/dt > 0 for ¢ > 0,
dST/dt = 0 for ¢ = 0, and dST /dt < 0 for ¢ < 0. This result is obtained if one assumes [22] or
not [23] the detaii=d balance (A4;; = A;;). If we assume that the detailed balance holds for S
we find

9.9’

dS,, 1 1 — " - - ‘
it :5q—q'ZAij(Pi—Pj)[‘I'(P§ IR R G Ik (16)
i3

We see that dS;q/dt > 0for 0 < ¢ < 1and ¢ > 1,dS,,/dt =0for ¢ =0and ¢ =1, and
finally dS, ,+/dt < 0 for 0 < ¢’ < 1 and ¢ < 0. We find the same results if we do not assume the
detailed balance, according to the lines given in [23]. The detailed balance also shows us that
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dS,q/dt < 0 for ¢ < 0 and ¢’ < 0. For the remaining regions, dSy 4/dt does not have a definite
sign. When we consider the particular case ¢’ = 1, we are reduced to Tsallis entropy, already

mentioned above. The particular case that one of the parameters is equal to zero (say, ¢ =0), .

the detailed balance, then, gives

dS,0 1 _ _
= —5ZA,-,,-(p,- —p)(P 7 =i,
12%)}

and we find dS;0/dt > 0 for ¢ > 1, dS;0/dt = 0 for ¢ = 1 and dS,o/dt < 0 for ¢ < 1.
We therefore have a self-consistent result, i.e., the regions of ¢ and ¢’ where Sq,¢' is increasing
(decreasing) with time are coincident with those that it is concave (convex), and the regions
that the (g, ¢")-entropy does not have a definite concavity, its time derivative does not have a
definite sign.

We have thus shown that the present (g, ¢’)-entropy exhibits the relevant properties for a
generalized entropy and that for particular values of the parameters it is possible to obtain the
usual Boltzmann-Gibbs entropy (¢ = ¢’ = 1) and also Tsallis (¢’ = 1) and symmetric (¢’ = ¢~1)
Abe entropies. The symmetry ¢ < ¢’ put the entropic indexes on equal footing. We may
conjecture, as a possible interpretation, that the indexes ¢ and ¢’ express two different sources

of nonextensive behavior of the system, e.g., two kinds of long range interactions, or a long .

range interaction and a long duration memory. It is reasonable to expect that these features
lead to different nonextensive behaviors that are somehow superimposed. The description of
these systems may request two different parameters to deal properly with space nonextensivity
and time nonextensivity.
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