E4-98-93

S.Misicu', N.Carjan?, P.Talou?

TIME DEPENDENT APPROACH
TO PROTON DECAY IN SPHERICAL NUCLEI

WA

Submitted to «Journal of Physics G»

INational Institute for Nuclear Physics and Engineering, Bucharest-

Magurele, POB MG-6, Romania Swyg J0
2Centre d’Etudes Nucléaires de Bordeaux Gradignan, BP 120 - F 33175
Gradignan Cedex, France




1. INTRODUCTION

The recent interest in nuclei beyond the proton drip line, prompted the study
ol proton emission phenomenon from the ground state of such nuclei [1]. Like in
the case of a decay, this process consists in the tunneling of the proton across
a potential barrier. However for this kind of radioactivity it is vital to add the
centrifugal potential to the Coulomb barrier, since the majority of emitted protons
are likely to decay from states with £ # 0.

In last years a series of theovetical investigations, based on the quasi-classical
approximation have been carried out in this field [2-4]. The proton half-lives of
observed heavy proton emitters were calculated and compared with the experimental
ones and in some cases a good agreement was found.

In the Gamow approach the decay is treated as a stationary process, the
penetrability being given by the ratio of probabilities of finding the quantum particle
on each side of the potential barrier. In this image the dynamical aspects are
neglected. However quantities like the tunneling time are important in decay
processes, in fission or in fusion reactions. In order to include the time evolution
of a wave packet propagating in a classically forbidden region one need to solve the
time dependent Schrodinger equation (TDSE). There have been some attempts to
incorporate the time-dependency in the study of the proton decay [5] by expanding
the wave function into a term describing the bound-state of the prepared nucleus
¥o(A) and a set of exit channel wave functions x orthogonal to it which decomposed
into the intrinsic states of the daughter nucleus ¥(A — 1) and of the proton ¢,.
However, imposing that the decay width is smaller than the resonance (quasi-
stationary) energy (I' < Ey) the treatment reduce to the stationary Schrodinger

equation for ,(r,t = 0) with a complex energy Fo — i['/2. Afterwards the usual



computational procedure is carried on [6].

In this paper, based on a previous application of TDSE to the study of a decay
(7,8], we address the question of proton-decay from orbitals with ¢ # 0 for the
spherical nvcleus ?®Pb. In our time-dependent approach the description of the
decaying syster is fully contained in the state vector. The time evolution of this
vector enables us to determine the decay probability al any moment . We are
interested to study the influence of the potential on the tunneling quantities and to
determine to what extent the errors of the WKB method depends on the energy of
the quasi-stationary state and on the angular momentum.
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II. DYNAMICAL APPROACH TO QUANTUM TUNNELING

The interaction between the proton and the daughter nucleus 20771 is described

by an average Woods-Saxon (WS) field which accounts for the nuclear potential

v
Vn(r) = —_—‘OW (1)
1 + exp( —0-)

a Coulomb potential, which is approximated by the interaction between the point

proton and the uniformly charged spherical core of charge 7 — 1

Z —1)e* 1 » \ 2 ,
Ve(r) = *(——H{f)* [l +5 (1 - (T;() )} <R (2)
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and the centrifugal barrier
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Ves(r) = (f+1). (3)

The WS interaction is defined by the nuclear radius Ry™ = 1o A3, with ro= 1.25

fm, the diffuseness a=0.7 fm, and the depth of the central potential Vy= 58 MeV [9].
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wplrat = 0) = (4)
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where, @) is an cigenstate of energy Ei( +) corresponding to the Hamiltonian

% ,
Ho = —_)’IA+V(7-)+5(¢) (5)

where @ is the reduced mass of the daughter-proton system. The modification &(r)

reads

E(T:} = l/(T‘Tnar) + (T - rmar) tan0 - V(T), T 2 Tmaz (6)
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where § gives the slope of the potential barrier beyond the point ., at which V(r)
attain its maximum.

In what follows we shall consider only the wave functions cﬁg“] with the highest
eigenvalue Eﬂ‘;"'s) bellow the barrier Vg = V(rmaz)-

In Table T we list the heights of the barriers (Vp), their locations (rmac) and the
selected eigenvalues (F,¢) for a given value of the angular momentum £.

The next step consists in the resolution of the time dependent Schrodinger

equation:
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where

A2
Hir) = —-—A+V(r), )

2p
A numerical procedure based on the iterated leap-frog method, provides the solution
of this equation [11]. This is the corner stone of the present approach. Once we get
the wave-function which describes the time evolution of the proton packet througl
the potential barrier we are able to compute relevant, quantities of the decay process.
The turneling probability can be expressed as the probability of finding the
proton beyond a certain point 75 on the border which separates the zone inside the

barrier from the external one

Prolre,t) = /: [ (r, 0)[2r2dr. (9)

The decay rate is calculated according to the relation

p
/\TD(TByt) = ‘1—_T}I;TD . (IU)

It is also interesting to calculate the average value of the proton wave packet

position operator, r,,, inside the nucleus

Jo & rlu(r, )|%r2dr )
Jo¥ [a(r, t)Pr2dr

(1)

ruU(TBs t) =

III. NUMERICAL RESULTS AND COMPARISON WITH WKB

In Figures 1-3 we present the time evolution of the proton wave function ¥, (r, 1)
for three angular momenta ! = 0,2, 5 at four different moments. We see the tendency

of the wave function to decrease its amplitude in the interior of the barrier when time
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across the hanrier hehaves ke acsoveaded wave packet tat feast on the spatial e val

that we considered. e up to 60 T It s worthwhile to mention that aithensh
the wave fundction amplhitude decreases constantly in time its shape does not change
much inside the barrier,

In figures 4 and 5 the time-dependent decay rate App s ploted in all four cases
As hax heen pointed inan carlier work [7] the decay rate undergoes two reginies,
In the first one. Ay oscillates but increases on the average. The fact that at simall
thimes the decay rate s not constant as chavacteristic for exponential decay. but varies
with time is typical for a quantum mechanical deseription [12]. This fact contrasts
to the usual classical image which portrays the radioactive system as an ensamble
of nuclei decaying independently one of cach other with a probability which does
not depend on time. In the second regime App performs small fluctuations around
a constant value, that we call asymptotic value Ayp(oo).

The decay rates presented in figure 4 correspond to rg = 11.6 fm. i.e. the
inferior limit of integration is choosen to lay between the two turning points as can
be observed from Table 2. If rg is increased, the irregularities occurring in the first
regime are smoothed out. This fact is pictured in Figure 5. where rg  is chosen to
be 25 fm.

In Figure 6 we represented the behaviour of the wave packet’s average position
inside a potential region defined by rg = 25 fm. As in the case of the decay rate we
deal with two regimes. Whereas in the first regime r,, increase up to a certain limit
in the second one it performs small-amplitude fluctuations around this limiting value
as we expected since, according to a previous remark, the wave function does not
change much its shape. The period of oscillations in this sccond regime is denoted

by T, and its value can be deduced simply by measuring the distance between two



maxima of »,, {right colunm in Iig.6). As has been noted in a previous paper {71, the
quasi-statiorary state teuds to penetrate the potential barrier by performing these
small-amplitude oscillations instead of simply crossing the barrier from one side 1o
the other. For this reason it makes sense to associate the frequency of collisions
in the formula of Gamow with /T s nstead of 1/7...... which is defined by the
quasi-classical expression (see ¢q.(13) bellow).

In the WIKB approximation the decay rate dgy is constant. its value resulting

from the product of the barrier penctrability p and the collision frequency v

AsT =v-p (12)
where v is given by the inverse of the classical period of motion
2 T2 [
2u dr .
T/‘r'o = 5 PN 13
TR Sy k() (13)
the wave number k(r) reading
1/2

k) = [25@ - viry)] (14)

and the penetrability

p=exp (—2[“ dr\/%’é(V'(r) —Q)) _ (15)

The stationary states computed in the modified potential, become quasi-
stationary when we turn on the real potential (without the modification e(r)) and
their energy is no longer well defined. Therefore, in all the above formulas the decay
energy () was taken to be the energy of the quasi-stationary state Ej, computed as

the average energy of the time-dependent Scrodinger equation

Eo = (tp(r, )| H(r)[thy(r, 1)) (16)

In what concerns the decay rate, it can be inferred from Table 2 that the

decay rates calculated in the time-dependent approach Arp are in relatively good



TABLES

TABLE L The values of the Lwner heights Vo their locations » the wolvdtod

-~ Taars

ooand the wave functions

number of nodes Tor different angular momeonin (

Angular Momentum Number of nodes P (f101) VaiileV) LN e

N i =90 N { | 10.62 ‘ 17(1.725(5“ TN
=1 3 10.55 10.631 (104
=2 3 1045 11.392 723
(=3 2 10.32 12.564) -2.06
=4 2 10.15 14,163 5.29
f=h 2 10.00 16.233 12.53
(=6 1 9.82 18.800 0.64
=7 1 9.62 21.916 8.4
(=8 1 9.45 25.607 16.58

TABLE Il. The quasi-stationary energies Ep, the turning points of the potential
{ri1, 12, 713), the asymptotic value of the decay rate App(oo) and its WKB correspondent

Ast, the oscillation period T,s and the crossing time T ,s5.

Ey (MeV) ryy (fm) ryg (fm) 73 (fm) Arp(o0) (s_l) Asr (s"l) Tose (8) Toross (8)

7.71 - 924  14.98  1.25x10%2° 1.74x10%% 2.75x107%% 2.95%x 1072
7.19 1.70 890 17.15  1.90x10+1® 2.33x10119 2.60x107%% 2.74x107%
12.45 3.56 74 1312 2.23x10%%0  2.59x10%20 2.24x 10722 2.43x107%

16.55 5.31 7.89 13.69  2.79x10M'® 2.52%x101Y0 [.50x 10722 1.79 x 10722
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Fig. 1. Time evolution of the squared wave function [¥p(r, t)[? for angular

momentum # = 0 at moments t = 0, 1.5-1072!, 3-10~2! and 4.5-10~2?! seconds.
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The transient time is defined as the time interval hetween the moner! when
M\ p starts to increase up to the moment when it reaches the limiting vatoe Ao (22).
It depends on the energy of the quasi-stationary state. Its value can be deduced
by inspecting figures 4 and 5. The tunneling time is related to the shift in time
of the transition point between the two above mentioned regimes, for the decay
rate. Therefore the tunneling time is associated to the time necessary for the wave
function to cross the barrier. Computing the decay rate for two different values of
rg, i.e. the barrier’s turning points, and measuring the time delay between the two
maxima of the two curves one gets the tunneling time (see Fig.7 and Fig.8). Notice
that for £ = 0,2,5 the tunneling time decreases with increasing Arp{oo). However
this does not happens for the state with higher angular momentum ¢ = 8, where,
although the decay rate is smaller, the tunneling seems to take place faster. In fact
the tunneling time is correlated with the imaginary time, which is nothing else than

the time necessary for the proton packet to cross the inverse potential, i.e.

_ T3 1 r
timag - /V'(z 2-(—‘/——_—(7‘) — Q)d . (17)



IV. SUMMARY

Motivated by recent theoretical and experimental investigations on proton
radioactivity phenomenon, we studied the time dependent characteristics of the
proton tunneling in the spherical nucleus 2°Ph. Since other theoretical approaches
are based on the semiclassical approximation we were interested to compare our
exact results with the WKB ones. We found that the discrepancy between the two
methods decreases when the difference between the top of the barrier and the energy
of the quasi-stationary state increases. Our study does not concern a certain angular
momentum state which could be measured in the decay reaction 29%8p|y* 52077 +p.
Rather for a fixed set of Woods-Saxon parameters we investigated the dependence of
the proton tunneling on time choosing one quasi-stationary state for every angular
momentum. It seems that the accuracy of the WKB approximation increases with
£. For a com.parison with the experiment one should fit some of the WS parameters,
e.g. the potential depth, in such a way to reproduce the observed energy. However
the present comparison between the WKB and the time-dependent approaches gives
an idea of the error involved in the stationary approach and provides a good starting
point for future investigations of proton decay using TDSE which could eventually

answer to some questions related to this phenomenon.
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Fig. 4. The time dependent decay rates Arp for the four selected quasi-stationary

states of angular momentum £ = 0,2,5,8. In the eq.(10) we choosed ry = 11.6 fm
In all four cases we observe that after a certain time the decay

rate will fluctuate
around an asymptotic value.
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Fig. 2. The same as in Figure 1 but for £ = 2. In this case, since the proton faces

a higher barrier, the tunneling will take place at a slower rate. At the last moment

of our investigation the fraction of the wave function that tunneled the potential

barrier has a smaller amplitude than in the previous case.
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Fig. 3. The same as in Figure 1 but for £ = 5. Now the barrier through which the
proton undergoes tunneling is smaller and thinner and therefore the probability to
find it outside the barrier at a later time is larger. The part of the wave function

which already tunneled manifests itself as a well-spreaded wave packet.
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Fig. 6. The average value of the wave packet position operator r,, for three
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Ty is observed, whereas on the right side we focussed on the small amplitude

oscillations of the wave packet on its way to tunneling.
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