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COVARIANT NON-LINEAR NON-EQUILIBRIUM
THERMODYNAMICS AND THE ERGODIC THEORY OF
STOCHASTIC AND QUANTUM FLOWS

DIEGO RAPOPORT

Dept. Ciencias y Tecnologla, UNQUI
IAM-CONICET, Saavedra 15, 1083-Buenus Aires, Argentina
Istituto per La Ricerca di Base, Monteroduni (IS}, Italy; e-mail: raport@iamba.edu.ar

Abstract - We give a covariant theory of non-linear non-equilibrium
thermodynamics in terms of non-Riemannian geometries. We give a gauge
potential characterization of irreversibility. We extend our theory to su-
persymmetric systems. We present the ergodic structures of the stochastic
flows: the Koopman and Perron-Frobenius stochastic semigroups, and the
Lyapunov stochastic exponents. We study the problem of instability of the
stochastic lows. We indicate the extension of the formalism to quantum

mechanics.

I. The Torsion Geometry of Fokker-Planck Diffusions

In this article M denotes a smooth compact orientable n-dimensional mani-
fold, further provided with a linear connection V which we assume to be compat-
ible with a Riemannian metric ¢ on M ;ie. Vg = 0. The Christoffel coefficients
of V can be decomposed as [1,2]

5, = {5‘7} + K5, (1.1)

The first term in (1.1) are the Christoffel coefficients of the Levi-Civita connection
V9 associated to g, and

Kg, =T5, + 55, + Sys: (1.2)

is the cotorsion tensor, with Sg. = g*"ga.T}. , and Tg =1 /2(Tg, — FE:B) the
skew-symmetric torsion tensor. We are interested in (one-half) the Laplacian
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operator associated to V, i.e. the operator acting on smooth functions on M
defined as
H(V) :=1/2V? = 1/2¢°°V V3. (1.3)

A straightforward computation shows that that H(V) only depends in the trace
of the torsion tensor and g:

H(V) = H(9,Q) = 1/204 + ¢*°Q50., (1.4)

with Q = Qgdz® = V”Bd:cﬁ, the trace-torsion one-form; A, is the Laplace-
Beltrami operator of g: A,f = divg gradf, f € C*°(M), with divg the Rie-
mannian divergence. Note that the conjugate vector-field of the trace-torsion @,
i.e. the vector-field Q = ¢*#Qg, is the covariant drift of the diffusion. Note
further that if we rescale V by 0V in (1.3), n a real parameter (say %), then
the diffusion term and the drift are both quadratic in 7; from now, we set 7 =1.
We remark that from all the terms of the irreducible decomposition of the torsion
tensor, only the trace-torsion component is manifested in H(V) Then, to obtain a
one-to-one correspondance between Markovian diffusion semigroups { P,z € M}
on M with generator H(V), and linear connections V, for general dimension
other than 2 (in this case the torsion is of trace type), we restrict ourselves to
the so-called Riemann-Cartan-Weyl connections with torsion given by the trace
component exclusively. In this case, the Christoffel coeflicients of the metric com-
patible connection V are of the form

e 2
5, = {57} T o 15 Q9 — 9 Q7 (1.5)
Therefore, for the RCW (Riemann-Cartan-Weyl) connection V defined in (1.5),
we have a Markovian diffusion process { P, x € M} with generator the generalized
Laplacian H{g,Q) associated to V by (1.4). H(g,Q) is the backward Fokker-
Planck (FP) operator of our theory. We have called these diffusions as (spin 0)
RCW diffusions [2,3].

It is essential to remark that in formulating a covariant theory of thermody-
namics, so that A is the manifold of the macroscopic coordinates of a thermody-
namical system, these coordinates are not of a phase-space description, rather a
configuration space. The reason for this is group theoretical. Connections with tor-
sion are introduced in terms of the Cartan soldering one-form, i.e. a linear equivari-
ant identification between the tangent space T, M of M at every x € M with
R"™ conceived as an homogeneous space given by the quotient Af fine(n)/O(n),
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where O(n) and Af fine(n) are the groups of orthogonal and affine transforma-
tions on R™ respectively [4,5]; these groups are unrelated to the symplectic group
(of canonical transformations), which is the symmetry group for a phase-space
description. We must stress the fact that one can formulate classical mechanics
by applying the soldering method without recourse of a phase-space description
[5]. Remarkatly, by extending these methods of classical mechanics to non-linear
stochastic fluctuations, the RCW diffusions can be introduced as the parallel trans-
port with a RCW connection (1.5) of the canonical realization of a Wiener process
on the bundle of orthogonal frames, further projected on M [6]. In other words,
we are formulating a gauge-theory of diffusions on a configuration manifold A,
with gauge group given by the local orthogonal group augmented by the local
symmetry group of the trace-torsion (. Section II will elaborate on this.

I1. de Rham-Kodaira-Hodge Decomposition of the Drift and Maxwell-
de Rham Ecuations

Consider the Hilbert space of square summable w of smooth differential forms
of degree g (henceforth, g-forms) on M , with respect to the Riemannian density
voly . We shall denote this space as L% The inner product is < w, ¢ >= fM <
w(z), p(x) > voly, where the integrand is given by the natural pairing between
the components of w and the conjugate tensor: geB L g“q‘a‘lqﬁglmgq. The de
Rham-Kodaira operator on L%9 is defined as

A = —(d+ 682 = —(dé + 6d), (2.1)

where § is the formal adjoint defined on L9+ of the exterior differential operator
d defined on L?9:< §¢p,w >=< ¢,dw >, for ¢ € L#771 and w € L?9; vol, is
the Riemannian volume element. From the elementary fact that d? = 0, follows
that 6% = 0. In the case of ¢ = 0, § = —div,, so that on smooth functions, the
de Rham-Kodaira operator coincides with the Laplace-Beltrami operator. In the
general case, there is a coupling of the curvature to the g-form, as we shall see
below.

The de Rham-Kodaira-Hodge theorem [9] states that L%! admits the follow-
ing invariant decomposition. For any w € L?! we have the decomposition:

w=d f + Acocl + Aharms (22)
where f € C°(M,R), Acoa is a co-closed smooth 1-form:

0Acoct = “d'iUgAcocl =0,
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{(from now onwards, given a 1-form A, A denotes its conjugate vector-field with
components A% = ¢g®3 Ag) and Apgrm is a co-closed and closed smooth 1-form:

6Aharm - 0, dAharm =0. (23)

Otherwise stated, Apgryn 18 an harmonic one-form, i.e. AApgrn = 0. Further-
more, this decomposition is orthogonal in L?!, i.e.:

<d fa Acoel >=<d fa Aharm >=< Acocla Aharm >=0. (24)

We know apply the above theorem to @, the trace-torsion of the connection V,
so we can write as above the Hilbert-space orthogonal decomposition

Q = df + Acoct + Aharm- (25)

To actually determine the terms in the decomposition (2.5), we recall that
p(dz) = pvol, is an invariant measure for { P,z € m} if for any smooth function
f on M we have

/ [H(g, Q) f(x))p(x)vol, = 0. (2.6)

Thus, p is a weak solution of the 7-independent Fokker-Planck-Kolmogorov for-
ward equation:

H(g,Q)!(p) = 1/204p — divy(pQ) = 0. (2.7)

Here, H(g,Q)' is the adjoint of H(g, Q) with respect to the pairing introduced
by voly. If we look for a positive smooth p, by the Weyl lemma, it results that it
is unique [22]. Tt is easy to prove that p = ¥? if and only if the trace torsion is of
the form

Q =d an»” + Acocl + Ahar'ma (28)

where Agoer = 602/p, and Apgrm = Wharm/p, where Bo and wperm are smooth
forms on M of degree 2 and 1, respectively, and wpqym is harmonic. We naturally
interpretate these 1-forms as ”electromagnetic” potentials. We remark that the
form of the exact component of ) can be obtained alternatively by Einstein's A
transformations which extend the Weyl conformal transformations of the metric
g defined by multiplication by %2 [2,3]; furthermore, the electromagnetic terms
correspond to a U(1) symmetry group. It is easy to check from formula (6.3)
below, that this factorization of Ao and Aparm is equivalent to the Riemannian
orthogonality of d in ¢ with A.oer and Apgrm respectively, and consequently with
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A ; this last orthogonality condition was obtained in [8]. Note that still A.. and
Aperm rTemain to be orthogonal in Hilbert space. (This decomposition of the
non-potential drift is absent in previous treatments.)
Then, we have determined the orthogonal decomposition of the trace-torsion
drift:
Q =grad Iny + A, with A4 := Acou + Aparm. (2.9)

(2.9) is the constitutive equation of this theory; the scalar —in (¥?).det(g) is the
generalized thermodynamic potential of the non-equilibrium theory [8,26].

The transition density pY (x,y) is determined as the fundamental solution of
the “heat” equation on the first variable x:

? = H(g,Q){(z)u . (2.10)
-

It is well known that one can solve for the transition density in terms of a covariant
Onsager-Machlup lagrangian [8]; due to the lack of space, we shall elaborate on
this elsewhere.

It is quite remarkable that the condition of existance of a stationary solution
of the Fokker-Planck equation (2.10) leads to a decomposition of the trace-torsion
in which there appears two potentials, one of which is harmonic, which are further
normalized by 1/¢%. The corresponding ”electromagnetic” fields are

6132

Feoa = d( —'52'2

1 1
)= 7 déBs + d(ﬁ) A8y = 1/42(déBs — 2d Iny A 8G2)). (2.11)

The complete Maxwell equations for A, are, in addition of (2.11), the equation
0F coct = J, (212)

where j is the current one-form; after some algebra using (2.1) we can rewrite this
equation as a non-homogeneous spin 1 wave equation, the so-called Maxwell-de
Rham equation [10]

A“’4cocl = trace((vg)2)Ahar7n - Rg(!]) Ahamn Bd-ra = _j- (213)

The first identity in (2.13) with RZ(g) = RHQ“B (g) the Ricci curvature tensor as-
sociated to g, is the Weitzenbock formula [9a], which is fundamental in topological
quantum field theory and monopole theory [17,18]). For the harmonic one-form

7



Aharm = Wharm /W2, it follows from its closedness that its ”electromagnetic” field
two-form vanishes:

Frorm = dAhagrm = d(wi:gm) =0. (214)

Thus we call Apgrm = Wharm/¥? the Aharonov — Bohm (AB) potential : it has a

zero field. Finally, the fact that Apg,,, is co-closed, can be expressed in the form
of the conservation equation (Lorentz gauge condition):

divg Aparm = —6Anarm = 0. (2.15)

Equivalently, from the harmonicity of the AB potential, instead of (2.14,2.15) we
can write the homogeneous spin 1 wave equation version of (2.13) for Aparm -

ITI. Electromagnetic Potentials and the Breaking of Detailed Balance

We shall introduce the probability vector associated to the RCW diffusion.
Consider the vector field

A 1
Jr i=p7 Q = 5grad py (3.1).
Then, the Fokker-Planck equation can be written as a seemingly Liouville equation

apy
or

+ divgJ =0, (3.2)
In the stationary state the probability vector-field is
A 1
Jst = pQ — —2—grad 0, (3.3)
with @ given by (2.8). Therefore, Ji; is
Ju = A, with A=80+ Wharm (3.4)
Then, since §3; and whqrm are divergenceless (they are co-closed), we have
divgJe = ~6Jy = —6A = 0. (3.5)

This is the Liouville equation. Note that in the case in which we set A = 0, or
equivalently by orthogonality, when both 63 and wpgry, vanish, we have a null
probability vecror.



We can now characterize the irreversibility (i.e., breaking of detailed bal-
ance) for an RCW diffusion, without introducing the usual time-reversal operator
[7,8]. For this we introduce the equivalent notion to reversibility known as sym-
metrizability of a diffusion process. In general, a diffusion with generator L and
invariant measure p is symmetrizable iff L is a symmetric operator in L?(u) [11].
Remarkably, rhis characterization goes back to Kolmogorov [12]. Therefore, for a
RCW diffusion, detailed balance is equivalent to the conditions that A vanishes,
or equivalently, that 63; and wpapy vanish.

IV. The Perron-Frobenius Stochastic Semigroups

Consider the canonical Wiener space Q0 of maps w : R — R",w(0) = 0,
with the canonical realization of the Wiener process W;(w) = w(r). The sto-
chastic motions associated to a RCW diffusion are described by the It6 stochastic
differential equation (s.d.e.),

dB, = O(B,)dr + Y(B,)dW,, (4.1)

where YY1 = g, ie. Y is a square root of g. A flow of the s.d.e. (4.1) is a
mapping Fr : M xQ — M, 1 > 0, such that for each w € 2, the mapping
F(.,w):[0,%) x M — M is continuous and such that {F,(x): 7 >0} is a
solution of (4.1) with Fp(z) = x, for any = € M. In other words, F,(x,—)
is the solution of (4.1) starting at « € M. Assume now that all components
Ys, Q%, a=1,...,n of the vector fields ¥ and Q on M in (4.1), lie in the
Sobolev spaces H**2(M) and H*t'(M) respectively, where H®(M) = W22(M),
with s > n/2+ k. In this case, the flow of (4.1) induces a diffeomorphism in
H*(M,M) and hence (by Sobolev’s embedding theorem) a diffeomorphism in
CH*(M,M)={f: M — M: f and f~! are k times continously differentiable }:
ie.
F.(w): M — M, F(w){a)=F(z,w)

is a diffeomorphism of M almost surely for 7 > 0 and w € Q [13]. Then, its
derivative mapping (also called the tangent extension) [19] TF (.,w) : TM —

Tg, ()M is a diffeomorphism of TM of class C"1. We shall assume in the
following, that these analytical conditions are satisfied.

It is most remarkable that the infinite-dimensional group of diffeomorphisms
of M , which is the imprint of any covariant theory, say relativity, is the symmetry
group of the stochastic flows. This sets the basis for the ergodic theory of the
RCW diffusions we shall elaborate in the last sections of this article.
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For stochastic flows the usual composition rules are unvalid. We have instead
the co-cycle rule:

F‘r+‘r’(w) = FT(GT’(W))OFT’((‘))’T$ ol 2 Oa (42)

almost surely for w € Q, where 6, : 2 — Q is the canonical shift on Wiener
space: For any s — w(s), 0;(w)(s) = w(7 + s} — w(7). Consider the enlarged
space S = M x Q, and the mapping

0,:5-5, 0. (x,w) = (Fr(w)(x),0:(w)), (z,w) € M x Q. (4.3)

Then, since F,(F;(z,w),0(w)) = Frir(z,w),a.s. we have,©,,» = ©,0
O., 7,7 > 0,a.s.. Furthermore, if p = pvol, is an invariant measure for (4.1),
and PW denotes the Wiener measure on €, then the measure p5 = o0 PV is
invariant by the flow: ©%(07Y(B x A)) = u(B x A). for any Borel measurable
sets B € B(M), A € B(Q)); indeed, for any such B and A we have:

peo PY(O7Y(B x A)) = po PY{(2,w) : Fr(w)x € B, 6,(w) € B}
= pio PY{(z,w) : Fr(w)x € Bl.pwo PY{(x,w) : 6, (w) € A|Fy(w)z € B}

([ ol B)dp(@) pn PV (20) :6:() € A} = B

zeM (44)
since p is invariant and the events of the conditional probability are independent.
Consider the triple (S, F,u%), where F is the o-algebra B(M) x B(f), the
product of o algebras of measurable sets on M and Q respectively, S =M x
and 4% = px PY. Then, (S, F,u%) is a stochastic phase space with u5 a
{©, : 7 > 0} -invariant measure representing an equilibrium measure. We intro-
duce the stochastic Koopman semigroup of operators: (V.f)(y) = f(©-(y)),y €
S,7 > 0 and f € L°(S). Now, for any density r on S and F € F, de-
fine [.(U,r)(y)du(y) :== fe:l (F) r(y)dply); thisis the stochastic Perron-Frobenius
(PF) semigroup of operators. These semigroups are adjoint with respect to the
pairing defined by the measure .

V. The Stochastic Lyapunov Spectra

For any h < L?(p) and for n € N, we put

P f(x) = / pY (&, dy) f(4)
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where pY (z,y),7 > 0, is the transition density of a RCW diffusion on M gener-
ated by H(g,Q), with @ given by (2.8) and unique invariant density given by
i = pvoly . We introduce further the Cesaro sums

| Nl
) = 5 3 PG,
=0
By von Neumann’s Ergodic Theorem, f,, — f*,n — oo, where the limit is taken
in the L?(pu) sense. For f € L'(u), define P"f and f" as above. Then, by
Birkhoff’s Ergodic Theorem we have: f"(z) — f*(z),n — oo, for p almost
everywhere x € M. As usual, f*(z) is the (internal) time average of f.

The Markov system with transition density pY (z,y),z,y € M is called ergodic
with respect to the invariant measure g, if for any f € L! (,u) f*(x) is p-constant
a.e.. Consequently, f*(z) = f( ), with f = [ flx)du(z) = [ f(z)y 2voly, a.e..

Let us assume as above, that we have a Markov system written in the form
of (4.1). We already know that with appropiate regularity conditions on ¥ and
Q, eqt.(17) has an integral flow F,(w): M — M, for a.e. w, and any 7 > 0,
which is a diffeomorphism of M, with unique invariant measure p, and on the
augmented space M x £ we have the unique invariant measure p® P, u(B) =
[ ¥*(x)volg(a:), B € B(M). It was proved by Carverhill ([16]) that there exists
asub-set T' C M xQ of full measure (i.e.: pxP(I") = 1), such that for (z,w) €T,
there exists a filtration of T, M by linear sub-spaces:

_y® (r=1) G
0 - ‘/(l‘,w) C ‘/(IL‘OJ) C e C ‘/(I,w) - TajArI,

together with real numbers )\Em)w) )\E; wl)) < /\&)w], such that, for each
j€{l,...,r}. we have:
1
v e V((xj)w) V(E;’:l) iff limt_.oo?lnHTqu—(w)vH = /\Ei)u)

Note that since M is compact, this definition is independant of the metric in TM,
which can then be taken to be the original g. The numbers {)\zac ) J = 7}
are the characteristic or Lyapunov exponents of the system (4.1) w1th respect
to p. When the system is ergodic with respect to u, the exponents are p & P
almost surely independent of (z,w); in this case we shall simply denote them as
{M,j =1,...,r}. We shall say that the RCW diffusion is stable if its biggest
Lyapunov exponent ! is negative.
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VI. The Witten 1-Deformed Laplacian and the RCW Diffusions

Assume given a everywhere positive ¥ € C*®(M). We then have an in-
duced smoooth density p = wzvolg on M. Consider the Hilbert space L2%° —=
L2Q9 (M, p), of differential forms on M of degree ¢, square integrable with respect
to p, with inner product:

< broy >P= /A < i) ale) > p, (6.1)

for ¢1,p2 € L29? . Note that in the case of exact 1-forms, the quadratic form
q(df) = 1/2 < df,df >P, f a smooth function on M, corresponds to the RCW
diffusion with generator H(g,Q), with Q =d In v [3]. Consider now the formal
adjoint §¥ of d defined on L29t1r hy:

<w,p >P=< w,dp >°, (6.2)

for any w € L29%1¢ and ¢ € L29°. Since d2 = 0, then (§¥)2 = 0. Note that
§¥ = =26y . For any f € C*(M), and w a smooth g-form, by integration by
parts on L?%C we have:

6(fw) = f‘sw - igrad W, (63)

where iy is the interior product derivation on qg-forms:  ixw(X;,...,
Xg-1) =w(X,X1,...,X41), w a g-form, X, X,,... , Xg—1 smooth vector-fields
on M [19]. Then, using the fact that fix =irx, f and X a smooth function
and vector-field respectively, we get

§¥w = 6w — lgrad mypw. (6.4)

Define on L*%# the operator: A4 = —(d+6¥)2 which is equal to —(dé¥ +6¥d).
Recalling that the Lie-derivative operator is Lx =dix +ixd, X asmooth vector
field on M, we finally have

AV = AT 4 2 a1y, (6.5)
Define now the deformed exterior differential operator d¥ mapping ¢-forms into
g+ 1-forms, d* := ¢dy~! so that d¥w = dw — d Iny) Aw. Then, (d¥)2 =0. Its
formal adjoint (d¥)* is (d¥)* := v '6¢; then, (d¥)*2 = 0. We introduce Wit-

ten’s deformed Laplacian operator defined as [9,17a] : L¥9 1= —(d¥ + d¥*)? =
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—(d¥d¥* 4-d¥*d) . The two Laplacian operators families defined above are confor-
mally conjugate:

AV =y LY, ¢=0,...,n. (6.6)
Consider the semigroups in L29#, ¢ =0,...,n, with generators given by %Awq =
%Aq + Lgrad 1nw 3 we shall denote these semigroups as PZ,q = 0,...,n. Clearly,

P? is the stochastic process with infinitesimal generator given by H(g,Q), with
Q=diny.

Since d commutes with the Lie derivative and A%, then, d commutes with
AY9 g =0,...,n. Consequently, if w is a smooth closed 1-form, i.e. dw =0,
then A¥9dw == 0. Consequently, we obtain that dP3~! = Pdd, ¢=1,...,n.

From the identity (d¥)? = 0, we can introduce a deformed de Rham complex:
HI(M,R) := Ker(d¥ : A? — A9tY/Ran(d¥ : A97! — A9). Here A?, denotes
the space of smooth ¢-differential forms on M, ¢ = 0,...,n. It is easy to
prove that H; (M, R) = HY(M, R), where H?(M, R) is de Rham’s g-cohomology
group constructed from d. The Hodge theorem [9] states that dimH(M,R) =
dim(Ker(A%)), which is further equal to dim(Ker(A¥)).

VII. RCW Supersymmetric Diffusions

Consider a Hamiltonean operator H on a Hilbert space H, together with a
self-adjoint operator @ and a bounded self-adjoint operator P both defined on
H, such that

H=Q?>0,P’=1, and {Q,P}= QP+ PQ=0. (7.1)

Then, the triple {H, P, Q} is said to be a supersymmetric system [17a), or still,
to have supersymmetry. Since P is self-adjoint and P2 = 1, then P has for
eigenvalues 1 and —1. Define Heeyn = {¢d € H,P¢ = —¢p} and Hpos = {¢ €
H, P = ¢}, which are called the fermionic and bosonic states, respectively. Then,
Q : Hiermn — Hpos and @ : Hpos — Hferm , OF in other words, ¢ maps fermionic
states into bosonic states and viceversa.

In our theory we take as in [18): H = q)l_oL*?#, and H is 1/20% = A+
Lgrad 1y as an operator on forms of arbitrary degree, where Ny =—(dé+ 5d)? .
Put further @ = i(d + 6¥) and P defined on H by its restriction to g-forms as
the operator of multiplication by (—1)9. Then, {H, P, Q} is a supersymmetric
system. Fermionic (bosonic) states are given by odd (even) forms. Note that the
knowledge of g.1, determines both the symmetrizable diffusions of bosons and
fermions.
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We would like to note as a closing observation, that the RCW geometry is
crucial to the definition of the pre-symplectic structure of the loop space on M
(2], from which the Atiyah-Singer theorem [24] follows quite straightforwardly in
the Riemannian case [25].

VIII. RCW Diffusions and Instability

This Section will be dedicated to show that the present geometrical formalism
is tailored to study the instability of the RCW diffusions as a topological problem.
We shall start by defining mean exponents of the flow F, of (4.1} generated by
H(g,Q).

For ve S; M :={veT,M :<v,v>=1}, and for p € R define [20,21,14]

1
ulv,p) = limt_,oo;ln IE|TF (v)P,

where |.| denotes the operator norm of the linear transformation defined by the
derivative mapping T, F, : T,M — Tf, (2yM . Define further the moment expo-
nents: 1

pe(p) = limt_,oo;lnlE | T Fy||P.

where IE(z) = [, 2(w)P¥(dw) and z: R* — R any random function on R" =
.M.

We have the following properties (Prop. 5, [20]):4)p — wu.(p) is a convex
function; #i)p — ,uw(p) Is increasing, and finally i) — —uz( p) <A<l e (p)
if p>0. We recall that A! is the biggest Lyapunov exponent (see Sectlon V).

We shall say that the flow (or, the system) arising from (4.1) generated by
H(g,v) is moment stable if (1) <0, for p a.e. € M. From (7i) we see
that if the flow is moment stable, then it is stable.

For our study of stability, we are interested in a semigroup induced by the
lift of the diffeomorphisms of M given by the flows of (4.1) to their tangent
mappings.

Let {F;,7 > 0} be a flow of (4.1) such that F,(,w): M — M is a diffeo-
morphism of class C", for almost all w € . Let ¢ be a 1-form with coefficients
in C™71; set

P (#) = E(poTF,). (8.2)

With the above assumptions, we have:
P(#) = PM(9), (83)
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for ¢ a closed 1-form of class C?. This formula follows from the application of
the Ito formula to the closed (see Section IV) time-dependant 1-forms Pr_;¢,0 <
< T

The Ito formula [20]: Suppose {F, : 7 > 0} is a smooth flow of (4.1).
Then, if z, = Fr(xg), vr = Ty, Fr(vo), for any 1-form ¢ of class C?, we have

T T
d(vr) = Pvg) +/ VIH(B(xs)dW,s)vs +/ P (V9 B(vs)dWy)
L o (8.4)
+ 5/0 tr dp(B(zs)—, VIB(v,)—)ds + 5/0 AV p(vg)ds,

The problem of moment stability of flows has for long been known to be
related to the existance of harmonic forms on smooth compact manifolds [20]. Let
us give topological obstructions on M for moment stability:

Theorem Let Al be such that H'(M,R) # 0. Given a RCW geometry
determined by a smooth metric g and a C? wave function ¥ > 0 with associated
RCW Laplacian H(g,Q), with Q = d In ¢, then, the flow generated by H(g,,0)
with unique invariant density p, is not moment stable.

Proof: By hypothesis and Section IV, we have
dim(H'(M, R)) = dim(KerA¥!) £ 0

. Then, there exists a smooth 1-form ¢ such that A¥'¢ =0 (or equivalently,
since < AYlg, ¢ >,=<do,dp >, + < 6¥$,6¥¢p >,, ¢ is closed and 5¥¢p =10),
and x € M and v € S; M, with ¢(v) > 0. Since ¢ € KerA¥ iff Plop= ¢, we
have

0= limTv,oo;lnd)(v) = limT_.oo%ln Plo(v),

which by (8.3) equals to lim,_oLin IE ¢(TF;(v)) which is smaller or equal than
p(v,1) < pe(1), by property iii above (c.q.d.).

Recall that the existance of a non-null harmonic Aharonov-Bohm potential
breaks detailed balance; this condition is an obstruction for the moment stability
of the flow generated by H(g,Q) with @ = d In ¢, as if the Bohm-Aharonov
would not be present at all! In the general case of the diffusions (4.1) generated
by H(g,Q) with Q given by (2.8), by essentially the same argument, we see
that they are not moment stable provided there exists an harmonic one-form ¢
such that it preserves the full drift vector field given in (2.8), i.e: L ¢ = 0, or,
equivalently, d(is¢) = d(g(Q(,'AS)) =0, since ¢ is closed.
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IX. Conclusions

We have given a geometrical theory of non-linear non-equilibrium thermody-
namics, in terms of the Laplacian operators associated to the RCW geometries.
That Riemannian geometry underdescribes diffusion processes was first noted in
(7], and the trace-torsion was identified for the description of the covariant drift,
albeit with no identification of the RCW Laplacian as the Fokker-Planck operator
which incorporates both the drift and the diffusion tensor. Qur theory has further
allowed to construct the diffusion processes associated to supersymmetric systems,
starting from rhe spin 0 reversible diffusion. Yet, we remark that this supersyin-
metric property is not extensible to the inclusion of the electromagnetic potentials
A in the full drift; i.e. by adding L 4 to H in Section VI one cannot obtain a
supersymmetric system, precisely because of the breaking of detailed balance due
to A. We have also seen that the existance of the non-zero harmonic term in A
is a topological obstruction for the moment stability of the RCW diffusions, even
when one does not consider its active role in the drift (Theorem of Section VII).

We further constructed the ”phase space” of the RCW diffusions by identi-
fying the invariant measure p ® PW . Remarkably, would not be because of the
stationary measure of the process on M, the stochastic flows would appear as
corresponding to a quantum free field theory described by the Wiener measure. It
is important to remark that the stationary density may be associated to a non-
linear functional. Indeed, in Witten’s theory [17] M is an infinite-dimensional
manifold, the loop space on M i.e. the space of mappings from the circle to a
a finite-dimensional manifold (for instance, R* or C”). Then, ¥ is a (Morse)
function defined on loop space which can be chosen to be a polynomial on the ele-
ments ¢ of loop space, for instance, the ¢* theory; this is of interest for studying
phase transitions as done in detail by Graham [23].

The construction of the ergodic theory of stochastic flows presented in this
article can be thought as an extension to stochastic systems of the probabilistic
theory of classical dynamical systems [14]. Furthermore, if M is three or four
dimensional space-time (in the latter case, 7 is not to be confused with the
relativistic time variable, while in the non-relativistic case it can be identified with
the absolute time) , then ¢ is Schroedinger field, and consequently we can define
the Lyapunov exponents of quantum diffusions generated by a RCW geometry
(2,14,18].
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