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Introduction

The intense 14 MeV neutron source {INS) {1] based on muon catalyzed fusion (MCF) was
considered in 1993 by ENEA (Italy), PSI (Switzerland) and RRC KI (Russia). The intensity of
the source would be ~10"7 neutrons/sec. The monochromatic neutron source is a tool of study
of the behavior of fusion reactor materials under neutron irradiation in the frame of ITER
program (first wall problem). It can also be used to study the incineration of nuclear wastes.
The design of the reactor for neutron source become quite a task because of the radiation
safety requirements imposed on the installation besides muon beam requirements. The choice
of cryogenic reactor for INS is based on the ideas born in the experiments on muon catalyzed
fusion. It is sufficiently to mention that first maximum experimentally measured neutron output
with respect to single incident muon (~100 neutrons/muon) was obtained in LAMPF (USA)
[2] with liquid D/T mixtures. Further progress in MCF experiments gives easy to handle D/T
fusion cryogenic devices built in PSI (Switzerland) [3] , JINR (Russia) [4] and RIKEN-RAL
(UX)) [5]. In the scope of the article is shown how cryogenics helps to solve a variety of
problems arcused while the creation of the fusion neutron source.

Principles of MCF reactor operation

A middle range accelerator produces deutrons. Deutrons strike primary (carbon) target T
(Fig.1) and produce negative pions. Negative pions decay resulting in negative muons.
Negative muons stop in liquid D/T mixture (R in the Fig.1). Muons catalyze a cycle of fusion
reactions D+T="He+n via Vesman mechanism [6]. Demands to the purity of the reacting
mixture are high enough (107 in respect to admixtures with Z>2, 10” — Z>1). Muons stick to
impurities and fall out from fusion cycle. Normally one should use diffusion purification of the
hydrogen mixture (say with the aid of the palladium filters [7]). Tritium containing in the
reacting mixture undergoes f-decay and results in *He. At a times one should remove this
helium (Z=2) from the reacting mixture. The density of the reacting D/T mixture should be as
high as possible to provide sufficient neutron yield. The thickness of the walls of the D/T cell A
(central part of the reactor) should be minimized to provide muon stops in hydrogen isotope
mixture rather than in the walls of the D/T cell. One should remove heat from reacting volume
including heat input of stopping muons (15 kW) and heat released by fusion products *He and
n (45 kW). Special measures should have been taken to provide radiation safety of the device
because of tritium radiation activity (18 keV fi-source).

How cryogenics helps to decrease heavy duties of the reactor

Filling of the reactor with liquid D/T mixture is preferable than with gas by the reasons.

The density of the liquid D/T is close to the liquid hydrogen density (LHD 4.25*10%
atoms/cm®) — highest density achieved by everyday means. The temperature of the reacting
mixture should be higher than 20.6 K because tritium freezes at 20.6 K

Vapor pressure above liquid hydrogen mixture for example at 25 K do not exceed 5 bar
while at samne density gas would give the pressure up to 1000 bar. Thickness of the wall of the
cryogenic reactor could be smaller as compared to the reactor filled with relatively warm
gaseous mixture. So the construction could bear the appropriate loading at less thickness of the
wall of the D/T cell.
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Liquefier-refrigerater

it is possible 1o use hydrogen, hefium or ncon as main cooling agents. Hydrogen is cheaper.
helium and neon are more safe. In the Fig 1 is shown the refrigeration scheme with helium as a
main cooling agerit.

Pressurized and purified gaseous helium (*Hej following by the valve V1 is lead
through the heat exchanger HEI, turbo expander ET1, HE2, bath of liquid nitrogen, HE3,
ET2, HE4, ET3. This part of helium refrigaration flux comes to the hydrogen heat exchanger
HH through valve V5, cools liquid hydrogen and returns to the bath of liquid helium passing



V8 and HES, finally being throttled with V6. The second part of helium flux passes V2, HE1,
HEZ2, bath of liquid nitrogen, HE3, HE4, HES and is throttled in V7. Then being cooled in the
bath of liquid helium this flux cools the magnet M in the loop V10, V11. Throttle V4 is used to
adjust the refrigeration cycle.

Thermal calculations

There are following liquefier-refrigerators [10] created up to now: FNAL, Batavia (4000-5400
liters of liquid helium per hour at 3.56 K); CERN, Geneva (12/18 kW at 4.5 K), TESLA,
Germany, USA (77 kW at 2 K, 67 kW at 4.5 K, 352 kW at 40/80 K) in production. The listed
above liquefier-refrigerators is quite comparable to the suggested one.

Here are calculated characteristics of the helium liquefier-refrigerator (60 kW, 25 K):
specific power consumption — 50 MJ/1 (liquid hetium),
gaseous helium flux — 8000 m*/hour; '
liquid helium output - 1000 /hour;
liquid nitrogen consumption — 1000 l/hour;, ,
cooling water consumption — 200 m*/hour;
specific heat input from the environment — 5 J/mole (helium);
helium losses in the cycle — 5-10%.

Radiation safety

A set of measures should be taken to provide radiation safety in the design of cryogenic

neutron source:

® two contours of safety, first entirely metal to contain tritium mixtures, second to hold
tritium mixtures in case of malfunction of the first contour;

e using of an intermediate cooling agent in two stage cooling scheme;

¢ using of a buffer volumes connected to devices filled with tritium mixtures and intermediate
cooling agent to make sure normal operation of the device in case of accidental warming
up;

* using high quality pumping and recycle systems to ban tritium conversion to a heavy water.

All measures of safety are pointed to exclude the possibility of the penetration of the
trittum mixtures into atmosphere.
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Fig.1. Schematics of the liquefier-refrigerator and the cryogenic reactor
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Kpuorennpiii peaktop ans npoekra INS

PaccMmotpena cxema kpuorentoro PeaKTopa, OCHOBaHHOIO HA SBIEHHH MIOOH-
HOrO Kartanuia, Uil MHTEHCHBHOIO UCTOYHHKa 14 M»sB HeitponoB (INS). Ocoboe

BHUMAHHE  yIeNeHO  paIMalliOHHOH Ge30MacHOCTH npn  pabore  HEHTPOHHOTO
UCTOYHHKA.

PaGota rinonnena B Jlaboparopun sanepHeIx npobnem OHSIH.

Ipenpunt O6beutenHoro MHCTHTYTa AIePHBIX ucCrenoBanui. dy6na, 1998

Demin D.L., Pryanichnikov V.I. E3-98-80
Cryogenic Reactor for the INS Project

The feasible scheme of a cryogenic reactor based on muon catalyzed fusion for
the intense 14 MeV neutron source (INS) is considered. Special attention is paid to

provide sate operation of the neutron source.

The investigation has been performed at the Laboratory of Nuclear Problems,
JINR.
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