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1 Introduction
The Fermi function {F-function):

1

fF(r) = 1 + (1(r—-5)/a

(1)
is widely used in nuclear physics. [t has been extensively used [1]-[4], originally by the
Stanford group, to represent the charge density pr(r) = po fr(r) of nuclei for a wide range
of mass numbers. Then, beginning with [3] it was often used in the so-called high-energy
approxmlatlon in cale ulatmg the charge form factors of nuclei. Furthermore, the "form
factor™ of the conventional Woods-Saxon potential [6], which is a fair first approximation
to the self-consistent single-particle potential, is an F-function. Among other applications
of the F-function, we mention its use in connection with the strong absorption models
[7)-(11].

Another function which is closely related to fr(r) and which we also study in this
paper is the symmetrized Fermi function (SF-function) (see,e.g., [12],[13]):

1 1
1+ e(r—c)/a + 14 e—(r+r)/a -

fse(r) = (1.2)

The function fsg(r) has the property fsp(—7) = fsp(r) and may also be written in the
following forms:

1
fsr(r) = 1+ et—a/a 1 i elrriia’ (1.3)
inh(c/a
fsr(r) = cosh(rjl;l) -(I—Céozh(c/a)’ (1.4)
fsr(r) = %[tanh(f—;l—r) + tanh(%)]. (1.5)

It is evident since fsp(r) is an even function that it can be expanded in even powers
of r and has a zero slope at the origin f§z(0) = 0. Furthermore, it has certain analytic
advantages. For light nuclei with ¢/a > 1, il resembles a Gaussian function while for
heavier nuclei it goes over to the Fermi distribution. Thus, it might be said that it is
quite appropria‘e to be considered as a "universal” nuclear density. In practice, however,
at least for medium and heavy nuclei, it leads to results very similar to those of the usual
Yermi distribution. We may also recall that the so called "cosh” {14] and the SF-potentials
[15] are appropriate to represent cluster model potentials [14]. We finally note that very
recently D).Sprung and J.Matorell [16] studied as well the symmetrized Fermi function
and its transforms and also emphasized in their independent study pertinent analytic
advantages.

In a recent. publication [17] the "expansion of the Fermi distribution” was derived in
terms of derivatives of the é-function in an alternative way to the traditional one:

o

1
m c _ r 26 2k+1) 2k+2A2k+1 (1.6)
’ k=0

with the coefficients A, = Agey1 expressed through the Bernoulli numbers. In the above
expansion both sides should be understood under the integral sign, with a well-behaved
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function ¢(r). These integrals were discussed in [2] and called "the Fermi type integrals™.
In those cases when eq.(1.6) has meaning, the corresponding integrals are corrected by the
exponentially small terms of the order exp(—c/a). They have been omitted in [17] as well
as in other studies (e.g., [18], [19]), where only the first terms of (1.6) have been derived.
In the following Sects. the exact formulae and estimations for omitted terms will he given
and some examples where their contribution can be important will be considered.

The purpose of the present paper is 10 extend these results in three directions. Firstly.
in Sec.2 we extend the approach of [17] to the case of the SF-function, and we pay altention
to the conditions of validity for expansions sirilar to (1.6). Secondly, in Sec.3, we allow for
more general integration limits, namely from R; < ¢ to Ry > ¢, including in the expansion
the exponential terms in a convenient form. The same procedure is applied to the Sk-
function, and the results for both distributions are obtained in a unified way. Thirdly, in
Sec.4 an alternative treatment is carried out on the basis of Fourier transforms and the
properties of the hypergeometric functions. The results are obtained in a general form for
the F- and SF-integrals with arbitrary limits, and in particular cases the expressions for
the correction terms are given in "closed form” (i.c.,in terms of known functions). In the
final section. specific cases are considered and numerical calculations are performed.

2 On an expansion of the symmetrized Fermi func-
tion

In this section we derive a general expansion of an integral containing the SF-function.
Using for fsr(r) the form of (1.3) we write:

Isp = / fse(r)q(r)dr = Ir — JM), (2.1)
0
where the "standard Fermi integral” considered previously in [17] is
_ [T ) .
IF —‘/(; md?‘. (22)

As to the second term in (2.1), we introduce the designation 7 useful for calculations,
with the rep acement r = az —¢:

T® = /m _g(:t_r)_d = a/00 Mdz_ (2.3)

1 + elr+c)/a " 1+ e?

In the following we shall simplify the method of [17] to make it more transparent and
suitable for further considerations. To this aim let us transfom (2.2) by changing the
variable 7 = az + ¢ to obtain:

oo cfa _
Iy = a/ Mdz + a/ ‘J(_C_fz_)dz_ (2.4)
0 1+ e o 1 4 ez

Substituting into the second integral the (1 + exp(—z))~! by means of the identity
(I14+exp(—2)"'=1- (1 +expz)~" and then using the relation

cfa _ ©0 _ o (.
/ gle—az) / gle—az) / ale—az), (2.5)
0 1+ e Jo 14 e* eta 142



one calt Wl'il‘(‘i
Ip =1+ L, + 79, (2.6)
Isp =L+ 1o+ T, (2.7)

where

I, = a/oc/a alc — az)dz = ‘/Ow Olc - r)g(r)dr, (2.8)

L, = a/ alc+az) —gle— “Z)dz, (2.9)
0 1l +e?
J=J0 g%, (2.10)

and O{x) is the unit step function:

1 for z>0
o) = {

0 for z<1.
The representation for the F'- and SF-integrals (2.6) and (2.7) is rather instructive. Indeed,
the first term [, contains the very simple sharp cutoff function in an integrand. The
second term /,, includes an "antisymmetric” function ¢(z) = g(c + az) — g(c — az). The
property g'z) = —g(—z) enables one to simplify considerably its evaluation. Finally,
the integrals J®) and J are usually exponentially small since merely the integration
from a large number (z = c/a > 1) to oo, where only the tail of the integrand function
(1 +e*)"! ~re™* < 1 contributes to them, is involved.

Now, wlen calculating the [,,-integral we assume that g(c 4 az) can be expanded in

the series

glctaz) = q(c) + i(:&l)"a"q(:!(c) 2", (2.11)

Inserting (2.11) into (2.9) and then changing the order of integration and summation
(which is assumed to be valid) we get:

I,=a Z Dna"q(")(c), (2.12)
n=1

where the decomposition coefficients D, are related for the odd n-values to the Bernoulli

numbers (see, e.g., {20], p.53 and [21]):

. fn oo gn 0 for evenn
D, = —— (-1 / 2 dr= 9 gl (2.13)
n! o l+e? — (2" — 1) |Bu41| for  odd n.
nln+1

Thus, for example, one can obtain, the first coefficients:

-
w
—
Y

=]

w2 7w
- = — D= —, 2.14
D= Do=190 "= 16 95 (2.14)
Further, accepting the relation
¢™(c) = (—1)”/ 8™ (r — ¢)g(r)dr, (n=1,2,3..), (2.15)
0



as valid for some class of functions ¢(r) (see, e.g., [22]) one can write the final result for

Ias:
Ls = —a Z a*D, / (r — ¢)q(r)dr. (2.16)

n=1,0dd

Thus, we obtain the integrals Ir and Isr expanded in powers of the diffuseness parameter
a:

Isp(r / fsppy(r)g(r)dr —/ O(c — r)g(r)dr—
Z D,a / 8 (r — Qg(rydr + T (J(_)) . (2.17)
n=1,0dd

To this approximation when one can ignore the last terms in (2.17), the expansions
for the SF- and F-functions coincide with each other, and thercforc one can write:

o sinh(c¢/a) _ c.— o T g Wy _ ¢ .
Ssr(r) = cosh(r/a) + cosh(c/a) He=n) n:%d Dot ! (19

The explicit form as a series with terms proportional to the odd derivatives of the
é-function may be useful for practical calculations. However, in all the cases one needs
to keep in mind the conditions of its validity, viz., (i) existence of the expansion (2.11),
{ii) possibility of the transition from (2.11) to (2.12), (iii) determination of the class of
functions, on which the generalized §-function and its derivatives act. As to the disre-
gardness of integrals J (J(_)) their calculation is a separate task. For sufficiently smooth
functions q(r) they are thought to be of the order e~ {/*). Indeed, when cvaluating the
integrals J®) it is often convenicnt to use the following presentation:

o0 (r) "
g & ¢ o)
/0 = G e

which can be obtained through integration by parts. Here we have the integrals

+ .., (2.19)
0

<

;7<i>:e~a/ g(£r) e 5dr (2.20)
Q

with ¢(r) = lng(+r) — L. It follows from (2.19) that

J&]za% 14 at- 0 LA (2.21)
l—a 2(0) [1 - aqq—((g)l]

if the functior. ¢(+r)exp(—r/a) tends to zero as 7 — +oo. In particular, one can sce
that for a frequently oscillating ¢(r}) with a|g’(0)/¢(0}| > 1 the additional small factor
Fq(0)/¢’'(0) appears in the estimation (2.21). Moreover, for even functions ¢(+), the
"correction” term J becomes zero. In gencral, this is not the case for cach J&) taken
separately. In order to make the essential points more transparent let us consider as an
example the form factors:

o0

. d
Fsiry(p) = Fspqry(r) sin(pr) rdr = D Tspun (p), (2.22)
I$] v



where N
Tspgny(p) — / Tspgr) cos(pr) dr. (2.23)
Jo

First it s casily seen from (2.3) that [ -

stnpe/p o Thenoin calenlating £, by means

b2 s pr for no= odd and the velation from

I

of (212} we use d"cospr/dr” = (—1)
[247 (p.66):
z | ~ TN\
R O
(sm z e Zl (->

b
Y

=1 e

X
/5

1
Hiz)y = -
Thus. we obtain:

. srpa\” Si e st pe
Lo = cisinpe Z 1, <,,l) = Tu— LA W—[—. pa < 1L

7 sinh @ pa »
oefdd

nend
Bearing in mvad that for the even cospr finction 7 == 0. one gets:

o wasin 1pe

2260

Fopip) = ——
e r//; ~m|| e

Then, applying cq.(2.21) to calealate the integral of interest with ¢(r) = explepr) one can
show that

, d smp( ) iy .
Frlp) = —— |ra- — T ‘)

dp sinkh mpa |+ a? /)1 1
One should stress an important point, namely that the results (2.26) and (2273 have
been obtained for the SF- and integrals with the oscillating function cos pr under the
condition pa < 1 which ensures the convergenee of the series i (2.23). 1t means llmI
the method used may be applied if the “wave length™ p7' is greater than the thickness

a of a "surface layver™ of the SI- and F-functions. Morcover. the quantity [, is a small
correction to the "sharp - edge” contribution 7, under the stronger condition pa <« 1. In
fact, we have

2 : 2
T, sinpe LA
2 2 2
los > ——pia’—— = —— p7a-l,
6 p 6
retaining only the term with » = 1 in the series (2 I other words. as one should

expect the dilluseness effects which are accumulated i the terms with the derivatives of
the decomposition (2.18) are not considerable i the "wave length™ p7! s meh ereater
han a. On the other hand, if one evaluates the integral (2.9) by using the result from
21] (p. 505) we obtain

/ /(‘ cos[p(e + az)] - u)s[p(r —~az)) st e s pe
ns — @ T

— S =T

(2.2
1 +¢° sinhi 7 pa It

Jo
for any values of the cffective parameter pa. The rhs. of (2.249) may be expanded in the
series appearing in (2.25) only under the condition pa << 1. This analvsis shows that the
method basec on the expansion (2.18) becomes impractical when we deal with frequenthy
oscillating functions. Rather it is applicable for evalnations of the Formi tvpe intesrals
with slowly varying functions (for instance, of the polynomial type).

Also, it s seen from (2.27) that the “correction” terius of the order expl e/ab mmn
be comparab ¢ and in some cases larger than the oscillating contribntion to the form
factor. In these cases of rapidly varying functions g(r)

one needs to develop methods
which calculete these contributions in a satisfactory wav. I Sceot a method will

described tnwhich the results are expressed through the hyvperscometrie functions and
the corresponding series are, in fact, the decompositions in the small paranicter expr e/,



3 A general method for the calculation of the Fermi
type integrals

3.1  Expansion of the "generalized” Fermi type integral using
a Taylor series

Here we extend our consideration by introducing the integration limits £, < ¢ and
fty > c.so that the "standard Fermi integral” is a special case of the integral we caleulate
(namely. for 7, — 0 and fty — oc). Such a generalization is not only of mathematical
interest but it is also relevant (pertaining 1o the upper limit) to a problem of physical
mterest {(see Scc.i). Henceforth in this Section we proceed in the same wav as in certain
treatments made f()r more specialized cases [23]. Namely, let us split the second integral in
a form suitable for the the use of the well known formula for the geometrical progression.
Respectively, one can write

Iy 13 ., Ry —(r—c¢)/a
4(r) q(r) / q(r)e
1p(K, Ry = ——dr = - ir ——-——~/‘:
1( ) /) ~/R. | + clr=c)/a T /RI]+(,’(T_C)/,L(1+.C e r/lm

* . Ry
Z(_l)m {/ 11(7‘)(1” =a)/a g +/ q(r)(:'('"+l)(T_(‘)/a(/r} . (3.1)
=0 iy c

Further. separating out the first term of the first sum in eq.(3.1) and shifting the
dummy index in the sccond sum (by setting m + 1 = m’ — m) we find

Ry
IR Ry) = / q(r) (/r+Z(‘l [/ q(rye™t = gr 7/ q(r)c_'"(T—r)/“(lfi']. (3.2)

1, m=]

We now assume that the function ¢(r) can be expanded in a Taylor series around r = ¢

o) =3 gt (33)

n!
n=0

Substituting (3.3) into (3.2) and making the replacement az = r — ¢ we get:

Ie( R, Ry) = / alr)drt
I

t,
e ( )( o (c=R,}/a (Ry-c)/a
Z qu,!\Q“”H Z(—l)m (—1)" / "¢ dz — / z"eT ™ dz | (3.4)
n=0 m=1 0 0
or
(i i) = [ o(r)d +iq(n)(c)a"“{ Do+
r(,Ry) = R‘q r)dr 2 - nll,
(=1 - It Ry —
3 % {( D™ P+ 1, m Sy 4 P 4+ 1, m C)]}, (3.5)
m:; mm a a

where ['{a, y) is the incomplete I'-function defined by ([24], p.138):

l‘((x,y):/ et dt. (3.6)
Jy
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When deriving eq.{3.5) we have used the relation:

1) (-1 / ML = ) = (= 1) / =n!D,, (3.7)
m=1
where D, is determined by (2.13). Then, using the decomposition
le=% ~a
(1l +n,z) =nle ZF (3.8)
=0

¢q.(3.5) can be written as

1p(Ri, Ry) = / g(r)dr + Zq(n)(c)avﬁ—]{[)n+
R, n=0

=0

n A e —e\! n
E%[(—l)"“ (%) F(—e™ nt1-1) - (R’a >F(~e_ai,n+l—l)}}. (3.9)

Here according to ([20], p.45) the function F(z,s) is determined by

Z i—l = 20(z,1, 1), (3.10)

where ®(z,/, 1’ has the following integral representation:
1 oo tl—lc—t

O(z,1,1) = W/o Tt (3.11)

which is valid feither |z <1, 2# 1 and Rel>0 or z=1 and Rel>1 (seeeq.
(3) in {20], p.43). Here I'(I) is the ordinary I-function. Note a compact form:

1,,(1%1,1@)::/ dr+Lq "*1{ +(-1)"Dn(c_aR") +D, (Rfa‘c>}

(3.12)

where

2 o0 t7l
D) =2 /ﬁ S (820) (3.13)

Eq.(3.9) follows from (3.12) if one uses the geometric progression expansion in powers ¢~

for the denominator [¢' 4+ 1] = e[l + ¢7*|~! in the integrand of (3.13).



3.2 Integrals with the SF-function

It is convenieutl to use form (1.3) of the SF function. Thus we have only to calculate the
integral whica corresponds to the second term in (1.3). In this case no separation of the
interval of integration is needed and we obtain after some algebra

Ry -\ o n+1
DR ) = q(r) N
j (Ru h)f) - /’;l 1 I (:(,.+C)/adr - Z q (() ”!

n=0

{Z }‘ [<Ef+c> F(—e_(R““)/“‘n#— 1 —s) — (E~C> F(—e “(Rae)e 4| - s):|}
st a

s=0 a

(3.11)
The above result can be combined with the corresponding one of the previous section and
therefore we obtain immediately the expansion of the integral with the SF distribution.
However, it is more expedient to write the results obtained in a unified way, that is Lo
write in a simple formula the cxpansion of both the I and SF-function, by tntroducing «.
which is equal to | in the case of the SF function and 0 in the case of the usual I one.
Thus, we write:

Ry
I(R, Ry.) = /R g (r)dr = Tp(Re, Ry) — T (1, 1)), (3.15)

where

1 1
flr) = [+ etafa  ‘Ti elraia’

and the final expression for the integral is written in both cases:

/(Ri,Rj,c):/ )dT+ZZ a" ! (" ('){77!1)"6,,0-1»

n()ll)

Ry —¢ ! Ry—c :— R; ! R,
(—f—v5> a (—cfﬁ%_,n+l'—-l) —-(-1" <:—~> F (—(17 a ,n+lfl) +
a a
I Rpte Bt e\ . ,
¢ |:< Ejl) F (—ffiﬂi,nJrlfl) - ( Jrﬁ) I (-(t* ui‘,n—H~l) } (3.17)
a a

In the special case in which R; — 0 and Ry — co the above formula is simplified, as
follows:

(3.16)

I{0,00,¢) = /:Q g(r)f(r)dr = / (r)dr + Lq(" a"t D, + Ba(e/a)], (3.18)

0 n=0

where D, are given by (2.13) and B,(¢/a,¢) is defined as follows:

n

Bu(efa,e) =Y [e(=1)' = (=1)"] % (%)' F{—e™/*n 41— 1), (3.19)

=0

The preceding results have been obtained by expanding ¢(r) around the point + = ¢.



In certain cases, alternative expansions may be more appropriate. For examples i we
expand g(r) eround the point r =0

— ’
Glr) = L (,“’(U)F_ (3.20)

we obtain the following final result:

Ry ‘ I O .
ki . { 8 f . [ .
(R0 = / et / e / e
p, LAl N7 R SR AN TS

| S A o
R P AP
(lf [r/ (=) = et (e > /H”,

('&> () e (e ) Ao

This is again simplified in the case. when K, = 0 and 7, -~ We obtain, by
changing the [ree index from n to m:

I((),ac,():/ q(r)fir)dr = / Gg(rydr + iq['”‘(l))u”‘“»
A 2

Sa st ne==0

i 1 PN, o
PP} (7) e (= (T 1) (3.22)
(rn— 1) a :
=0
In the speciel case in which g(r) = v, all the terms in the sun over nrare zero, becanse
of the derivalives of g(r), except the one with m = . sinee i this case ¢U(0) - p'
Therefore, we lind:

o (,n+1 ay el
o) = SO = _ (s .
1,(0,0¢) A PV “+1{I Fn+ 1).( )

-
" | oy -l N , ot ‘
Z;Dz(f) Fle= (=D F (=04 1) b {(3.23)
(n =10 « : ‘
=0
The following remarks can be made regarding this expression:
Firstly, it the case of the Fermi distribution (¢ = 0} it reduces to the vesult which
follows from the general expression of the "Fermi integral™ 15 (k). & - {c¢/a) quoted by
Flon (see Appendix of rell[21} since [”\ e (n)dr = @FVE R We note that eener

alizations to non-integral values of # ete 1y moment calculations have been discassed
literature ([25]. [26], [27]). Secondly, in the case of the Svomnetrized Fermi distribution
(¢ = 1), there are no exponential terms when nis evens Thus the nse of the svnmetrized
Fermi distribution has the advantage that all its even moments are free of exponential
terms, which simplifies their treatment. Tt is seen that this result s in agreement with
that found 1 Sec. 20 sinee when nois even g{r) = 0" s syviunetic while when nois odd
g{r) is antisymmetric.



4 Treatment on the basis of Fourier transforms and
the properties of the hypergeometric functions

4.1 The hypergeometric series for the typical Fermi integrals

The previous results have heen based on the assumption that the function g(r) may he
expanded i a power series at a vicinity of the radins r = ¢. In this section we shall relax
this assumption and consider the exponential Fourier transform *:

gl{r) = Flq(p)ir} = (1/27) / q(p)e"dp. (1.1)

In calculat ng the Fermi type integrals with such functions ¢(r), for which the fourier
transform exists one can use the following representation for the Gauss hypergeometric
function F(a, v;¢; 2) ([21], p.319):

o

/ (1 — ™1 = 3e7 )Pz = Blu, v)F(py v+ 3 3), (1.2)
a4

where

Rep >0, Rev >0, Jarg(l - 8)| < 7,

and B(r,y) is the beta function:

Pz)P(y)

Blz,y) = fty)

Let us set g(r) = ¢ and calculate the integral f(fo g(r) fr(r)dr. Obviously, this is the
case when in the more general expression {4.2) one sets g = 1 —ipa,v = 1,p = | and
A = —e*/*. Therefore, one can obtain [28], [29):

T e
. _ - _ o clapn [ NN - 1 ‘
Ap(p) = /U ] +e(ric)/udr =abB(l —ipa,1)e”* F(1,1 —ipa;2 — ipa; —e“/*).  (4.3)

Furthermore, because for the applications in question exp(c/a) > 1 (or even e/* > 1) it
is pertinent to transform (4.3) into

Ta

Ap(p) = ¢? +ip L F(1,ipa; 1 + ipa; —e” (/) (4.4)

1sinh 7pa
When deriving eq.(1.4) we have used one of the Kummer relations ([20], p.116, eq.(2)) for
the hypergeometric series

PLGb+ 1 —2) = Biz7 'F(LL =82~ b —2z7") + Byz™®,  (Jargz| < ), (4.5)

where P(b+ I~ 1)
-——— =T(b+ 1)I'(1 ~b),
po= gL BTG -y

and the formula r

I(B)I(1 — b) = (4.6)

sinTh’

FWhat follows is easily extended to the sine- and cosine Fourier transforms and the Laplace one.

10



Thus, the TFouwier transform of the Fermi distribution has been expressed in terms of
functions of well-known properties. One should emphasize that the exact result (4.4)
reflects explicitly the interplay between the physical parameters involved, viz., the radius
¢ . the diffuseness parameter a and the "incident frequency” p. In many applications the
latter plays the role of momentum transler.

Formula (4.1) cnables one to separate all at once the oscillating part of the form factor
Ap{p) (the first term in the r.his. of (4.4)) from a comparatively smooth p-dependence
which is deterrined by its second term. Note that the separation has been achieved
without those constraints inherent to the previous approaches (see Sect.2 and 3). We sce
that the corressonding oscillations at pc > 1 (the "edge” cffect) have an exponential
lalloff generated by the factor [sinhwpa]™' ~ exp(—mpa) at pa > 1 (the "surface
diffuseness " effect).

I‘urther, by using the definition
abz ala+1)b(b+1)2°

Fla,bic;z) =1+ —

c 1! c(e+1) 2! (A7)

of the Gauss series, the smooth contribution to Ap(p) can be splitted into the pole term
p!
former is cancelled at p = 0 with the same term which stems from —ira[sinh wpa]~! exp(ipc),
while the latter may not be disregarded even for the values of ¢/a > 1. In fact, at high
frequences with map ~ £ all these exponentially small contributions get comparable to
one another and the formula gives a systematic way to calculate each of them.

Now, we apply this result to evaluate the integral considered in Sec.3:

and an expansion in descending powers of an "effective” parameter exp(—£) < 1. The

Ry
Ir(Ri, Ry) :/R I—%dr: Ip(Ri, 00) — Ir(R;,0) (4.8)

with finite lower R; and upper Ry limits which satisfy the condition R; < ¢ < R;. Here

oo r 1 o0 _
e(Roo) = [ " = o= [ dpa) st ) (£.9)

with the function ¢(r) being replaced by its exponential Fourier transform. Again the
problem reduces to the foilowing:

3 eipr iR o0 eipr 4 410
AF(PaR):/‘; TrecaRdr=e /0 15 er—ctma (4.10)

By using (4.3) one gets
Ar(p, R) = aB(1 — ipa,1)ePRelc~ R/ p(1,1 — ipa; 2 — ipa; —ec~F/2), (4.11)

Two cases should be considered, namely: R < cand R > c.

11



Case i R < c:

In this case it is convenient to convert the hypergeometric lunction of (4.11) into the
corresponding hypergeometric series (cf., the transition from (4.3) to (4.4)). Thus we have

: . Ta . (A ) e 1) 7
Aplp, R) = P ——— m= R (1,pa; | + ipa; —¢~LI0/ay b =
sin{mipa) P

R ’7"‘1‘ piple=1) L T “‘__((—(f;—1e),,"l L0 ((fz((}n)/u) } (1.12)

sin{mwipa) ip 1 +ipa
or omitting the terms of higher order in e~ E=8/9 we obtain
: ipe ¢ ipT iph ¢ —(e—R)}/n .
Ap(p, R) = wall{xipa)c'?® 4 ¢dr 4 P ———¢ R (113
Ir 1 +pa

where the function H(z) =sin™' z— 271 is the function considered in See.2. Substituting

(4.13) into (4.8) and preserving the exponential Fourier transform in r-space we arrive at
the expression

Ip(R, <) = maF {q(p)H(7ipa); ¢} + / g(r)dr + aF{ Tq(];)

_ CRY ¢t 4.4
R +ipa’ be ( )

Case il) R > c:

In this case eq.(4.11) includes the hypergeometric series directly from the beginning
and therefore

Ap(p,R) = l—jiaf'p”(:‘(ﬂ"c)/“["(l, | —ipa; 2 — ipu; — ¢ UMW), (1.15)

If the parameters involved meet the inequality e (=9/¢ « 1 we find

A]x(p, R) = =

T— e Ui=a)/a (1.16)

and finally making the same substitutions as in the case 1) we get for I1.(R, 0o):

Tp(1,00) = af{—ﬂ—)—- R} o~ Uimele, (417

B 1 —ipa’
Combining 2q.(4.14) and cq.(1.17) we get

¢

el ) = maFfalplich + [ atridr+

4R,
oI ey et g AP e, (1.18)
| + 1pa 1 —ipa

As an illustration of this method we evaluate the generalized n-th moment for the I-

By /H, o ) o
<t = ==y A9
| C i et

distrihution:



To this point note that

\RI .
> o= (oAl 00 - AP0 R (4.20)
It -

n

<r

where Al,,'-l)((). 1) denotes the n-order derivative of the integral (1.10) at the point p = 0.
Finally the following result is obtained:

iy ekl gt n
1

, S Lol —(c=R) /4 L= (Re—)
<> | = e ey T D () R g e
r ) . +a 2 1!1 {( P (=) e 1t

(4.21)
with (n — 1) odd.
We point out that the formulae hold il one neglects the exponentially small contribu-
tions 1o the series (1.12) and (1.15). If only one of the limits R, is close to ¢ then one
needs 1o etuploy the general expressions for these series,

In the case when £, — 0 and [{; — oo eq.{1.21) vields the ordinary u-th moment:

n A Jditt

<" >p=an! Z (lel"'fl)“,; + %;l- N LAV (4.22)
i=u
It follows from (4.22) that:
<t ep=C3 4 20Dy + 20t el (4.23)

) 2
<t >p= ('r'/5 + da?? [IJ, + 2 ( ]) Dyl + Aate (4.24)

2
¢

4.2 A ”closed form” expression for the generalized symmetrized
Fermi integral

According to the decomposition (1.3) the integral of interest

"y
et t) = [ ) vt v 425)
JR,
can be written as

Lop(Ri, By) = 1o, By) — TR Ry, (4 26)

where n

f .

(+) _ - f](’) i .
TR Ry = ./R‘ privrlis (4.27)

Similarly as in subsection 4.1 the evaluation of the generalized form factors (1.25) cau be
reduced to the integrals Ap(p, ) and

.AH')(]), H) = / f—fff‘f“; dr. (428)

Using ¢q.{1.2) we find:

acrlt

AH)(;). R) = ool fa (1

— - a2 e dpar e LI 4.29)
1 —pa
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or if the higher order terms (i.e.. O{¢72HD/0) 4re omitted then we have

A (p ) = *1‘}7',7,( B (1.30)

Combining eq.(4.12) with eq.(1.29) one gets:
Asplpy R) = Ap(p, R) — AP (p, B) =

Ta ! a . . .
clpl? _:-——(‘lpc ;4= 1‘ (I—((_R)/’l["(l, P+ ipa; 2 + ipa; _("—((-11’)/11.)
:sinh 7 pa p  l+ipa

¢}

— (L ] pas 2 — ipa -(~*<"+’“/“)}. (1.31)
1 —pa

In deriving this formula we have used the relation:

:
Fllbib+1:2) =1 + thl’(l,fﬂr b+ 2:2). (1.32)

Putting in (4.31) R = 0 we find for the standard” form factor the following expression:

sin pe

Isr(p) = ReAsp(p;0) = ma (4.33)

sinh7pa’

The apprcach described in this section is an alternative way to evaluate the integrals in
question. The following comments can be made: (a) It is relied on the well known results
of the theory of special functions and can be presented in a mathematically compact form.
(b} We have managed to bypass the too strong assumption (2.12). (¢) The corrections
of any order in exp(—c/a) may be evaluated in a systematic manner.

5 Applications and discussion

In this section we consider certain specific cases and we also give the results of numerical
calculations related to nuclear physics problems.

First, let us estimate the effect of the exponentially small contributions to the relation
hetween the barameters ¢ and a, which follows from the normalization of the nucleon
density p(r) = pof(r), where f(r)is given by (3.16) for nucleus of A nucleons [2], [31]:

47r/10/ f(r)rdr = A. (5.1)
0
Using formula (3.23) we obtain
&+ (ma)e+ 6(c — 1)’ F (fc_“/“,.'i) =rA (5.2)
or neglecting the corrections of the exp(—2¢/a)-order and higher
A 4 (ma)? +6(1 — ate " = roA, (5.3)

where 1 = 37 (47 py). Eq.(5.3) with ¢ = 0 follows also from (4.23). It is clear again that
[or the SI function there are no exponential terms. In such a case, or if they are negligible

14



in the case of I function the above third order equation, which is of the same form as in
the case of the trapezoidal distribution [32] can be solved for ¢, which is then expressed
in terms of a anc. ro (that is py):

1 13 1/3 1/3 1/3
c:<§> roA [(l+b) +(1 - b) } (5.4)

m 4 Ta g
27 \ rgAl/3

In the rase of the Fermi distribution (€ = 0) an improved expression for ¢ may be obtained,
if the exponentiel terms (which are assumed to be small) are not completely neglected
but are estimated using an approximate expession for ¢: ¢ = ¢y, such as ¢ = rpAY? or
expression (5.4). Then the improved expression for ¢ is given again by (5.4), but instead
of rg the quantity

where
172

b=

1/3

ro =70 [I = (6/A)(c ~ 1)a*F (—e™/2 3)] (5.5)

appears. It is easily shown that the normalized Fermi distribution corrected by the small
terms of the exp(—c/a)-order looks like

c

P ¢ ‘
pr(r) = ————,  pi=pf [1+6], (5.6)
1+ exp
a
where .
. 3A rla?]” a®
o _ _g2_ —cfa
P =5 [l + = ] , &= 6(:3 e e, (5.7)

We also note that the central density p(0) of the nucleus may be expressed in terms of
the half-density radius ¢ and of the diffuseness parameter a, as follows, by using (3.16):

3 1 ¢
_ — 58
) = o [1 el (5.5)
where 5
e = CX [1 +(mafc)® 4 6{c — 1){a/c)*F (—e_c/“,3)] . (5.9)

Finally, the m.s. radius of the nuclear density

_ [rte(rydr [ f(r)dr

<7r? >Sp= — = % (5.10)
So(r)di® [ r2f(r)dr
1s expressed in terms of ¢ and a as follows:
o e 23+ 10(ra/c)® + T(rafc)* + 3 -5 — 1)(a/c)*F (—e~/*,5) . (5.11)

5 1+ (ra/c)? + 3l(e — 1)(a/c)*F (—e=/=3)

It 1s observed that in the limit a — 0 the above expression reduces to the well-known
expression of the m.s. radius of the uniform distribution < r? >,= (3/5)c?. Furthermore,
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in case of the symmetrized Fermi distribution (¢ = 1) we obtain the following exact
expression (see, e.g.. [33]):

FY (’7((1)2 o
3N e ' D-12)

For the Fermi distribution such an expression holds approximately, as long as the expo-
nential terns are small, which is the case even for light nuclei. A carefull caleulation
for C'a, C  (with the parameters ¢ and a from [2]) and for °Li, "He (with pa-
rameters ¢ and a from [34]) has shown that the corresponding corrections to the rans.
radii of the nuclear densities are: °Cqa 0 331075 20 8.1107% *Li: 69107 and
e 121073 1e., do not exceed 0.05 %.

Finally we consider, for the above nuclei the influence of the exponential terms in 1he

values of rj. These values are given in Table 1.

Table 1

Nucleus | rg 3
With exp. terms | Without exp. terms
OCa 1496 1.496 B
e 1.379 1.379
514 1.312 11285
“1111' 0.919 0.915 i

[t is seen that the ceffect of the exponential terms in the value of 1y depends on the
nucleas. but is still very small; although somewhat larger in comparison with that in the
rans. radi.

We cansider now the generalized Fermi-type integral (7 f(r)ridr. The physical in-
. . o Ry oy -
terest in integrals of this or other similar forms, such as f;* f(r)7"dr, originates from the

equation which determines the value [Rg: Rar [35] of an harmonic oscillator (I1O) potential

2
Violr) = =D + D——, (5.13)
1E4Y)

which approximates a given Woods-Saxon (or symmetrized Wood-Saxon) nucleon-nueleus
or A-nucless potentialy Vigg(r) = — D f(r) (that is with f(r) given by (3.16) in a sort
of "best approximation in the mean®™ {in the nuclear interior and to some extent in the
region of nuclear surface)):

9 1 . ) K )
[17) + l—{fz(lf,w)] 3, :/ Flr)rdr. (5.14)

v
More precisely, the value Ry = fip. determined by the above equation minimizes the
integral [35):
o X
./(1(1€()) = / Vw’g(T) — 1/"110(7-”"(11-7 {H lr))
Jo
provided that
. 2 3. R df*( Iz
SRy < =+ = f‘)'(h)M) + = (l *('(Q . (5.16)
ho 2 1 dRy ig=ity
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The above proce:dure may be used in determining the variation with the mass number

ol the core nuclens A = A of the harmonic oscillator energy level spacing for a nucleon:
hwx or for a A-particler by, since the spring constant is given by & = pu? = (20 7%)
and therefore
1/2
W / 1 o
hw = | —2D — (5.17)
i Ry

where yeis the reduced mass of the nucleon (or A-particle)-core systeni. Such a treatment
has also been cor sidered recently for atomic elusters [36]. [37].

In order to find the value of Ry which is needed. one has (o solve eq.(5.11) and
therefore to caleulate the integral JJ‘)’ F(rIrtdr for various values of £ and choose that
one for which eq. (5.11) is satisfied. This can be done cither by means of a subroutine for
the computation of integrals or by means of the relevant formula of section 3. The latter
procedure is in a way preferable since it can lead to an approximate analvtic solution
ol eq.(5.11) and therefore to a formula for the variation of hw with the mass number.
in terms of the particle mass and the parameters of the Woods-Saxon (or svinmet rized
Woods-Saxon) potential. In such a procedure it is of interest to know the magnitute of
the exponential terms, in order to be sure that their omission or approximate evaluation is
justified. This is axpected to be the case from the results of ref [35]. We further elaborate
on this point here. According to eq.(1.21) the integral in question is cqual (o

iy ’
1,0, R;) = / P2 f(r)dr = (I3 [+ (maje) + O] (7.18)
JO
3 h)z
S “_ G LR I N ﬂ L (5.19)
& 7 2a?

Substitution of (5.18) with 2, = [y into (5.11) leads 1o the following equation for
the determination of 2y

(2/8) + B/ A (Ran)] (Rarfe) = L+ (male) + C. (5.20)

We consider as an example the hypernueleus PO and we use a Woods-Saxon A-nneleus
potential with parameters [35] D = 283 MV, v = 1.205 fin and o = 0.35 [ which
have been determined by fitting to ground-state energies of the A-particle in hypernucled
using as half-depth radius ¢ the expression (5.4) (see rel.[35] for more details) We note
that for }*C the value of ¢ is 2.613 fin.

In Table 2 the values of the integral 1,(0, ;) are given for vatious values of £, ~ ¢,
along with the contribution of the non exponential and exponential terms. ax well as the
percentage contribution of the latter. 1t is scen that as /; decreases the exponential
terms become more important. Fortunately lor £, = Ry their contribution is small. The
magnitude of these terms depends also on the hypernucleus considered, beng targer for
the lighter nuclei, and also on the potential parameters.
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Table 2

Values of | Values of | Values of non- | Contribution | Percentage

Ity > ¢ [,(0.185) | exponential of exponential | contribntion
terms terms

5.0 6.988 6.999 -0.011 i 0.16

1.0 6.873 6.999 -0.126 1.83

Ry=3.693 | 6.741 0 6.999 -0.258 3.80

3.0 5.846 6.999 -1.153 19.71

2.7 5.027 6.999 -1.972 39.22

2.613 1.740 6.999 -2 248 17.41

[ the notential parameters of ref. [38] are used, that is £ = 28.0 MV, rg = 1,128 T
e = AP198(1 4 ?—:T%A"’!/"’) fm,a =06 fm, we obtain somewhat larger exponential
terms (see table 3). In this case, for 3¢, e = 2.774 fm.

Table 3

Values of 1 Values of | Values of non- | Contribution | Percentage
Ry>c 1,(0, Ry) | exponential of exponential | Contribution
terms terms

5.0 9.916 10.403 -0.457 4.59
Ry=4.273 | 9.258 10.403 -1.145 12.72
2.0 8.820 10.403 -1.583 17.91
3.0 6.0254 10.403 -4.378 72.66
2.9 5.653 10.403 -1.749 84.01
2.775 5177 10.403 -5.206 100.55

The fact that the exponential terms and also (1/4) f2(Ry) are usually small for R, =
3y makes it possible 1o obtain to a good approximation an analytic solution [35] of the
equation (5.14), by omitting these terms:

r) 1/3 Tan 2 1/3
_po_ (3N
[{O-RM_<2> L[H(C)J .

Furthermore, improved analytic expressions can be derived, if instead of omitting these

(5.21)

terms we estimate them by using an approximate expression for Ry (Rar =~ R1(0))., c.g.

1/3
| + (mafe)®*+ C

5 (5.22)
(2/5) + (3/4) f*(Ry)

Izg;):c{

This procedure may be iterated until self-cosistency is achieved to a desirable accuracy.
It should he noted that exponential terms exist in this case even for a symmetrized Woods-
Saxon potential (¢ = 1). In Table 4 the various values of Rs;,) which are obtained by means
of the above mentioned iteration procedure with the corresponding values of Aw are shown
in the case of }’C using the potential parameters of ¢ = 2.7 fm, rg = 1.423 fm of ref.[35]
for the Woods-Saxon potential.
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Table ¢

n ‘ B, fmhe, MoV
0 12730
11 1.0951 11.316
2 LT 11,158
3140277 11.506
t

§)

1.0216 L1524
5 1.0191 11.529
6 | 1.0186 11.532
7110133 11.533
S 1.0182 11.533
9 | 10182 11.533

T

From the analysis of (s section and {rom the remarks made in the previons ones. it

is clear that the exponential terms are not neglibigle in certatn cases.
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[peiineoc M. u ap. E4-98-76
Paznoxenus QepMH- 1 CUMMETPH30BaHHBIX (hepMU-HHTETPAIOB
1 UX MPUNOXEHHS B sAepHOR du3nke

C NOMOUIBK) PA3HYHBIX METOLOB TNPOBEAEHO AETAIBHOE H3YYe€HHE H BbIBOMIBI
Pa3OKEHUI HHTETPATOB, COAEpXaluuX PepMH- H CUMMETpPU30BaHHble (epmu-pac-
npegenenns. Pe3ynbrarsl MOMydeHbl B MATEMaTHYECKH KOMIAKTHO# ¢opMe 1 npen-
craBasioT  0OOPNIEHME W pacliMpeHHe paHee  HM3BECTHBIX  Pa3IOXEHH.
YCTaHaBnMBaeTCi CBSI3b 3TMX pe3y/bTATOB C pPa3IMUHBIMH pa3genaMH  SICpHOH
cu3uku. Ocoboe BHUMAHHE YAENSIETCH TaK HA3HIBAEMBIM SKCITOHEHLUMAIBHO MAIbIM
110MPaBKaM, KOTOPBIE B HEKOTOPbIX CIy4asX MOTYT HIpaTk BeChbMa BAXHYIO POJlb.

Pafora BhinosnueHa B JlaBopatopuu TeopeTndeckoi ¢usuku uM. H.H.Boromio-
Hosa OUSAH.
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Expansions of Fermi and Symmetrized Fermi Integrals
and Applications in Nuclear Physics

A detailed study is undertaken, using various techniques, in deriving expansions
of integrals containing the Fermi or the symmetrized Fermi distributions. The results
are presented in a mathematically compact form and consist of generalizations and
extensions of previously known expansions. The relevance of the results to quantities
of interest in nuclear physics is recalled and particular attention is paid to the so-called
exponentially srnall terms which may play an essential role in certain cases.
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