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1. INTRODUCTION.

Let N be an H-type group and let S be the canonical solvable extensiou,
as defined in [3]. Harmonic analysis on S has strong similarities with that of
symmetric spaces of negative curvature. In particular, it was proved by Damek-
Ricci that S is a riemannian harmonic space.

In [7] the resolvent of the Laplacian R(p) was studied on symmetric and
locally symrmetric spaces of negative curvature and in particular it was shown that
R(;:) has a meromorphic continnation to C.

In this paper we announce some recent results on the poles and residues of
the resolvent R(zt) on a general Damek-Ricci space S, namely all poles are simple
and the residues are convolution operators which have finite rank (see Theorem
3.4). If S corresponds to a symmetric space of negative curvature, the image of
each residue is a g.-module with a specific highest weight, hence its dimension
can be computed by Weyl dimension formula (see Theorem 3.5). We specialize
our results at the end, by discussing the case of the real hyperbolic n -space, which
was treated by Guillopé-Zworski in [4].

2. PRELIMINARIES.

In this section we will recall some basic notions on H -type groups and their
canonical solvable extensions, following mainly [3] (see also [1]). We will also
review some basic facts on symmetric spaces of negative curvature.

Let n be a two-step real nilpotent Lie algebra endowed with an inner product
). Assume n has an orthogonal decomposition n = 3|0, where 3 is the center
n and [b,v] = ;. Define a linear mapping J : 3 — End (0) by

.

{
(1) (JzX.Y) = (Z.[X,Y])

(note that J is skew-symmetric). Now n is said to be an H-type algebra if for
any 21,722 €3

(2) Jz,Jz, + Jz,Jz, = =221, Z2)

—

* Partially supported by Conicet, Conicor, SecytUNC (Cdrdoba), and LC.T.P. (Trieste).
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The corresponding H -type group is the simply connected Lie group N with
Lie algebra n endowed with the left invariant metric induced by the inner product
{.) on n.

Consider the solvable extension, S, of N, as defined in {3], that is, A = R*
acts on N by the dilation (r,z) — (t2z,1z), and S = AN is the semidirect
product of A and N. If s, a, n denote respectively the Lie algebras of S, A and
N, we have that s = a«:n, where a = RH acts on n via H, the derivation of
n such that Hl|, = %I and H|; = I. We use the inuer product on s extending
the one on n and such that [[H|| =1, (H.n) = 0; S carries the induced left
invariant riemannian structure. Also, we shall denote ¢ = dimyg, p = dimv,
n=dims =p+qg+1 and = %(p + 2q). We point out that if n is abelian we
shall use the convention that v =0, and n = 3.

Using coordinates form v ¢} 3 R, the product on S is expressed as

| 1 1
Z,.Z.a) X", Z' aY=(X+a* X', Z+aZ +=a2[X,X'], ad’
2

Note that the volume element of the induced left invariant riemannian metric ¢
on S is the left Haar measure

dm = a" 9 VdXdZda .
We will need the fact that S can be realized as the unit ball in s:

B(s) = {(X,Su) : | X+ |Z? +u? =1}

via a Cayley type transform C:8— B(s), where C = C~'h in the notation
of [3], Section 4. In B(s) the geodesics through the origin are the diamneters and

the geodesic distance to the origin is given by r = d(p.0) = log 1—+€% thus |p| =
tanh (r/2), where p = C(p) if p € S. Since

4a

CUX.Za)l =1- ‘
€71 Z.0) (T+a+[X[2)2+ |2

we have that
da
T (I ta+ X2 + |22

(3) sh(r/2)™? =

and furthermore, the image of the left Haar measure on § via C~! is du =
J(r)dodr where r,o are the radial coordinates on B, r? = |X|? +[Z|? + u? and
J(r) = 2P sinh (r/2)P sinh (r)? (see [3] Section 4).
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The symmetric spaces of negative curvature are a main subclass of the Damek-
Ricci spaces. Let G be a connected, non compact, semisimple Lie group of real
rank one. Let K be a maximal compact subgroup of G and let g and £ be the
corresponding Lie algebras. If G = NAK is an Iwasawa decomposition of G,
then N is an H-type group, and S = NA =~ G/K is a solvable group in the
class introduced above. Iudeed, if @ and n denote the Lie algebras of A and N
respectively, then n splits n = g,/ ' g, where gj, j = 1/2,1, denote the ja-
root spaces of a. In the notation above we have n, =3, nop = v, and H = adH,
with H, € a such that «(H,) = 1. Then Q = 2p, where p = %(p +2q). If on
S = NA we use the G-invariant metric induced by 2(p+4q)~'B (B the Killing
form of g) then § is isometric to a Damek-Ricci space. We note that, because of
our convention, if n is abelian then p =0, ¢ = dimn.

3. THE RESIDUES OF THE RESOLVENT OF THE LAPLACIAN ON S.

Damek-Ricci spaces have similarities with symietric spaces of negative cur-
vature, in particular they are harmonic spaces. On S there is a radialization
operator m which corresponds to the standard operator in the case of the ball

model of S (see [3] p. 230). If f e C(S), pe S and p = C(p) then
wf)i= [ Fliledo
JSpta

where f = f oC~!. This operator corresponds in the symmetric case to averaging
over the action of K by left translation: if f e C*(NA), then

4) mf(x) = f(k;zr)dk

K

where f denotes the right K -invariant extension of f.

If {Z;}, {V;} are orthonormal bases of 3 and v respectively, the Laplacian-
Beltrami operator is given by L =3, ZZ+ 3, VZ+ H* ~QH (see [2]). Since L is
self-adjoint and S is a harmonic manifold, then L commutes with «. Moreover, L

generates the algebra of left-invariant differential operators on S which commute
with 7 (see [3] Theorem 5.2).

If f is smooth radial function on S — {e}, we will often abuse notation hy
writing f(r) = f(x), where r = d(x,¢). The action of L on radial functions is
thus given by (see [3])

(5) Lf(ry= %fﬁ) + %(p coth(r/2) + 2q coth(r))-%f(r) i

In the symmetric case, if n is not abelian and we set r = 2t, then Lf(t) cor-
responds to +Cf(a;),in the notation of {7] Section 1 (1). If n is abelian, L
corresponds to C'.



A spherical function ¥ on S is a radial eigenfunction of the Laplace Beltrami
operator such that y(e) = 1. This generalizes the corresponding notion in the
symmetric case and has the following characterization ([3]):

Proposition 3.1. Let v € C. The function ¢, = w(a"+t9/?) is a spherical
funetion with eigenvalue A(v) = v? — Q*/4 and any spherical function on S is of
this form. Furthermore ¢, = ¢_,, , for each v € C.

As in the symmetric case, we can express ¢, by a hypergeometric function

as follows. By letting z = —sinh(r/2) equation
©) L+ Seoth(ey2) + 2gcorhm) -~ )} 1,1y =0
53 T glpeoth(r/2) + 2q coth(r)) — vy fu(r) =

transforms into the hypergeometric equation with parameters a = Q/2 — v, b=
Q/2+ v, and ¢ =n/2. Since ¢,(e) = 1, it follows that

(7) du(r) = F (-y +Q/2.v+ Q2 ’-2’ - sinh(r/2)‘2)

where F(a.b,c, z) denotes the hypergeometric function. Furtherore, if Rev > 0,
the asymptotic behavior of ¢, (1), as r — oc, is given by (see [3], p. 239)

, —2v4+0Q71(.
(8) () ~ c(v)e" 2 where c(v) = 2 F(”/Q)F(Q:l .
' P(v+Q/2)I(v + =)

Here c(v) coincides with Harish Chandra’s c-function in the symmetric case. The
Plancherel measure, (v) = (c(v)e(=v))~!, can be written ;(v) = c,p(v)D(v),
where p{v) is the polynomial given by:

b1 97 4 112 %-1 N2
H <V2+( ]2 ) ) H (-y‘l—l— (%) ) . q. 5 even.
J=0 j=0
p/4
-T2+ q=1.2 odd.
j=1

= 2+ 1\2\ o 2j +1\°
_ IIO (-.,,2+( J2 ) ) IIO (——y2+ (42 ) )1/, q odd, & even.
= i=

¢, is a constant, and in each case D(v) is given respectively by 1, cot(wr), and
tg(nv) ([ADY)).



Remark 3.2. We note that p es always even, since v is a module over the
Clifford algebra of 3. If p= 0, then X = HtY G ~ 50(q+ 1.1) and in this
case D(v) equals 1 or tg(wv) depending on whether q is even or odd.

In [7], the resolvent of the Laplacian was studied on symmetric (and locally
symunetric spaces) of negative curvature. In the symmetric case it was shown that
it is given by convolution with a smooth radial function Q. on S — {e} whichis

-2
an eigenfunction of L with eigenvalue A(v) = v? — 91— It was also shown that

R(A(»)) has a meromorphic continuation to C. These properties remain valid for
any S as above and some arguments in (7], can be adapted. On the other hand, it

is more convenient to give a different construction of @, , using a series solution.
Now for b € R and 6 > 0, let S5 = {v : Rev > b and {v + j| > ¢
vje —N:b < j}. Thatis Sps = {v : Rev > b}, if b >0, and Sps is a

half plane with finitely many discs removed, centered at —1,-2,...,—Fk, where
—k>b,if b<0. The following theorem gives the main properties of Q.

Theorem 3.3. If v € C. 2v ¢ —N, then there exists a radial function @, €

(8 — {e}) with the following properties

(a) (L —Av))Q, =0 and, for each s € S the map v Q. (s) is holomorphic
for 2v ¢ —N . Furthermore, where defined,

(9) ¢y = c(—)Qu + (1)@,
(L) If f € C(S — {e}) is radial and Lf = Mv)f with 2v ¢ —N then f =

ag, + bQ,, , for some a.bc C.

(¢) There exists a meromorphic function d(v) on C, holomorphic if 2v ¢ —IN,
such that, as r — 0,

Qu () ~ d()r*+i  logr|frrnt

(d) lim, g+ ,](7')%(2,/(7') = —2ve(v) .
(e) If f e Cx(S) and 2v ¢ —N then

(10) L Quia="y)(L — X)) f(y)dy = —2we(v)f(x) -

(f) For any b € R 6,7, > 0, there exists a constant I = K(b,8,r,) such that
Qu(M)| <K forany r>r,, vE Sb,5 -

Let R(;) denote the resolvent of L at p. By (10), if Av) =12 — 94— , then

R(Mv)) is given by a kernel operator with kernel K. {z.y) = —sz‘yzul)y . The
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following result gives the poles and residues of R(A(v)), therefore the poles of

Quiz”'y)

v - 2vcelv)

Theorem 3.4. If p,q are both even then R(Mv)) is everywhere holomorphic.
Otherwise, it has simple poles lying at v, = —Q/2 — k with k € NU{0}. If
v =y, then Res,—,, R(A(V)) = (2w " p(v) f * &y is a finite rank operator,
for each k. Here p(v) is the polynomial part of the Plancherel measure (v) .

In the case when S is of symmetric type one can get more precise informa-
tion on the operators T,, , by using representation theory. To do this we will
first introduce some notation. The group of isometries G of S is a noncompact
semisimple Lie group of real rank one.

Let g, t, N, and A be as in Section 1, let A/ be the centralizer of Ain K,
P = MAN and let p be the Lie algebra of P. Extend a in the usual way to a
Cartan subalgebra b, = a.+ b of g, where b~ is a maximal abelian subalgebra
of m, and introduce compatible orderings in the dual spaces of a and a+ V—1p~.

Let ©H(A1) denote the corresponding set of positive roots of the pair (g,a)
(respectively (ge, be) ).

For v € C, let (m,, H") be the spherical principal series representation of G

(see [8], Section 3.6). The zonal spherical function ¢, is given by
(11) du(g) = (mu(9) 1. 10)

where 1, € HY is the K -fixed vector given by 1,(nak) = avtPle g e N,
a€ A, ke K,and {, ) is the standard inner product on H".
In the simmetric case, one can obtain more information on the dimension of

Res ,—p, ROA(V)) = (2mv) " p(v) f * Bu -

Theorem 3.5. Let S = G/K be a noncompact symmetric space of real rank
one and let v, = —p — k with k € N U{0}. Then Im(Res,=,, R(A(v)) is an
irreducible g. -module of highest weight ka. In particular, its dimension is given
by the Weyl dimension formula.

Example 3.6. The real hyperbolic n -space.

In [4], Section 2, Guillopé-Zworski consider the resolvent in the case when
S ~ H", finding its poles and showing that the residues are operators of finite-
rank. In this particular case one can obtain an explicit series expression for Q. :

o0
Qu(r) = e WIS "cj(w)e™ "

J=0



and for the residues of R(A{(v)). If we choose ¢, =1, we have for j > 1:

(p);v+p);

(12) cj(v) = FIOESY)

Furthermore, ¢(v) can be written:

_ 220-10(n/2) T(v)

(13) 7 Tt

and now, using the duplication formula for the Gamma function, we obtain:

(2,/(7') _ 2- nt3 v(u+p r io: F p+]) r V+p+.]) 72_]‘7'

(14) e(v)  (n— (v+j+ 1)

j=0

Also, if we take S, s as in Theorem (3.3), it is not hard to see, by using Stir-
ling’s estimates, that there exists a constant K = K (b, §) such that the coefficients
in the series are bounded by Kj#~ v + j|#~!, uniformly for v in Sps.

If n is odd, p = ﬂ;—l € N, hence the coefficients of the series in (14) are
polynomial functions in v and R(A(v)) is everywhere holomorphic, in this case.

On the other hand, if n is even, (14) implies that the kernel of R(A(v)) is a
meromorphic function with poles at v, = —p —k, k€ NU{0}.

Since ['(v + p + j) is holomorphic at v = v for j > k, in this case the
residues are

k . o
. o -2t F(p+j)( 1)k_] -
ROSL/:V ‘(2"(7) - 2 i (21=k)r
v 2ue(r) (n—2)! ;:0: 3! ( Aj)ll"( k- p+ i+ 1)
[n/2] . k-
g et Clp+ ) (1) :
— i : > - cosh(2j — k)r
{n=2)! jg(] k=N 0(=k—p+3+1)
oo Dlpj)(=D  T(ptk—j . P
since r((p,\ Jﬁ)(+;121) = [(("p J.Jrjf) Jfor 0<j <k,

We note finally that in this case G = SO(n,1), K = SO(n - 1) and one
finds that the hlgheqt weight of the representation in Theorem 3.5 is £A; where
A1 is the first fun(ldmental weight. Thus, Vj, is isomorphic to the representation
of G on H,,, the space of homogeneous harmomc polynomials of degree k and the

image of Res,—,, R{A\(~)) has dimension M—"—,ﬁ%@%”—a (see [6] Ch.4, (4.12)).
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