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Abstract

Computer simulation of complex chemical processes is increasingly be-
ing used in the design, optimization and control of chemical facilities.
Industrial-scale modeling involves the solution of large systems of alge-
braic differential equations. This is very computationally intensive with
a large part of the computing time attributed to the repeated solution of
large, sparse, unsymmetric systems of linear equations. One way of speed-
ing up the simulation is to solve the linear systems efficiently in parallel
by reordering the unsymmetric matrices into a bordered block-diagonal
(BBD) form. In this paper a multilevel ordering algorithm is presented.
A multilevel technique, which provides a global view, is combined with a
Kernighan-Lin algorithm to form an effective unsymmetric matrix ordering
algorithm - MONET (Matrix Ordering for minimal NET-cut). Numerical
results confirm that this algorithm gives ordering of better quality than
existing algorithms.

Keywords chemical process simulation, sparse unsymmetric matrix ordering,
bordered block diagonal, graph partitioning, multilevel. parallel computation.
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1 Introduction

Computer simulation and optimization of complex chemical processes are increas-
ingly used in the design and control of chemical facilities. Industrial-scale sim-
ulation involves the solution of large systems of algebraic differential equations,
which is very computationally intensive. In (Zitney et al., 1995), a dynamic simu-
lation of Bayer AG required 18 hours of CPU time on a Cray C90 supercomputer
using the standard implementation of SPEEDUP (Aspen Technology, Inc.). In
most of these simulations, the majority of the computing time is spent in the
repeated solution of large, sparse, unsymmetric linear systems resulting from the
application of Newton’s method to nonlinear systems. In order to reduce the
solution time for such linear systems, a number of studies have investigated the
exploitation of computational parallelism. For example, frontal and multi-frontal
linear solvers have been developed to better exploit fine-grained parallelism in
vector and shared memory parallel architectures (Duff & Reid, 1983; Duff &
Reid, 1984; Amestoy & Duff, 1989; Zitney & Stadtherr, 1993; Zitney et al., 1995;
Zitney et al., 1996; Mallya & Stadtherr, 1997). In (Zitney et al., 1995), the use
of a frontal solver, combined with improvements in other aspects including I/O
performance, have reduced the run time to 21 minutes for the afore-mentioned
simulation.

Very high performance computers are usually based on distributed memory
architectures, or a combination of shared and distributed memory architectures.
Effective parallel computers, consisting of a network of workstations or PCs,
are also becoming increasingly popular in academia as well as in industry. Dis-
tributed memory parallel computers require algorithms that exploit coarse-grain
parallelism, because of the relatively higher cost of interprocessor memory/data
access. A number of such parallel algorithms for the solution of symmetric posi-
tive definite systems have been proposed (Gupta et al., 1997).

For unsymmetric systems arising in process simulation, coarse-grain parallel
algorithms can be developed by reordering the matrices into a bordered block-
diagonal (BBD) form, and subsequently factorizing the diagonal blocks indepen-
dently (Vegeais & Stadtherr, 1992; Coon & Stadtherr, 1995; Mallva et al., 1997a:
Mallva et al., 1997b). This strategy is suitable because a matrix from process sim-
ulation can occur naturally in this form, if explicit knowledge of the unit-stream
nature of the problem is applied in the formulation of the matrix (Westerberg
& Berna, 1978). On the other hand, because of the disparity of process units
and thus the sizes of the diagonal blocks, load balancing can become a problem.
Furthermore, in commercial software, information about the unit-structure may
not be known to the sparse matrix solver. Rather, the solver is presented with a
general sparse matrix, which is normally highly unsymmetric, with no desirable
structural or numerical properties such as diagonal dominance or narrow banded-
ness. This rules out parallel iterative algorithms (Cofer & Stadtherr, 1996) and
necessitates the use of a parallel sparse direct solver coupled with an automatic



reordering of the matrix.

It has been demonstrated that the performance of a parallel sparse direct
solver based on the BBD form depends strongly on the quality of the reordering
(Mallya et al., 1997a; Mallya et al., 1997b), measured in terms of the size of the
border (the net-cut) and the load balance of the diagonal blocks (the uniformity
of the size of the diagonal blocks). Given that systems of the same structure
are solved repeatedly in process simulation, a good quality reordering represents
a one-off effort that could have substantial long-term pay-backs (Mallyva et al.,
1997a; Mallya et al., 1997b). Therefore this paper will focus on the development
of an efficient, high quality ordering algorithm.

There are existing algorithms for ordering unsymmetric matrices into bor-
dered block-diagonal form, without explicit knowledge of the underlying physical
problem. The MNC (Min-Net-Cut) algorithm (Coon & Stadtherr, 1995) starts
with a matrix of zero-free diagonal (full transversal), and employs row and col-
umn exchanges that maintain a full transversal. The TPABLO algorithm (Choi
& Szyld, 1996) is a simple algorithm designed for structurally symmetric ma-
trices. This algorithm has been applied to the symmetrilized form (A + AT) of
structurally unsymmetric matrices, but was found to be unsatisfactory (Mallva
et al., 1997a; Mallya et al., 1997b).

Recently Camarda and Stadtherr (Camarda & Stadtherr, 1998) simplified
the MNC algorithm. It was argued that the preservation of the structural non-
singularity of the diagonal blocks is not necessary, because a pivoting strategy
is normally applied during the factorization of the diagonal blocks. Any en-
tries that are not eliminated can be moved to the border to form the interface
problem. Their algorithm, GPA-SUM (Graph-Partitioning Algorithm for Sparse
Unsymmetric Matrices), which performs row exchanges without the constraint of
maintaining a zero-free diagonal, was demonstrated to result in bordered block-
diagonal matrices with smaller border size, more diagonal blocks and better load
balance.

Both MNC and GPA-SUM are recursive bisection algorithms based on the
Kernighan-Lin (KL) algorithm (Kernighan & Lin, 1970). GPA-SUM does not
allow a row exchange unless it decreases the net-cut. MNC follows the KL al-
gorithm more strictly by permitting moves with negative gain. in the hope of
getting out of local minima.

The KL algorithm is known to be a greedy local optimization algorithm.
Allowing moves with negative gain may increase the chance of getting out of
local minima to some extent, nonetheless the quality of the final bisection has
been shown to depend greatly on the quality of the initial bisection (Hu & Blake,
1994). In recent years multilevel techniques, which provide a global view of
the problem, have been combined with the local steepest decent nature of the
KL algorithm to form efficient and high quality (undirected) graph partitioning
algorithms (Barnard & Simon, 1994; Hendrickson & Leland. 1993h: Karypis &
Kumar, 1995; Karypis & Kumar, 1998a; Karypis & Kumar, 1998b; Karypis &
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Kumar, 1999; Oliker & Biswas, 1998; Walshaw et al., 1995; Walshaw et al., 1997).
These algorithms can also be used to order symmetric matrices into BBD form,
even though most of the graph partitioning algorithms minimize the edge-cut of
the graphs, rather than the net-cut of the matrix — a more important measure
that is directly linked with the border size.

This paper presents a multilevel algorithm for the ordering of unsymmetric
matrices into BBD form. Given the great advantages of the multilevel approach,
it is surprising that there has been little published work on the application of this
approach to the unsymmetric matrix ordering problem, probably because of the
difficulties in handling asymmetry. Two exceptions are the works in (Catalyiirek
& Aykanat, 1996) and (Hendrickson & Kolda, 1998), which were brought to the
authors attention after the completion of the work presented in this paper. The
works in (Catalyiirek & Aykanat, 1996) and (Hendrickson & Kolda, 1998) are
concerned with minimizing the communication time in parallel sparse matrix
vector multiplications, which differs from our motivation of minimizing the bor-
der size of BBD matrices. Two hyper-graph models were used in (Catalyiirek
& Aykanat, 1996), whilst a bipartite graph model was used in (Hendrickson &
Kolda, 1998), and in both cases the edge-cut was minimized. On the other hand,
our work is based on the row connectivity graphs and the Galerkin operator, with
the objective of minimizing the net-cut. Our work also differs from (Catalyiirek
& Aykanat, 1996; Hendrickson & Kolda, 1998) in that a matrix coarsening strat-
egy based on heavy edge collapsing is adopted, guided by the strength of row
connectivity.

The main contribution of this paper is in the successful application of the
multilevel approach to unsymmetric matrices, combined with a KL algorithm for
minimizing net-cut. The resulting algorithm is demonstrated to give orderings
into the bordered block-diagonal form, with much smaller border size and better
load balance than existing algorithms. New algorithms which apply undirected
graph partitioning algorithms to the row connectivity graph have also been in-
vestigated.

In section 2, the problem of ordering unsymmetric matrices into bordered
block-diagonal form is defined. Existing algorithms are described in further de-
tail. Section 3 presents the authors’ implementation of the KL algorithm. as well
as the motivation and design of the multilevel ordering algorithm MOXNET. In
Section 4, MONET is compared with some new algorithms which apply exist-
ing graph partitioning softwares to row connectivity graphs, as well as the two
existing algorithms MNC and GPA-SUM, and is found to be of better quality.
Section 5 discusses future work.



2 The Matrix Ordering Problem

The (single) bordered block-diagonal matrices of concern in this paper are of the
form

‘411 Sl
A S
. : (1)
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where the A;; are m; x n; matrices, in general rectangular with m; > n;. The
basic idea of the parallel implementation is given below, further details can be
found in (Mallya et al., 1997a; Mallya et al., 1997b).

Using N processors, each processor ¢ has one diagonal block A;; and part of
the border S; held locally in its memory. The diagonal blocks are then factorized
in parallel, with row or column pivots chosen within each block. Entries of the
diagonal blocks that cannot be eliminated, including those not eliminated for
numerical reasons, are then combined with the border elements to form a double
bordered block-diagonal matrix

LU, U,
LyU, U,
' : (2)
LyUy U,
L, L, ... Ly F

Here F is the interface matrix which contains contributions from the factor-
ization of each diagonal block, in the standard Schur complement fashion. The
interface variables are then solved. Finally the remaining variables can be solved
in parallel using the factorization on each processor.

In the above process, the factorization of the interface matrix F is essentially
a sequential process, and therefore a possible bottleneck. This interface matrix
is likelv to be dense and is thus more costly to factorize than a sparse matrix of
the same size, though there may be scope to solve it in parallel using a parallel
dense solver such as ScaLapack. It is therefore important to keep the size of
the interface matrix to a minimum so as to achieve a good overall speedup of the
solution process. Furthermore, due to load balancing considerations, the diagonal
blocks should preferably be of similar size, under the assumption that the number
of floating point calculations per block is approximately proportional to its size
(see Section 4 for further discussion).

Of course the matrices presented to a linear solver are usually not ordered in
the above form, and those that are may not be load balanced. Thus there is a
need for an automatic matrix ordering algorithm.



For structurally symmetric matrices, there are many available algorithms,
which are in fact undirected graph partitioning algorithms. Of particular note
are the Kernighan-Lin algorithm (Fiduccia & Mattheyses, 1982; Kernighan &
Lin, 1970), the spectral bisection algorithm (Simon, 1991) and various multilevel
schemes (Barnard & Simon, 1994; Hendrickson & Leland, 1993b; Karypis &
Kumar, 1995; Karypis & Kumar, 1998a; Karypis & Kumar, 1998b; Karypis
& Kumar, 1999; Oliker & Biswas, 1998; Simon et al., 1998; Walshaw et al..
1995; Walshaw et al., 1997). Continuous development, stimulated by the need
to parallelize unstructured mesh based applications, has resulted in a number of
powerful graph partitioning codes, the most widely used of which include Chaco
(Hendrickson & Leland, 1993a) and, more recently, METIS (Karypis & Kumar,
1998a) and JOSTLE (Walshaw et al., 1995).

It is possible to make use of these undirected graph partitioning algorithms
to order an unsymmetric matrix A into BBD form. One way to achieve this
is to apply the graph partitioning algorithm to A + AT. However it has been
shown (Coon & Stadtherr, 1995; Mallya et al., 1997a; Mallya et al., 1997b), and
will again be demonstrated in Section 4, that such a strategy is likely to offer
an ordering of low quality for highly unsymmetric matrices. As rightly argued
by Coon and Stadtherr (1995), this is because if A is highly unsymmetric, this
approach misses the parallelism that exists in A, but not in A + AT, due to
the fact that the undirected graph A + AT contains data dependencies that do
not exist in the original system A. The authors believe that another reason
for the ineffectiveness of this strategy is that by applying an undirected graph
partitioning algorithm to .4 + AT, one is restricted to symmetric permutations of
the matrix 4, which represent only a small percentage of all possible (symmetric
and unsymmetric) permutations. Furthermore, graph partitioning algorithms
usually attempt to minimize the edge-cut of the graph, rather than the net-cut of
the matrix — a more important measure. Algorithms that are specifically designed
to order unsymmetric matrices are therefore necessary and can be expected to
give ordering of better quality.

2.1 Nets and net-cut

The structure of a sparse symmetric matrix A can be represented by an undirected
graph G = (1, E), where V" is the set of vertices (row and column indices) and £
the set of edges. An edge between vertex 7 and j exists if a;; # 0. where a;; is the
entry of the matrix at row ¢ and column j. Note that by symmetry, if a;; # 0,
then aj; # 0, so there is no direction associated with the edges.

The structure of a sparse unsymmetric matrix A on the other hand can be
represented by a directed graph G = (V, E). An edge from vertex i to j exists if
a;; # 0. Notice that this does not imply that the edge j — 7 exists.

Definition 1 A NET (Coon & Stadtherr, 1995) is defined as a set of indices



related to a column of a sparse matriz. It consists of all the row indices of the
nonzero entries in that column.

For example, the net corresponding to column 4 of the matrix in Figure 1 is
{1,4,5,7}. A net is cut by a partition of the matrix, if two of its row indices
belong to different parts of the partition. For example in Figure 2, nets 2, 3, 4,
6 and 8 are cut by the partition (illustrated by the broken line), whereas nets 1,
5 and 7 are not.

Definition 2 The NET-CUT of a partition is defined as the number of nets that
are cut by that partition.

For instance, the net-cut by the partition shown in Figure 2 is 5.

In the ideal case when a partition has zero net-cut, the matrix can be reordered
into block-diagonal form with no border at all. Although this is unlikely for a
general matrix, the aim of the ordering algorithm is to reorder unsymmetric
matrices so that the partition gives as small a net-cut as possible. At the same
time, each partition should have approximately the same number of rows so as
to maintain load balance. To achieve this, the following concept is useful.

Definition 3 The GAIN associated with moving a row of a partitioned matric
into another partition is the reduction in the net-cut that will result after such a
move. The gain is negative if such a move increases the net-cut.

On the right hand side of Figure 1, the gain for each row, with respect to the
“natural” initial partitioning indicated by the broken line, is given.

2.2 The row connectivity graph

The matrix ordering algorithm of this paper utilizes the concepts of row connec-
tivity and row connectivity graphs, first introduced by Mayoh (1965). They are
defined as follows.

Definition 4 Two rows of a matriz are CONNECTED to each other, if they share
one or more column indices.

Definition 5 A ROW CONNECTIVITY GRAPH G4 of a matriz A is a graph con-
sisting of the row indices of A as vertices. Two vertices i and j of the graph are
connected by an edge if rows i and j of the matriz are connected. The number of
shared column indices between row i and row j of the matriz is called the EDGE
WEIGHT of the edge (i,]) of the graph, and the number of nonzero entries in row
i of the matriz is called the VERTEX SIZE of vertez i of the graph



For example, in Figure 1, rows 3 and 4 are not connected, while rows 3 and
6 are connected with an edge weight of 3. The vertex sizes of rows 3 and 6 are 3
and 6, respectively.

It has been proved that the structure of the row connectivity graph G4 is
given by the matrix product AA” (Tewarson, 1973). In fact the following new
result with regard to the edge weights and vertex sizes can be proved. The proof
is relatively straightforward and is thus not given here.

Theorem 1 Let A be an unsymmetric matriz of dimension m by n. Let A be
the matriz A but with all nonzero entries set to 1. Then vertices i and j (i # j)
form an edge of the row connectivity graph G 4 if and only if (AAT);; # 0. The
edge weight of this edge is (AAT),;. The verter size of the vertex i of graph G 4
equals (AAT);;.

Due to Theorem 1, hereafter G 4 will be used to denote the row connectivity
graph of A, as well as the matrix AAT.

As an example, for the matrix A in Figure 1, the matrix representation of its
row connectivity graph is

51145 41
111 1 11
SERERE
o ,
AAT =15 1145 11 (3)
3 3 3
41134 41
114 13114

Here the off-diagonal values correspond to the edge weights of the row connectiv-
ity graph. For instance entry (3,4) is zero (rows 3 and 4 of A are not connected),
while entry (3,6) is 3 (rows 3 and 6 of A have 3 common column indices). The
values on the diagonal correspond to the vertex sizes of the row connectivity
graph. For example, entry (1,1) is 5 because row 1 of A has 5 nonzero entries.

Definition 6 A row in partition 1 is said to be on the BOUNDARY between par-
titions i and j, if it is connected to a row in partition j. If a row is not on the
boundary, it s said to be an INTERIOR row.

For example. row 2 in Figure 2 is on the boundary, because it is connected
with rows 3. 3, 7 and 8 in the partition below the broken line. On the other
hand, row 6 is an interior row since it is not connected with any other rows in
the partition above the broken line.

3 The Multilevel Matrix Ordering algorithm

The matrix ordering algorithm proposed in this paper is based on the multilevel
approach. Given the original unsymmetric matrix, a series of matrices will be



generated, each coarser (with smaller row dimension) than the preceding one.
The coarsest matrix is then bisected. This bisection is prolonged to the finer
matrices and refined using the KL algorithm. Partitioning of matrices into more
than two blocks can be achieved by recursive bisection.

In this section the implementation of the KL refinement algorithm is described
first, followed by the multilevel approach.

3.1 The KL refinement algorithm

The KL algorithm (Kernighan & Lin, 1970) was first suggested in 1970 for bi-
secting undirected graphs in relation to VLSI circuit layout. It is an iterative
algorithm. Starting from a load balanced initial bisection, it first calculates the
gain for each vertex. Here the gain of a vertex is defined as the reduction of
edge-cut (the number of edges of the undirected graph cut by the bisection) that
results, if that vertex is moved from one partition of the graph to the other. At
each inner iteration, the algorithm moves the vertex which has the highest gain,
from the partition in surplus (that is, the partition with more vertices) to the
partition in deficit. This vertex is then locked and the vertex gains updated.
The procedure is repeated even if the highest gain is negative, until all of the
vertices are locked. The last few moves that have negative gains are then un-
done and the bisection is reverted to the one with the smallest edge-cut so far in
this iteration. This completes one outer iteration of the KL algorithm, and the
iterative procedure is restarted. Should an outer iteration fail to result in any
reductions in the edge-cut, the algorithm is terminated. The initial bisection is
generated randomly and for large graphs, the final result is very dependent on
the initial choice. The KL algorithm is a local optimization algorithm, with a
limited capability of getting out of local minima by way of allowing moves with
negative gain.

By using appropriate data structures, it is possible to implement the KL
algorithm so that each outer iteration has a complexity of O(|E|) (Fiduccia &
Mattheyses, 1982), where |E| denotes the number of edges in the undirected
graph.

The principle of this algorithm was applied in the context of the ordering of
unsvmmetric matrices by Coon and Stadtherr (Coon & Stadtherr, 1995). They
started with a matrix having a zero-free diagonal, and considered permutations
of row and column vertices of a bipartite graph representation of the matrix.
Row and column indices that were permuted were locked for the rest of an outer
iteration. Two types of moves were identified which may reduce net-cut without
destroying the zero-free diagonal. The first move permutes both row and column
i to the other partition; the second move finds a cycle on the bipartite graph con-
sisting of unlocked row and column vertices, and permutes the corresponding row
indices. The second move can be potentially expensive to identify. Restricting
the cycle to a length of four was found to be a good compromise.



Because the above algorithm (referred to as MNC in (Camarda & Stadtherr,
1998)) needs to preserve a zero-free diagonal, the moves are rather restrictive.
Camarda and Stadtherr (Camarda & Stadtherr, 1998) sought to simplify the
algorithm by not maintaining the zero-free diagonal. They argued that structural
non-singularity does not guarantee numerical non-singularity, and since a pivoting
strategy must be used anyway, starting with structurally non-singular matrices
is not strictly necessary. Instead, they used row permutations only, with no
restriction except that of load balance, so as to allow a greater number of possible
row moves. The algorithm, GPA-SUM, was again a recursive bisection algorithm.
The rows were sorted by their gains. Rows that were moved are locked for the rest
of this outer iteration. Two types of moves were considered. The first exchanges
unlocked rows between partitions, the second moves a single row into the other
partition. In GPA-SUM only moves that decrease the net-cut are allowed. The
resulting algorithm GPA-SUM was found to give smaller net-cut, better load
balance and more blocks when compared with the MNC algorithm. It was also
found to be faster (Camarda & Stadtherr, 1998).

Our implementation of the KL algorithm follows more closely that of GPA-
SUM in the sense that only row permutations are considered. However it differs
from GPA-SUM in two respects. The first is that rows with negative gains may
also be moved in the hope of escaping local minima. Such a move is called the
uphill move, formally defined as follows.

Definition 7 Given a row partition of a matriz, the move of a row from partition
p to partition q is said to be UPHILL, if such a move increase either the net-cut,
or the local load imbalance. Here LOCAL LOAD IMBALANCE is defined as the
absolute value of the difference of the number of rows in partitions p and q.

The second difference in our implementation of the KL algorithm to that of
GPA-SUM is that the row vertex with the highest gain is moved, one at a time,
from the partition in deficit to the partition in surplus. Row exchange is not
employed because the gain of a row exchange is more difficult to calculate than a
simple sum of two individual gains, since moving one row vertex may affect the
gain of the other.

Following the practice in the partitioning of undirected graphs (Karypis &
Kumar, 1999; Walshaw et al., 1995) of reducing the computational complexity of
the KL algorithm, only rows on the boundary are considered for moving. Here
we recall, from Definition 6, that a row is on the boundary if it is connected to
a row in another partition. We also follow Karipis & Kumar (1999) by setting
a limit on the number of uphill moves (moves which increase the net-cut). The
proposed KL algorithm for bisecting unsymmetric matrices is as follows, where
two partitions, 0 and 1, will result.

Algorithm KL

e 1. Set the initial bisection. Initialize the gain of each row on the boundary
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e 2. doITER =1, MAX_.OUT_ITER

— 2.1.  choose from the partition in surplus (in case of a tie, chose from
partition 0) an unlocked boundary row i with the highest gain; move to
the other partition.

2.2.  if the previous move is an uphill move, and the number of con-
secutive uphill moves exceed MAX_UPHILL_STEPS, or if all rows are
locked, undo all the uphill moves, unlock all rows and goto Step 2.4

— 2.8. lock rowt, update the gains and the boundary, repeat from Step 2.1.

— 2.4. if net-cut or load balance is not improved, exit.

e end do

Notice that the number of continuous uphill moves is restricted to
MAX_UPHILL_STEPS, so as to reduce the computational complexity of the
KL algorithm further. The trade-off is that the algorithm is more likely to get
stuck in local minima if MAX_UPHILL_STEPS is set too small. For an efficient
implementation, only the gains of rows connected to the moved row are updated,
because the gains of the remaining rows are not affected. Gains of boundary rows
are kept in a linked list of gain-buckets. Rows with the same gain are inserted into
the same bucket. This allows efficient retrieval and insertion of gains (Fiduccia
& Mattheyses, 1982; Karypis & Kumar, 1999)

Figures 1-10 illustrate the KL algorithm on a randomly generated 8 x 8 matrix.
This matrix is shown in Figure 1, with an initial net-cut of 8 corresponding to the
partitioning illustrated with the broken line. At the beginning, both partitions
have the same number of rows and to break the tie, a row is chosen to move from
partition 0 (top half of the matrix). It is seen from Figure 1 that the highest gain
in partition 0 is achieved at row 3, because moving this row will eliminate the
net-cut at columns 2, 5 and 7. After moving that row to partition 1 (bottom).
the gains are updated as in Figure 2 and the net-cut becomes 8 — 3 = 5. Now
partition 1 is in surplus and the highest gain in this partition is at row 5. Moving
row 5 to partition 0 results in Figure 3 with a net-cut of 4. Next row 2 is moved
from partition 0 to partition 1 to break the tie in load balance, which gives the
matrix in Figure 4. Now partition 1 is in surplus and row 7 is moved to partition
with a gain of 3, the resulting matrix in Figure 5 has a net-cut of 1. The rest of
moves up to Figure 9 are all uphill moves and at Figure 9 all rows are locked. The
uphill moves are undone and the KL outer iteration can restart from Figure 10.
For this particular example, no improvement in net-cut and load balance can be
achieved in the next KL outer iteration and the final matrix in Figure 10 can
be ordered by moving column 3 to the border, and rearrange the other columns.
The reordered matrix is shown in Figure 11 with the border part marked by “B".
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3.2 The Multilevel Approach

A multilevel approach, in the context of the partitioning of undirected graphs
(Barnard & Simon, 1994; Karypis & Kumar, 1998a; Walshaw et al., 1995), gen-
erates a series of coarser and coarser graphs. Each coarse graph encapsulates
the information needed to partition the original graph from its “parent”, but
contains fewer vertices. The coarsest graph is partitioned. This graph has very
few degrees of freedoms, and can therefore be partitioned rapidly. The partitions
on the coarse graphs are recursively prolonged (usually by injection) to the finer
graphs, with further refinement at each level.

One of the first uses of the multilevel approach for the partitioning of undi-
rected graph was reported in (Barnard & Simon, 1994), where the multilevel
approach is combined with the spectral bisection algorithm, mainly to reduce the
partitioning time. It was soon realized (Hendrickson & Leland, 1993b; Karypis
& Kumar, 1999; Walshaw et al., 1995) that the multilevel approach provides a
global view of the problem, and therefore complements ideally the KL algorithm
which is a good local optimizer.

There are three main phases in the application of the multilevel approach -
coarsening, partitioning and prolongation. Details of how these three phases are
implemented in our multilevel algorithm for unsymmetric matrices are discussed
in the following.

3.2.1 The coarsening phase

There are a number of ways to generate a coarse undirected graph. In (Barnard
& Simon, 1994), the maximal independent set of a graph is chosen as the seed
vertices for the coarse graph. An independent set of a graph is a set of its vertices,
with no two of the vertices in the set connected by an edge of the graph. An
independent set is a maximal independent set if the addition of an extra vertex
makes it no longer independent.

As an alternative, in (Walshaw et al., 1995), a greedy algorithm was used to
form small clusters of, say, 10 vertices for collapsing. This allows more aggressive
coarsening.

However, the most popular method for generating the multilevel of coarse
undirected graphs is based on edge-collapsing (Hendrickson & Leland. 1993b:
Karypis & Kumar, 1999). Selected edges are collapsed so that the two vertices
connected by one of these edges forms a multi-node. Each vertex of the resulting
coarse graph has a weight associated with it, indicating the number of original
vertices that it represents. Each edge of the coarse graph also has a weight
associated with it, indicating the number of original edges that it represents.
The edges to be collapsed are usually selected using the idea of matching. A
matching of a graph is a set of edges, such that no two of them share the same
vertex. The maximal match is a matching of the largest possible size.
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In the context of partitioning of undirected graphs, heavy edge matching
(Karypis & Kumar, 1999) has been found to work well. Vertices are visited
randomly. For each of these vertices, the unmatched edge from the vertex with
the highest edge weight is selected. Heavy edge matching has the advantage that
the resulting coarse graph has a relatively small total edge weight, and therefore
partitioning it is more likely to give a small edge-cut (the sum of the weights of
the edges cut by a partitioning) (Karypis & Kumar, 1999).

Another advantage of the edge-collapsing approach in undirected graph par-
titioning is that the edge-cut on the coarsest graph equals that on the finest
(original) graph, if the partitioning on the coarsest graph were injected to the
finer graphs without further refinement. Therefore to some extent the original
problem is encapsulated well by problems of smaller sizes. For this reason, in our
unsymmetric matrix ordering algorithm, the idea of edge-collapsing is also used.

Our strategy for “coarsening” an unsymmetric matrix is to macch two rows of
the matrix if they are strongly connected. Here two rows are strongly connected
if the corresponding edge in the row connectivity graph has a large edge weight.
All row vertices are initially unlocked. An edge in the row connectivity graph is
said to be a free edge if its two end vertices are unlocked. Unlocked row vertices
are visited, and the free edge that is connected to such a vertex with the highest
edge weight is selected. The two end row vertices are then locked. This process
is repeated for the remaining unlocked row vertices until all rows are locked.
Matched rows of the matrix are finally collapsed. The rationale for this heavy
edge collapsing strategy is that if two rows are strongly connected, they must
have many identical column entries and should be kept on the same partition, so
as to avoid a high net-cut.

The weight of a row vertex, defined as the number of rows of the original
matrix that this row vertex represents, is accumulated. The resulting matrix has
fewer rows but the same number of columns. The coarsening process is applied
recursively until either the number of rows in the coarse matrix is less than the
pre-set minimal number (say 100), or the ratio of the number of rows between
the fine and coarse matrices is over a certain constant. The latter is necessary
for the following reasons. On some matrices, after many levels of coarsening,
the coarsest matrix has one super row vertex of very high vertex weight. often
higher than 50% of the total vertex weight. In such a case, subsequent coarsening
will not reduce the number of rows significantly. Furthermore, the presence of a
super vertex in the next two phases of the algorithm, namely partitioning and
prolongation, may create load imbalance. Therefore coarsening will stop if the
ratio of the number of rows between two subsequent matrices exceeds 0.8.

3.2.2 The partitioning phase

Because the coarsest matrix has few rows, it can be bisected quickly with high
quality by many algorithms. To ensure good load balance, the bisection is done
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such that the summations of the row vertex weights for each sub-matrix are
roughly the same.

The choice of the partitioning algorithm at this coarsest level is not very
important to the overall quality of the partitioning because refinement will be
carried out at the subsequent finer levels. This was also found to be the case in
undirected graph partitioning (Hendrickson & Leland, 1993b). We have tested
both the KL algorithm with MAX_UPHILL_STEPS = oo, which allows the KL
algorithm unlimited uphill steps in the hope of finding the global minimum net-
cut, and also the METIS (Karypis & Kumar, 1998a) graph partitioning code
(applied to the row connectivity graph). It was found that both give similar
results. The former is therefore used by default.

3.2.3 The prolongation phase

During the prolongation phase, the partitioning of a coarse matrix is inherited by
the fine matrix through simple injection. The resulting partition on the fine ma-
trix is further refined using the KL algorithm. Because the fine matrix inherited
a good starting partition, the size of the boundary should only be a small fraction
of that of the interior. Therefore the KL algorithm, which takes the boundary
refinement approach, should be quite efficient.

3.2.4 The two level algorithm

With all the three main phases described, the complete multilevel algorithm can
be formulated. As is standard practice with multi-grid type algorithms, it is
sufficient to give only the 2-level algorithm. The superscript f and ¢ will be used
to represent the fine and coarse matrix quantities respectively. For example A/
will be the fine matrix of size m; x n; and A® will be the matrix after coarsening,
of size m. x n.. The following notation of a bisector is needed.

Definition 8 A BISECTOR z corresponding to the bisection of an m x n matrix
A is a vector of size m, consisting of zeros and ones. x; = 0 (respectively, 1) if
row 1 of the matriz belongs to partition 0 (respectively, 1).

For example the bisector corresponding to the bisection shown in Figure 3 is
r=(1,1,0,1,1,0,0,0). The 2-level algorithm is now given as follows.
The two level algorithm

e Coarsening phase:
— form the row connectivity matriz GY, = f{f(:{f)T.
— form the prolongation operator P and the restriction operator R = PT.

~ coarse matriz A° = RA’ and coarse matriz row connectivity graph
- o \T
G, = Ae(A0)
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o Partitioning phase:

— Use the KL algorithm with MAX_UPHILL_STEPS = oo to bisect A€,
starting with the natural initial natural bisector x§ = (0,0,...,0,1,...,1).
The resulting bisector is x°.

e Prolongation phase:

— On the fine matriz, starting with the initial bisector ré = Pz°, apply
the KL refinement algorithm to give the final bisector 2.

The prolongation operator is the operator that gives the fine grid initial bi-
sector from the coarse grid bisector, that is,

:rg = Pz°.

In the case of injection combined with heavy edge-collapsing as the coarsening
strategy, this prolongation operator is a sparse matrix of size m; x m, defined
as

(4)

p. = 1, if row vertex ¢ of Ay collapes into row vertex j of A.
! 0, otherwise

The coarse matrix is formed by the row restriction of the fine matrix, A° =
RA! where R = PT is the restriction operator. It could have been formed
using the full Galerkin operator with the same restriction operator but with a
prolongation operator chosen such that heavily connected columns are collapsed

together. This would give )
A= RAP,

with P chosen independent of R. This approach would reduce both the column
and row dimensions. However such a formulation would not preserve the nice
property that the net-cut of the coarse matrix equals that of the fine matrix after
injection. Since this property contributes to the high quality of the multilevel
approach, row restriction only is carried out in this work.

Notice that the coarse row connectivity graph could also have been formed
directly through the Galerkin operator G = RGY,P. However such a formula-
tion does not provide the correct edge weights. For this reason the coarse row
connectivity graph is generated directly from the coarse matrix.

The above 2-level algorithm is applied recursively to form the multilevel al-
gorithm. Figure 12 illustrates the result of applying the multilevel algorithm
to a matrix of size 381 x 381. On the left-hand side, three levels of coarsening
are carried out. The coarsest matrix, on the bottom left, is of size 58 x 381.
The partitioned coarsest matrix is shown on the bottom right (in the right hand
part of Figure 12, columns are reordered so as to show clearly the bordered block-
diagonal form, in practice this column reordering is not carried out). This matrix
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is then prolonged to the finer levels and refined there. At the finest level, the
reordered original matrix (top right of Figure 12) is shown in the bordered block-

diagonal form, with 2 diagonal blocks and a net-cut of 51 (in percentage terms
this is 13.39%).

4 Numerical Results

The software based on the above multilevel algorithm is named MONET (Matrix
Ordering for minimal NET-cut). It is available from the corresponding author.

In this section, MONET is compared with other algorithms for a range of test
matrices. Table 1 lists these matrices in alphabetical order, with a description
of the size of the matrices and their sources. The matrices are either from the
Harwell-Boeing Collection (http://www.dci.clrc.ac.uk/Activity /SparseMatrices)
or from the University of Florida Sparse Matrices Collection (http://www.cise.ufl.
edu/~davis).

In MONET, by default the maximum number of levels in the multilevel al-
gorithm is set to MAX_LEVEL = oo, and parameters for the KL refinement
algorithm in the prolongation phase are set to MAX_UPHILL_STEPS = 100 and
MAX_OUT.ITER = 10. These parameters are chosen rather arbitrarily. They
are not specially tuned for the test problems.

A few variations of the algorithm were also tested. These variations, together
with the default algorithm, are listed as follows:

e MONET - the default multilevel KL, algorithm with MAX_LEVEL = oo,
MAX_UPHILL_STEPS = 100 and MAX_OUT.ITER = 10.

¢ MONETs - a single level KL algorithm with MAX_LEVEL = 1,
MAX_UPHILL_STEPS = 100 and MAX_OUT_ITER = 10.

e MONET{ - a single level aggressive KL algorithm with MAX_LEVEL = 1,
MAX_UPHILL.STEPS = oo and MAX_OUT_ITER = 1000.

e MONETY, ~ a multilevel aggressive KL algorithm. MAX_LEVEL = oc,
MAX_UPHILL STEPS = oc and MAX_OUT_ITER = 1000.

MONETS is the single level KL algorithm with a moderate ability to climb
out of a local minima. By comparing MONET with MONETs, we hope to see
the benefit of using the multilevel approach. MONETS and MONETY; are the
aggressive version of the single and multilevel algorithms. Here the KL algorithm
is allowed to perform as many uphill steps as necessary, in the hope that a better
approximation to the global minimum can be reached, at the expense of higher
computational cost.

One of the simplest ways of ordering an unsymmetric matrix A is to apply

a symmetric matrix ordering algorithm to 4 + A”. However this approach was
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found to be unsatisfactory (Mallya et al., 1997a; Mallya et al., 1997b), as shall be
further illustrated later. A better approach is to reorder the rows of the matrix
based on the row connectivity matrix, G4 = AAT. The rows are partitioned by
using a graph partitioning algorithm that minimizes the edge-cut on G 4. It can
be proved that the edge-cut of a partitioning of G4 is an upper bound of the
net-cut of the same row partitioning of A. The resulting ordering can be further
improved using the KL algorithm. Therefore the following two additional new
algorithms are tested

e MET - applying the graph partitioning algorithm METIS (Karypis & Ku-
mar, 1998a), software available from http://www-users.cs.umn.edu/~karypis
/metis/metis.html) to G 4. The version used for this paper was METIS 3.00.

e MetMo — partition using METIS, further refinement using MONETS (the
single level KL algorithm).

It should be stressed that METIS is a very efficient and high quality software
package for graph partitioning based on minimizing edge-cut. In using it for
ordering unsymmetric matrices, which is concerned with minimizing net-cut, we
are not testing the quality of METIS. Therefore comparison figures on net-cut
should not be viewed as a measure of the quality of METIS. Rather, using METIS
on the symmetric matrix G, is a simple way to order an unsymmetric matrix,
and as such is a benchmark that any new ordering algorithm for unsymmetric
matrices should measure itself against and exceed.

The quality and efficiency of the algorithms are measured by

e net-cut — Here the net-cut is expressed in percentage terms, which is the
net-cut divided by the order of the matrix. The smaller the net-cut, the
better the quality of the algorithm.

e load imbalance - This is defined (Camarda & Stadtherr, 1998) as the size
of the largest block, divided by the average block size. expressed as a per-
centage. The smaller the load imbalance, the better.

e CPU time.

Note that the work needed to factorize a block is related to the number of
non-zeros as well as the sparse structure of the block. A better measure of the
load imbalance is therefore the variation in the expected number of floating-point
operations needed to factorize each of the blocks. However this is more difficult
to calculate a priori and the above measure, which only takes into account the
size of the diagonal blocks, is used as a crude but practical approximation.

The algorithms were applied to the 29 test problems on a Digital computer
with 300 MHz Alpha EV5 processor. The net-cut and load imbalance are listed
in Table 2 for four blocks and in Table 3 for sixteen blocks. The CPU times are
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listed in Tables 4 and 5. All these tables are divided into two vertical regions,
with MONET, MET and MetMo on the left, and the variants of MONET on
the right. In the left hand region of Tables 2 and 3, the lowest net-cut for each
problem (among the three algorithms MONET, MET and MetMo) is highlighted.

As can be seen from Tables 2 and 3, all our algorithms gave small load imbal-
ances except on very small problems, where a minor variation in the block size
can cause a large change in the load imbalance.

We first compare MONET with its variants in terms of the net-cut and the
CPU time. For most cases, MONET gave a net-cut similar to those given by the
single level aggressive KL algorithm MONET? and the multilevel aggressive KL
algorithm MONETQ, indicating that MONET possesses the same capability of
getting out of local minima as the aggressive versions of the KL algorithm, while
only requiring a limited number of uphill moves. It is therefore computationally
less expensive, as seen from Tables 4 and 5. As expected, MONETY, gives the
lowest net-cuts on most problems, due to the combination of the multilevel tech-
nique and the aggressive KL algorithm. This is however achieve at the cost of
much higher CPU times. Overall, MONET gave high quality ordering with rel-
atively low CPU times. This algorithm is therefore taken as a good compromise
between quality and efficiency, and is used as the default.

We now compare MONET with MET and MetMo. In terms of the net-cut,
the multilevel algorithm MONET is generally better than MET. MONET is also
better than MetMo, a hybrid of the METIS and KL algorithms, for 19 out of the
29 test cases. The under-performance occurs mostly for small test problems.

In terms of CPU times (Tables 4 and 3), the single level KL algorithm
MONET]S is the cheapest, followed by MET and MetMo. The timings for MET
include that of the METIS 3.00 software itself, as well as that of forming the G 4
matrix. For example, on the largest problem lhr71, 44 of the 106 seconds required
bv MET are spent in METIS 3.00 itself, with the rest of the time spent mainly
in forming the row connectivity matrix G4. MONET is roughly 3 times slower
than MET and 4 times slower than MONETs. This is because on each level, the
row connectivity matrix has to be formed, which is computationally expensive.
Furthermore, the dimension of the coarse matrix is only reduced row-wise. not
column-wise. Thus the computational complexity is reduced more slowly than it
would have been if both row and column dimensions were reduced.

It is interesting to compare the two simple approaches to ordering — that of
using 4+ A7 and that of using the row connectivity graph (G 4 = AAT), combined
with the undirected graph partitioning software METIS. Through experimenting
on a number of cases, it was found that the latter (MET) was always much better.
This is possibly due to the fact that all the matrices in the experiment are highly
unsymmetric. To give some typical examples, it was found that when bisecting
the lhr04 test case, MET gives a net-cut of 0.64%, while the A + A7 approach
gives a net-cut of 18.95%. On the hvdrl example, MET gives a net-cut of 2.33%,
while the 4 + AT approach gives 14.6%.
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Table 6 compares MONET with two existing algorithms, GPA-SUM (Ca-
marda & Stadtherr, 1998) and MNC (Coon & Stadtherr, 1995). The lowest
net-cuts are highlighted. The net-cut and load imbalance figures for GPA-SUM
and MNC were taken from (Camarda & Stadtherr, 1998), except those for the two
largest test cases (1hr71 and 1hr34), which were taken from (Coon & Stadtherr,
1995) since results were not available from (Camarda & Stadtherr, 1998).

In (Camarda & Stadtherr, 1998), it was found that GPA-SUM was similar
or better than MNC in terms of smaller net-cuts as well as better load balance.
From Table 6 it is evident that in general, MONET gives much smaller load
imbalances. The load imbalances for MNC are especially large. On the lhrl0
case the imbalance is 151.6%! In terms of net-cut, MONET is better than both
GPA-SUM and MNC for most of the test cases. This is particularly true on the
matrices from the Harwell-Boeing Collections, where MONET sometimes gives
a net-cut 5 times smaller than GPA-SUM. On the lhr series of test cases, the
advantage of MONET in terms of net-cut is not as great. For the two largest
cases, MONET gives slightly worse net-cut than MNC, but we suspect this is
due to the extra number of diagonal blocks (the number of diagonal blocks for
MONET is currently restricted to a power of two, while for MNC the number
of blocks may not be a power of two). MONET however gives far smaller load
imbalance.

5 Discussion and Future Work

In this paper a multilevel ordering algorithm MONET for unsymmetric matrices
has been proposed. In terms of net-cut and load balance, the MONET algorithm
has been demonstrated to be of much higher quality than two existing algorithms.
It have also been found to be of better quality compared to two new algorithms
Met and MetMo, which apply the METIS graph partition software to the row
connectivity graph.

As discussed in Section 3.2.4, in MONET, only a row restriction is used. in-
stead of row and column restrictions based on the full Galerkin operator. The
former was chosen because a row restriction preserves the net-cut. an impor-
tant property which, we believe, contributes to the high quality of the multilevel
approach. The disadvantage is however that because only the row dimension
is reduced, the computational complexity is reduced more slowly than it would
have been if both row and column dimensions were reduced. This contributes to
the fact that MONET is around three times as expensive as the single level algo-
rithm MONETj on the set of test problems. The main cost is identified to be the
formation of row connectivity graph G 4 of a matrix A, which has a complexity
of O(nz = d) with nz the number of non-zeros in A and d the average number of
column entries in A. For future work it is planned to coarsen both the columns
and rows at the same time, thereby reducing the complexity of the multilevel
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algorithm, although the quality of the ordering offered by such an approach re-
mains a question. The authors also hope to extend the bisection algorithm to
direct k-way partitioning.

At present, MONET restricts the number of partitions to a power of two. This
restriction however is easily removed by bisecting into sub-matrices of unequal
row weight sums, as in (Hu & Blake, 1994). The real challenge for the ordering
algorithm could however be on cases where the matrix has an underlying block
diagonal form with say 10 blocks and the block sizes vary around a mean. In
such a case, there are two difficulties

e The ordering algorithm has no a priori information on the number of blocks.
For this example 10 may be the best number of partitions.

e The ordering algorithm has no a priori information on the amount of im-
balance that should be allowed, with the trade-off that strict load balance
may cause higher net-cut.

Although all the numerical results in Section 4 are derived by requiring strict
load balance, MONET does allow a load imbalance tolerance to be set at each
KL refinement step. MONET was tested on randomly generated bordered block
diagonal matrices with 10 blocks. The size of each block was allowed to vary
by 10% from the mean. These matrices were randomly permuted to conceal the
BBD form. It was found that by allowing some load imbalance, it is possible to
recover exactly the original bordered block diagonal form. However it is difficult
to know in advance how much load imbalance should be allowed. Therefore it
may be necessary to build a model for the computational time of the parallel
solution of a linear system in BBD form, as a function of the number of blocks,
the interface size and the load imbalance. The ordering algorithm should then
minimize that cost function.

It would be interesting to take into account the values of the nonzeros in the
matrix in the ordering process, so that the resulting ordered matrix is numerically
more desirable. Work to combine the ordering algorithm of this paper with a
direct sparse solver to form a parallel direct solver, or to be used as a parallel
preconditioner, is also underway.
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1 2 3 4 ) 6 7 8 gain
1 X X X X X 0
2 X 0
3 X X X X 3
4 X X X X 0
5) X X X X x 1
6 X X X 0
7 X X X X 0
8 X X X X 0

Figure 1: An 8 x 8 matrix partitioned naturally into partition 0 (top) and parti-
tion 1 (bottom). net-cut = 8

i 2 3 4 5 6 7 8 gain
1 X X X X x 0
2 X 0
4 X X X X 0
3 X X X X L
) X X X X X 1
6 X X X -3
7 X X X X 0
8 X X X X -3

Figure 2: From Figure 1, move row 3 to partition 1, gain = 3. After the move
net-cut = 5. In the gain column, a row is marked by “L” if it is locked.
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1 X X X X X -1
2 X 0
4 X X X X -1
5 X X X X X L
3 X X X X L
0 X X X -3
7 X X X X 3
8 X X X X -3

Figure 3: From Figure 2, move row 5 to partition 0 with gain = 1. After the
move net-cut = 4

1 2 3 4 ) 6 7 8 gain
1 X X X X X -1
4 X X X X -1
5) X X X X X L
2 X L
3 X X X X L
6 X X X -3
7 X X X X 3
8 X X X X -3

Figure 4: From Figure 3, move row 2 to partition 1 with gain = 0. After the
move net-cut = 4



1 2 3 4 5 6 7 8 gain
1 X X X X X -4
4 X X X X —4
5 X X X X X L
7 X X X X L
2 X L
3 X X X x L
6 X X x -3
8 X X X x -3

Figure 5: From Figure 4, move row 7 to partition 0 with gain = 3. After the
move net-cut =1

1 2 3 4 ) 6 7 8 gain
4 X X X X 0
) X X X X X L
7 X X X X L
1 X X % X X L
2 X L
3 X % X X L
6 X X X -3
8 X X X X -3
Figure 6: From Figure 5, move row 1 to partition 1 with gain = —4. After the

move net-cut = 5
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1 2 3 4 ) 6 7 8 gain
4 X X X X 0
) X X X X X L
7 X X X X L
8 X X X X L
1 X X X e X L
2 X L
3 X X X X L
6 X X X 0
Figure 7: From Figure 6, move row 8 to partition 0 with gain = —3. After the
move net-cut = 8
1 2 3 4 ) 6 7 8 gain
) X X X X X L
7 X X X X L
8 X X X X L
1 X X X X X L
2 X L
3 X X X X L
4 X X X X L
6 X X X 0

Figure 8 From Figure 7, move row 4 to partition 1 with gain = 0. After the
move net-cut = 8
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1 2 3 4 ) 6 7 8 gain
) X X X X L
6 X X X L
7 X X X X L
8 X X X x L
1 X X X X X L
2 X L
3 X X X X L
4 X X X X L

Figure 9: From Figure 8, move row 6 to partition 0 with gain = 0. After the
move net-cut = 8

1 2 3 4 ) 6 7 8 gain
1 X X X X X -4
4 X X X X —4
) X X X X x —4
7 X X X X -3
2 X 0
3 X X X X -3
6 X X X -3
8 X X X X -3

Figure 10: Undo the steps back to Figure 5, After this net-cut =1
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Figure 11: From Figure 10, move the cut column (column 3) to the right-hand
border, and reorder the other columns to give the bordered block diagonal form.
The border is denoted by “B”.
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Figure 12: multilevel algorithm applied to the west0381 test problem
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Table 1: The test matries, their order, number of non-zeros in the matrix and

source

Problem Order Non-zeros Source
1 lhr71 70304 1528092 Florida
2 lhr34 35152 764014 Florida
3 lhrl7 17576 381975 Florida
4 lhr14 14270 307858 Florida
5 lhrll 10964 233741 Florida
6 lhr10 10672 232633 Florida
7 1hr07 7337 156508 Florida
8 hydrl 5308 23752 Florida
9 1hr04 4101 82682 Florida
10 Ins 3937 3937 25407 Harwell-Boeing
11 shermand 3312 20793 Harwell-Boeing
12 1hr02 2954 37206 Florida
13 rdist3a 2398 61896 Florida
14 oilgen 2205 14133 Harwell-Boeing
15 west2021 2021 7353 Harwell-Boeing
16 westld05 1505 5445 Harwell-Boeing
17 1hr01 1477 18592 Florida
18 mahindas 1258 7682 Florida
19 gre 1107 1107 5664 Harwell-Boeing
20  west0989 989 3537 Harwell-Boeing
21 bp_1000 822 4661 Florida
22 west0655 695 2854 Harwell-Boeing
23 west0497 497 1727 Harwell-Boeing
24 west0479 479 1910 Harwell-Boeing
25 west0381 381 2157 Harwell-Boeing
26  west0167 167 507 Harwell-Boeing
27 west0156 136 371 Harwell-Boeing
28 west0132 132 414 Harwell-Boeing
29  west0067 67 294 Harwell-Boeing
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Table 2: Percentage of net-cut/load imbalance for six algorithms to order the

test problems into bordered block diagonal form with 4 blocks

problem
lhr71
lhr34
thrl7
lhri4
lhrll
lhr10
1hr07
hydrl
thro4
Ins_3937
shermanb
lhr02
rdist3a
oilgen
west2021
west1305
lhr01
mahindas
gre_1107
west(0989
bp_1000
west0655
west0497
west(0479
west(0381
west0167
west(0156
west0132
west0067

MONET

MET

MetMo

MONETs

MONETS MONETY;

0.45/0.00
1.62/0.00
2.58/0.02
2.77/2.65
3.81/0.11
3.60/0.04
4.48/0.86
2.00/8.59
7.75/0.07
9.98/0.08
7.88/0.00
6.64/0.07
7.59/0.08
17.96/0.14
7.67/0.15
4.92/0.20
12.32/0.20
19.16/0.16
25.75/0.45
9.50/0.71
26.03/0.24
14.20/0.15
8.25/0.60
16.91/0.21
41.73/0.79
19.76/2.99
14.74/0.00
17.42/0.00
52.24/1.49

0.67/0.01
2.41/0.01
4.25/0.02
3.19/0.01
5.69/0.00
5.53/0.04
7.46/0.04
1.94/0.08
10.49/0.07
10.01/0.08
13.74/0.00
11.00/0.20
11.18/0.08
18.23/0.14
7.27/0.15
11.16/0.20
13.34/0.20
25.12/0.16
32.70/0.09
8.19/0.30
29.56/0.73
27.33/0.15
36.62,/0.60
16.91/0.21

0.68/0.00
2.37/0.00
3.92/0.02
1.74/0.01
5.26/0.04
5.13/0.04
4.51/0.04
1.53/0.00
9.68/0.07
9.98/0.08
12.50,/0.00
10.66/0.07
12.59/0.08
18.10/0.14
3.36/0.15
3.85/0.20
13.27/0.20
21.62/0.16
28.18/0.09
6.27/0.30
29.44/0.24
25.95/0.15
10.26/0.60
14.41/0.21

48.82/0.79 40.68/0.79

17.96/7.78

10.78/2.99

12.18/2.56 12.18/0.00

27.27/6.06
55.22/7.46

15.91/0.00
50.75/7.46

0.27/0.00
1.53/0.01
2.48/0.02
3.41/0.01
4.10/0.00
5.15/0.04
7.13/0.04
2.90/0.00

0.27/0.00
1.49/0.01
2.57/0.02
2.95/0.01
4.07/0.00
3.85/0.00
6.38/0.04
2.98/0.08

0.27/0.00
1.05/0.01
2.18/0.66
2.77/2.65
3.41/0.00
3.17/1.09
4.48/0.86
1.43/0.00

9.12/0.07 9.12/0.07 8.34/0.07
10.11/0.08 10.08,/0.08 9.98/0.08
20.02/0.00 9.06/0.00 7.88/0.00
9.55/0.07 9.55/0.07 6.64/0.07
8.72/0.08 7.67/0.08 7.59/0.08
19.41/0.14 20.36/0.14 18.10/0.14
15.83/0.15 8.86/0.15 4.95/0.15
16.01/0.20 8.97/0.20 4.19/0.20
14.83/0.20 14.83/0.20 12.32/0.20
19.71/0.16 19.32/0.16 18.52/0.16
97.10/0.09 27.37/0.09 25.75/0.45
16.08/0.30 9.00/0.30 9.30/0.71
26.64/0.24 24.70/0.24 25.67/0.24
14.05/0.15 12.98,/0.15 12.06/0.15
12.07/0.60 8.85/0.60 8.25/0.60
15.66/0.21 16.70/0.21 16.49/0.21
46.98/0.79 40.94/0.79 40.68,/0.79
14.37/0.60 10.18,/0.60 10.78,/0.60
16.03/0.00 12.82/0.00 11.54,/0.00
15.15/0.00 15.91/0.00 17.42/0.00
52.24/1.49 52.24/1.49 52.24/1.49
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Table 3: Percentage of net-cut/load imbalance for six algorithms to order the
test problems into bordered block diagonal form with 16 blocks

problem MONET

MET

MetMo

MONETSg

MONETg

MONETY,

lhr71
lhr34
lhrl7
lhr14
lhrll
lhri0
lhr07

2.92/0.02
6.36/2.69
9.82/2.05
9.80/2.70
13.55/1.28
13.91/2.70
19.38/2.06
hydrl  7.08/8.82
lhr0d  33.04/0.27
Ins_3937 29.03/0.38
sherman5 23.82/0.00
lhr02 26.10/0.74
rdist3a  39.78/0.08
oilgen  45.58/0.86
west2021 11.38/1.34
west1505 12.36/5.25
lhr0l  40.62/0.74
mahindas 24.32/6.84
gre 1107 60.79/1.17
west0989 15.67/1.92
bp_1000 48.78/1.22
west0655 27.48/2.60
west0497 21.33/3.02
west0479 30.06/3.55
west0381 77.69/4.99
west0167 32.34/5.39
west0156
west(0132

4.75/0.02

7.23/0.09

11.69/0.05
11.24/0.13
16.65/0.26
17.28/0.30
24.83/0.31
8.20/0.38

34.97/0.66
30.86/0.38
29.95/0.00
32.94/0.74
33.32/4.09
49.30/0.86
24.74/1.34
30.50/1.00
51.59/1.83
37.76/1.75
67.84/1.17
25.88/1.92
54.50/3.16
42.29/2.60
19.50/9.46
44.26/6.89
94.49/9.19

47.31/24.55 28.14/14.97
927.56/12.82 25.64/12.82 22.44/2.56
35.61/9.09 65.91/9.09 31.82/9.09

12470.02
8.54/0.05
10.47/0.14
12.98/0.13
17.06/0.11
16.00/0.15
20.06/0.31
6.57/0.38
30.77/0.27
30.84/0.38
27.26/0.00
30.43/0.74
35.32/0.75
46.80/0.14
12.72/1.34
13.82/1.00
44.21/0.74
27.03/1.75
61.25/1.17
14.56/3.54
50.97/1.22
37.56/2.60
21.53/9.46
29.44/6.89
75.59/9.19

west0067 88.06/19.40 88.06/19.40 83.58/19.40

3.11/0.02
6.50/0.05
10.94/0.14
13.24/0.13
15.24/0.11
16.09/0.15
20.34/0.31
9.97/0.08
33.02/0.27
34.39/0.38
37.77/0.00
31.99/0.20
41.53/0.75
49.93/0.14
18.65/0.54
17.94/1.00
49.22/0.74
27.74/1.75
64.95/1.17
20.53/0.30
50.00/1.22
25.80/2.60
92.54/3.02
29.65/3.55
75.59/4.99

3.05/0.02
6.18/0.05
9.22/0.05
11.07/0.13
12.72/0.11
12.77/0.15
20.32/0.31
7.82/0.08
31.80/0.27
31.12/0.38
27.72/0.00
31.65/0.20
40.95/0.75
45.71/0.14
14.35/0.54
15.28/1.00
48.54/0.74
24.01/0.48
62.06/1.17
15.98/1.92
45.50/1.22
25.04/2.60
23.14/3.02
30.06/3.55
72.70/4.99

31.14/14.97

29.34/5.39
25.64/2.56 25.64/12.82
34.85/9.09 34.09/9.09

9.11/0.66
5.19/1.59
8.00/1.78
9.36/2.70
11.81/0.11
14.53/1.20
18.37/2.06
6.35/0.08
30.87/0.27
30.15/0.38
22.01/0.00
26.17/0.74
39.78/0.08
43.27/0.14
10.44/2.13
12.16/1.00
39.95/0.74
24.48/1.75
59.62/1.17
16.28/1.92
19.27/1.22
21.89/2.60
21.33/3.02
30.18/3.55
76.38/4.99
30.54/5.39
25.64/2.56
35.61/9.09

88.06/19.40 88.06/19.40 88.06/19.40
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Table 4: CPU time (in seconds) for six algorithms to order the test problems into
bordered block diagonal form with 4 blocks

problem  MONET MET MetMo MONETS MONET’Q MONET?A
lhr71 135.43 60.85 62.15 39.81 165.29 651.55
lhr34 49.45 23.45 24.68 13.47 246.81 322.51
lhr17 20.34 10.88 11.43 7.20 144.16 144.03
lhr14 15.90 8.69 9.33 5.22 83.95 117.18
lhril 11.78 6.35 6.78 4.21 56.51 104.07
lhr10 11.21 6.63 6.95 3.59 41.48 81.47
lhr07 7.60 4.20 4.63 2.45 38.94 56.96
hydrl 1.92 0.68 0.77 0.44 2.21 7.37
lhr04 4.18 2.09 2.33 1.29 15.14 46.11
Ins_3937 2.73 0.64 0.68 0.95 3.18 6.13
shermanb 2.00 0.78 0.92 0.40 2.42 3.26
1hr02 1.92 0.85 0.91 0.53 2.94 12.84
rdist3a 2.21 1.09 1.20 0.66 9.68 13.38
oilgen 0.82 0.31 0.35 0.34 1.95 2.84
west2021 0.68 0.24 0.26 0.17 0.86 1.46
west1505 0.59 0.19 0.19 0.11 0.63 1.13
thr01 1.04 0.40 0.44 0.25 1.94 6.66
mahindas 2.73 0.38 0.46 0.18 3.71 4.12
gre_1107 0.43 0.17 0.19 0.14 0.59 0.97
west(0989 0.31 0.12 0.13 0.07 0.46 0.56
bp_1000 0.39 0.11 0.23 0.12 0.53 1.18
west0659 0.25 0.09 0.10 0.05 (.20 0.51
west(497 0.18 0.07 0.10 0.04 0.20 0.25
west(0479 0.14 0.06 0.07 0.04 0.12 0.27
west0381 0.24 0.11 0.15 0.08 0.50 0.70
west0167 0.02 0.02 0.03 0.01 0.04 0.05
west0156 0.02 0.02 0.02 0.01 0.02 0.04
west(0132 0.02 0.02 0.02 0.01 0.02 0.04
west0067 0.01 0.02 0.03 0.01 0.01 0.02

34



Table 5: CPU time (in seconds) for six algorithms to order the test problems into
bordered block diagonal form with 16 blocks

problem MONET MET MetMo | MONETs MONETS MONETYy,
lhr71 287.67 106.81 110.15 70.88 721.37 1327.89
Ihr34 129.98  46.96  48.96 29.43 440.33 604.36
Ihr17 58.05  21.58  22.75 14.10 215.22 284.15
Ihrl4 3583  17.15  18.03 11.15 142.98 237.08
lhr11 32.55  12.58  13.60 8.17 103.36 176.90
lhr10 26.05 1298 13.80 7.32 87.53 156.63
1hr07 1552 844  8.98 4.95 61.91 104.37
hydrl 4.71 1.53  1.64 1.06 4.64 12.55
Ihr04 11.16 427  4.67 2.78 31.55 67.98
Ins_3937 4.49 141 1.38 1.17 5.85 10.78
sherman5  2.97 139  1.54 0.78 4.41 6.29
Ihr02 6.41 172 2.03 1.07 7.04 21.11
rdist3a 6.81 214 232 1.55 17.00 24.02
oilgen 2.02 067  0.76 0.65 3.25 4.89
west2021 1.72 0.51  0.58 0.31 1.16 2.58
west1505 1.24 039 044 0.25 0.86 1.99
Ihr01 3.38 094  1.04 0.60 3.53 9.48
mahindas  1.39 0.66  0.75 0.45 3.93 4.45
gre_1107 0.77 0.37 0.4 0.28 0.98 1.61
west0989  0.51 0.27  0.29 0.15 0.59 0.86
bp_1000 0.63 036  0.41 0.19 0.73 1.78
west0655 0.31 0.17  0.19 0.12 0.31 0.70
west0497  0.23 0.17  0.17 0.09 0.28 0.35
west0479  0.23 0.14  0.20 0.09 0.18 0.39
west0381 0.31 025 027 0.13 0.59 0.80
west0167  0.04 0.06  0.06 0.03 0.06 0.07
west0156  0.03 0.05  0.05 0.03 0.04 0.04
west0132 0.04 0.05  0.05 0.02 0.03 0.04
west0067  0.02 0.04  0.04 0.02 0.02 0.02




Table 6: Comparing MONET with GPA-SUM and MNC. The entries give the

number of blocks/net-cut (%)/load imbalance (%)

problem MONET GPA-SUM MNC
Thr71 16/2.92/0.02 - 10/2.1/31.1
Ihr34 8/3.23/0.02 ; 6/2.2/57.2
lhr17 4/4.48/0.86 4/6.90/9.3
lhrl7 8/5.83/2.05  8/7.44/6.3 -

lhrl7 16/9.82/2.05  16/11.8/8.2 ;
thrld 8/5.31/2.70  8/9.01/6.0  6/5.40/58.8
Ihr14 16/9.80/2.70  16/13.4/10.6 -

Ihrll 8/7.45/0.84  8/9.87/6.9  10/9.64/148.8
lhr11 16/13.55/1.28 16/16.3/11.8 -
Ihr10 8/7.19/0.07  8/9.59/6.0  10/9.65/151.6
Ihr10 16/13.91/2.70  16/15.8/7.9 .

1hr07 8/10.09/0.86  8/11.7/7.0 ;

1hr07 16/19.38/2.06 16/18.1/11.0 i
hydrl 4/2.00/8.59 - 4/3.43/8.8
hydrl 8/3.86/8.67  8/9.19/9.9 ;
hydrl 16/7.08/8.82  16/12.9/18.5 ;

Ihr04 4/7.75/0.07  4/7.85/3.4  3/6.91/49.6
1hr04 8/16.51/0.07  8/15.9/10.2 ;

Ins 3937  2/3.33/0.03  2/21.7/10.0 i
Ins.3037  4/9.98/0.08  4/55.2/10.2  6/18.0/72.2
sherman5  2/4.35/0.00  2/18.8/10.1 -
sherman5 4/7.88/0.00  4/41.8/16.7  4/22.7/105.4
west2021  2/5.54/0.05  2/15.0/15.3  3/9.25/70.6
west2021  16/11.38/1.34 16/21.9/24.4 ;
west1505  2/2.06/0.07  2/15.1/1.0  3/9.17/62.7
west1305  16/12.36/5.25  16/22.7/9.5 -
mahindas  2/14.94/0.00  2/25.0/8.3 ;
mahindas  4/19.16/0.16  4/35.8/29.8 -

gre 1007 2/12.65/0.09  2/34.8/35  2/11.8/5.9
west0989  2/5.66/0.1  2/155/1.1  3/10.4/59.6
west0989  16/15.67/1.92  15/23.4/9.2 ;

bp 1000 2/15.45/0.00  2/20.2/6.3  2/14.1/19.0
bp.1000  4/26.03/0.24  4/35.6/3.4 ]
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