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Abstract

Effect of beam-beam interaction on spin depolarization in proton-proton collider has been
studied. Employed method is based on matrix formalism for spin advance and for perturbed
betatron particle motion in a ring. Calculations were done for a collider with one interaction
point and two installed Siberian Snakes in each ring. Matrix for spin advance after arbitrary
large number of turns is found. Performed study indicates, that spin depolarization due to beam-
beam collisions is suppressed if beam-beam interaction is stable and if operation point is far
enough from spin resonances. Meanwhile, in the absence of Snakes or under beam-beam
instability, spin is a subject of strong depolarization. Analytical estimations are confirmed by
results of computer simulations.



L. INTRODUCTION

Particle colliders with polarized beams require careful control of spin depolarization. During
acceleration spin is subjected to intrinsic and imperfection resonances, resulting in
depolarization. Extra source of depolarization is beam-beam collisions. Due to beam-beam
interaction, particle motion become essentially nonlinear and under some circumstances,
unstable. In present paper effect of beam-beam collision on spin depolarization in a proton -
proton collider is studied. Betatron particle motion is defined as a linear oscillator perturbed by
nonlinear beam-beam kick. Spin rotation is described by subsequent spin matrix multiplication
in dipole magnet, in Siberian Snakes and in beam-beam interaction point. Analytical treatment
of the problem provides choice of the collider operation point, where depolarization is

suppressed. It also indicates zone of relatively strong depolarization.

II. SPIN MATRIX FORMALISM

—

Rotation of spin S of a particle with charge q, mass m, velocity B = v/c and energy v is

governed by the Bargmann-Michel-Telegdi (BMT) equation [1]:

95 - &S [(1+GPBL+ (140 By + Gy + Loy Z2P

Ht— mY 1+,Y c ]’ (21)

where G = 1.79285 is an anomalous magnetic momentum of the proton, Eis an electrical field,

B 1 and ]§H are components of magnetic field, perpendicular and parallel to particle velocity,

respectively:
Blz%(VxB)xv, 2.2)
\"
Bu=L(V B) ¥ 23)

Particle velocity, v is expanded in the orthonormal set of curvilinear coordinate (X, y,Z) as
follow:

V=13 [x'f+y‘§+(1+§)§], (2.4)

where p is a curvature radius of the reference coordinate system, dot means derivative over
time, ‘= d/dt and prime means derivative over longitudinal coordinate, ' = d/dz. Change of
independent variable in Eq. (2.1) from t for z gives:

z _dS v . (2.5)

t dz /\/(1%)+X|2+yv2

ds _
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Calculation of magnetic field components (2.2), (2.3) results in the following expressions:

By =[x2+y? + (1+§>1'1{[( (143" + y B, -Xy'By B, A2
+ [-X'yBx + ( (1+§)2+ x?)By - y'B, (1+ -gn&’
+ [-x'By (1+§) - y'By(1+§) + (X% y'2) B, ]z}, (2.6)
Bu=(x2+y2%+ (1% 2} (B, + yBy + (1-&%)BZ}{X')_{ +yYy + (1+§)z} . 2.7)

Vector product of electric field and particle velocity gives:

ExV=2{ [Ey(1+ ﬁ) -E,y'IX + [B.x' - (1+ %) Exly + [yEx-Eyx1Z} . (2.8)

Combining all terms, BMT equation now can be written as

% =S x ﬁ, or (2.9)
ds
de = SyP; - S,Py
dSy
{ & - S,Px - S«P, ’ 2.10)
ds,

- = SiPy- SyPx

where vector P = (Px, Py, P7)is given by the terms up to the first order by the following

expressions:
S X B. +¥ (Y .
Py = myv [(1+GY)(Bx - x'Bz) + (1+G)x'B; + 2 (1+Y +GY(Ey - yE)], 2.11)
-9 ' . v Y -
Py=rryy (14003, -yB) + (14O)YB, + L (o +GY(E,-Egl.  (212)

P, = — - [(14GY)(-XBy - yBy) + (1+G)(X By+B, + yBy ) +¥(
C

+ GY)(YEx - Eyx)] . (2.13)
myv

¥
1+y



To derive matrix of spin rotation, let us assume, that the vector P is a constant at the
infinitesimal distance 8z. Second derivative of spin vector is given by

d?s,
dz2

= S;PxP; - Sx(P7 + P?) + S,P,P,

(2.14)

d’s
{ dz2y = SxPPy - Sy(P? + P2) + S,P,P,

dzs,
dz?

= SyPyP, - S,(P? + P?) + S,P,P,

Taking the third derivative of spin vector, equations (2.10) are reduced to the third-order

differential equations:
Sx + P2 Sy =0
" p2] -
{ SK.+P0 Svy—O , 2.15)
S, +P2S, =0
PZ=P?+P}+P} . (2.16)

General solution to the problem (2.15) can be written in the form:

Sx = Cx1 + Cx2 cos (Pdz) + Cy3 sin (P,dz)
Sy = Cy1 + Cy; cos (Podz) + Cy3 sin (P,3z) @217
S; = Cy1 + Cy3 c0s (Podz) + C,3 sin (P,dz2)

where constants Cyj, i = (X, y, z), j=(1, 2, 3) depend on initial conditions.
Let us express constants in Eqs. (2.17) through initial values of spin and it's derivatives.
Assuming in Eq. (2.17) 6z = 0, initial value of spin vector §0 = (Sx0:Sy0» Sz0) is given by

Sxo = Cx] +Cxo
{ Syo = Cyl + Cy2 .

Sz = Cu+ Cx

(2.18)

From Egs. (2.17) initial values of the first §0 = (Sxo» Syo » Sz0) and of the second

So = (Sxo» Syo» Szo) order derivatives of spin vector are

S;(o = Cx3 Po

{ S0 =CysPo 2.19)
S'zo = Cz3 Po



S:(o =-Cx2 Pg

{ Syo = - Cyp P2 _ (2.20)
Sgo ='C22 Pg

Combining Egs. (2.17) - (2.20), solution for spin advance at the distance 8z can be written as

follow:

—t ]

S=S,+ So gin (Po0z) + So. [1- cos (Podz)] . (2.21)
P, p2

Substitution of Egs. (2.10) and (2.14) into Eq. (2.21) gives the following matrix of spin rotation
at the distance 6z [2]:

s, | 1-aB*C%» ABa+Cb  ACa-Bb ||s,,
Sy| =| ABa-Cb 1-a(A%+C%) BCa+Ab||S,,| » (2.22)
S4 |JACa+Bb BCa-Ab  1-a(AZ+B2)|Sz0
P Py P
A = ——&a B =5 = _Zs .
B, B, D (2.23)
a=1-cos¢, b=sing, ¢=P,6z. (2.24)

Matrix (2.22) can be used for calculation of spin rotation in arbitrary electromagnetic field,
assuming field is constant at the distance 6z. Below, matrix (2.22) will be applied for calculation

of spin advance in bending magnet and in a beam-beam interaction point.
III MODEL OF COLLIDER WITH POLARIZED PARTICLES

A. Particle betatron motion

Let us consider a collider ring with two installed Siberian Snakes. We use a two-

dimensional particle model in coordinates (X, py = [3: %), (y, py= B; %ZX), where Bi’ [3; are

beta-functions of the ring. Particle motion between subsequent collisions combines linear matrix

transformation, perturbed by beam-beam interaction:

Xn+1 cos 6x sin 6x 0 0 *n

Punet | | -sin o, cos By 0_ B 0 || Prn*Apxn . (3.1)
Yn+1 0 0 cos Oy sin Oy Yo

Py. et 0 0 - sin Ey cos gy Pynt APy



where 8 =2nQ,, 8, = 21Qy are betatron angle, Qx and Qy are betatron tunes. Beam-beam
kicks Apy i, Apy,y are expressed as a result of interaction of particles with opposite beam with

Gaussian distribution function

2
1 -exp(-—2-)
2 63

Apxn = 4nkx, > ) 3.2)
)

202

and similar for Apy . Parameter & is a beam-beam parameter, which characterizes strength of
beam-beam interaction
*

N, B
dmoly

3.3)

where N is a number of particles per bunch, r, = q2 / (4ne,mc?) is a classical particle radius and
O is a transverse standard deviation of the opposite beam size.

B. Spin matrix

Rotation of spin vector S =(Sx, Sy, S;) is described by subsequent matrix transformation in a

lattice arc, in Siberian Snakes and in interaction point.

1. Dipole magnet
Spin rotation in an ideal lattice arc is described as a spin precession in dipole magnet with
bending angle v. Assume, that field of dipole magnet has only one vertical component:

By=0, B;=0, By=B . (3.4)

Therefore, components of vector F, Egs. (2.11) - (2.13), and corresponding matrix coefficients,
Eqgs. (2.23) -(2.24), are given by:

1
Py =0, Py=(+pGY),PZ=0,A=O,B=1,C=0, (3.5)

PO-SZ=%—Gl)8z= (1+Gy) v . 3.6)

Matrix of spin rotation in dipole magnet is [3]:

cos (P,0z) 0 - sin (P,0z)
Dy=| O 1 o |. (3.7)
sin (P,0z) 0 cos (P,0z)



2. Siberian Snakes

Siberian Snakes rotate any spin vector by angle © around axis [4]. Two types of Snakes are

used, which matrixes are given by:

0 0 1

Sy =10 -1 0, (3.8)
1 0 0
0 0 -1

S2 =10 -1 0] . (3.9)
-1 0 0

3. Interaction point
Spin advance after crossing an interaction point is described by matrix (2.22), where 9z is
an interaction distance, defined below. Vector f’: Egs. (2.11)-(2.13), in case of head-on beam-

beam collision is as follow:

[(1+G’Y)B +(G’Y'*‘—)B Y], (3.10)
_ 1 BEX
- g [040VB, - @r+ ) B, (.11
P,=0 , (3.12)

where small terms X', y' are neglected, Bp = mcfy/q is a rigidity of particles, E =(Eyx, Ey, 0) is an
electrical field and B =(By, By, 0) is a magnetic field of the opposite bunch. Due to Lorentz
transformations, components of electromagnetic field of the opposite bunch are connected via

relationships

E E
BX=B—Cl, By=-B-X. (3.13)

Assuming, that interacted particles are ultra relativistic § =1, y>>1, the vector Pis simplified:

qE

P, = mzyy [(1+GY) +(G’y+——)] Czy , (3.14)
E,

1 ] ~-2G6948x 3.15

Py = mczY[(+G*Y) (GY+ )] —k (3.15)



Let us express matrix parameter ¢, Eq. (2.24), via beam-beam parameter &. Electrostatic

field of the opposite round Gaussian bunch with length land peak current I = k! Nl BC, is

== exp (-2 e L exp 2y (3.16)
2ne, Lr 202 2me, Ber 262
Ex=E.X, E=E7Y. (3.17)

Substitution of the expression of electrostatic field into Egs. (3.14), (3.15) gives expression for

vector P
P, = 4G Il 12 [1- exp(-——)] (3.18)

Py=-4GI o [1- exp(-z—)] (3.19)

where I = 4ney m ¢3/q = (A/Z)-3.13-107 Amp is a characteristic value of the beam current.
Beam-beam parameter £ in Eq. (3.3) can be rewritten as follow:

[
3.20
S i (3.20)
To define the interaction distance 8z, let us suppose, that at the time moment t = 0 test
particle enters the opposite bunch (see Fig. 1). Equation of motion of test particle is z; = vit.
Equation of motion of the right edge of the bunch is z; = I - v,t. Test particle will leave opposite

bunch when z; = z;, or after time interval t = i }_ v Coordinate of test particle at this moment,
21 = vit, is equal to the interaction distance 8z:
8z = vit =1 =1 (3.21)

V1+V2 2

Taking into account Eqgs. (3.18), (3.19), parameters of spin matrix P, 6z, Py 8z can be

expressed as follow

l- exp(-~—)
P oz=P, L=dnGgye L 262y (3.22)
2 B (2
202
1- exp(m—)
Pydz=Py l=-dnGyg X 262 7 | (3.23)
B ( )



Finally, parameter ¢ is given by

1-exp(- —rz—)
0=V (P82) +(P,d2) =4nGyE L | 207 7. (3.24)
B (2
26

Parameter @ is typically much smaller than 27, which gives us possibility to simplify matrix of
spin rotation in the interaction point and to provide analytical treatment of the problem (see next
Section).

Model developed in this section was incorporated into numerical code BEAMPATH [5].
Typical parameters of numerical model are summarized in Table 1.

IV. ANALYTICAL TREATMENT OF SPIN DEPOLARIZATION
A. Simplified spin matrix in the interaction point
To make an analytical treatment of spin depolarization, let us simplify the suggested model.

Consider collider with two Siberian Snakes and one interaction point. Matrix of spin advance

after one revolution in the ring between beam-beam interaction is

-1 0 0
Mring = D2 -S2 Dy - St ‘D2 = | 0 1 0. (4.1)
0 0 -1

Suppose, that betatron angels in x and y directions are equal each other 6, = 8, = 8. We

consider particle motion far enough from low order resonances, therefore, particle trajectory can
be expressed as a linear oscillator with perturbed betatron tune 0:

x =rcos (nf +¥), y =rsin (n6 + ¥), 9=6+A9, 4.2)

where W is an initial phase of betatron particle oscillations and A8 << 27 is tune perturbation
due to beam-beam collisions. In Fig. 2 example of particle trajectories in presence of stable
beam-beam interaction is given. Particle trajectories in phase space are slightly deformed
ellipses. In this case beam envelopes and beam emittances are also stable (see Fig. 3). Beam-
beam instability and it's effect on spin depolarization will be considered in Section V.

Parameters A and B, Eq. (2.23), at the interaction point can be expressed as follow:



A=2=Y = sin (00 + ) 4.3)

B=—=-%=-cos(n6+‘P) ) 4.4)

<

Let us take into account, that parameter ¢ is small:

r2

¢=Podz=4nGy§L-[1- +o.. ] << 28 . (4.5)
B 4052
Hence, the matrix parameters, a and b, are as follow:
@2
a=1-cos¢z?, b=sing=¢ . (4.6)

Finally, matrix of spin advance of a particle in interaction point at the n-th turn is given by:

¢ ¢
1- 5 cos?2(nb+¥) - T sin 2(n6+¥) ¢ cos(nf+¥)
¢° ¢
Mpp(n)=| - e sin 2(n6+Y) 1- L3 sinz(n9+‘}’) ¢ sin(nB+¥) |. 4.7
o2
- @ cos(nB+YP) - @ sin(n6+¥) "5

B. Spin matrix after arbitrary number of turns

Now let us derive matrix of spin advance after arbitrary number of turns. Due to small value
of parameter @, we will leave in the resulting matrix only terms, proportional to ¢ and ¢2, while
neglecting terms with @3, ¢4 and higher order.

Suppose, initial position of particles is just before interaction point. After interaction point,

matrix of spin advance is the matrix (4.7), where n = 0:

2 2
1- % cos?¥ - % sin 2¥ ¢ cos'¥
¢ ¢’
Mp.p (1) = |- £—sin 2% I-=-sin®¥  gsin¥|. 4.8)
@2
- @ cos¥ - @ sin'¥ S



After interaction point particles perform one revolution in the ring and spin matrix after first

turn, Myy,, is a product of matrixes (4.1) and (4.8):

-1 0
M= |0 -1
0 0

2
-1+%—cos7-‘1‘

2

= —(—Z—-sinZ‘P

¢ cos¥

Analogously, after second turn spin matrix is

-1 0 0
Myp=(0 1 O

0 0 -1

2
-1+ % cos?¥
2
; % sin 2%
¢ cos¥

2

2 2
Ny ¢ .
1- X cos? X
0 5 cos ¥ 4 Sin 2% ¢ cos'¥
2 2
ol |- % sin2¥  1- %— Sin?¥  @sin¥ |=
-1 o2
- ¢ cos'¥ - @ sin¥ "5
¢?
e sin 2'¥ - @ cos¥
@2
-5~ sin®¥ @ sin¥
2
@ sin® 1+
2
¢’ ¢’
1- - cos2(0+¥) - T sin 2(6+¥) ¢ cos(6+¥)]
o ¢’
T sin 2(6+¥) 1- - sin(0+¥) ¢ sin(6+¥)
2
- @ cos(6+¥) - @ sin(6+Y¥) 1- %—
o?
4 sin2¥ - ¢@cos'¥
2
1- _(?2_ sinff¥  @sin¥ | =
2
¢ sin'¥ -1+ (_PZ—

2

1- %— [cos¥ + cos((-)+‘{’)]2

o2
4
-@ [cos'¥ + cos(6+'P)]

L [-sin2¥ + sin 2(6+%F ) + ....]

- % [sin 2¥- sin 2(6+¥)+...]

2
1- ‘% [sin¥ - sin(6+%)] 2

-@ [sin'F - sin(6+'¥)]

o¢[cos¥ + cos(6+¥)]

o[ sin'¥ - sin(6+¥)]
1- @2 - @2 cos (B+2F)

4.9)

. (4.10)

Every element of the matrix (4.10) has a specific dépendence on turn number. Let us

assume, that after (n+1) turns the resulting matrix of spin rotation will be as follow:



M(n+1y0 =
comlr -2 [z cos (i0+%)] ) (pT 3 (140 sin 266+%) +.] (. Dl Y cos(0+)

i=0 i=0

%[2(1)”1 sin 2(i0+%) +..] 1- —{2(1)' sin (16+‘P)} (pZ(l)‘ sin (i6+'P)
=0 i=0

1" @ z cos (i6+P) ¢ 2 (-1)*1 sin (i0+P) -1+ [t - &;_1 02+ ]

i=0 i=0

Then, multiplying the suggested matrix (4.11) by matrix of spin advance in the next beam-beam
interaction, Eq. (4.7), and by the matrix of spin advance in a ring, Eq. (4.1), the matrix after

L (4.11)

(n+2) turns is obtained:

2

- 0 0
¢? ¢
MGs20=|0 1 0O e sin 2 [(n+1)6+¥] 1- L3 sinz[(n+1)9+‘1"] ¢ sin [(n+1)6+¥]
0O 0 -1 @2
-¢ cos [(n+1)6+Y¥] -@ sin [(n+1)6+Y ] o

-D™1{1 - ‘p ZCOS(19+‘P)]}
i=0

7 n
@ [ (-1)*! sin 2(:6+¥) +...]
43

-Do i cos (i6+¥)

2 n+l

1- % cos2[(n+1)8+¥ |

2

2 o n
%[2 -1)*"sin 2(i0+¥) +..]  (-1)**lo Y cos(i0+¥)

i=0

2 n 2
- £ (3 ¢1)isin Govw) )
i=0

¢ Y, (-1 sin (i6+¥)

; % sin 2[(n+1)6+¥]

¢ cos [(n+1)6+¥]

i=0

® Y, Disin (i0+P) |=
i=0

GVl -95—1(p2+...]

[2 -1 sin 2(6+¥) +..] 1- —{Z (-1 sin (i0+¥) }

i=0 i=0
(P2 n+l @2 n+1 ntl
(-D™2{1- 5[ cos (19+‘P>] b L2 G sin 260+%) +.] (1@ Y, cos(i0+¥)
=0 i=0 i=0
n+1 2 n+1

@ Y (-1)isin (i0+¥)
i=0

i=0
n+1 n+l
D™ o Y cos (i6+¥) @ Y (-1)**1 sin (i0+P) -1)™2 (1 - % ¢%+... ]
i=0 i=0

. (4.12)

Resulting matrix (4.12) can be written as the matrix (4.11), where index (n) is substituted by
index (n+1). Therefore, suggestion (4.11) is correct and gives the matrix of spin advance after

arbitrary number of turns.



C. Spin components after n turns

Developed approach gives us possibility to predict effect of beam-beam interaction on spin
depolarization after large number of turns. Suppose, initial spin vector has only one transverse
component Sy =1 and other components are equal to zero Sx = Sz =0 (see Fig. 4). Spin advance

is as follow

Sx a a2 a13 (10
Syl =ax an axs| (1] > (4.13)
S, a3] a3 331 | g

therefore, only matrix elements ajs, ajp, a3y are essential to determine the values of spin
components after n turns:

. N (206+7m)
¢? n-1 . @2 Sin [————=
Sy =4[, (-1 sin 2(i6+¥) +..] = (-Dr . 2 sin[2¥ + 0L (204m))+... | (4.14)
4 i=0 4 cos 0 2
@ o 2 o sin? [E(B-l-_n)
Sy = 1-7{2 (-1)'sin (8+9) } =1-- —2zsin2[‘l‘ +%l(6+n)] . (4.15)
i=0 (cos—ez—)
. | sin [n (6+m)
S, =(-)™ @ Y, (1) sin (i6+%¥) = (-1)™! ¢ —— 2 sinp¥ + 2L (0+m)) . (4.16)
i=0 cos® 2
2

Average values of spin components are achieved by integration of Egs. (4.14) - (4.16) over all
initial phases:

2
s _ 1L _
Sy —2nf Syd¥ =0, “4.17)
0
B : n o sin? [, (92+1t)]
Sy =—2—7E ; Syd\P =1-T o > » (418)
(cosi)
2n
5, =ﬁjo S,d¥ =0 . (4.19)

Root-mean-square values of spin components are given by



2n o sin2 [n (26+n)]
<S> = 2L S2 d¥ = e 2 +.] (4.20)
T J, 2 (cosf )
2 1 - T 2 (P4 Sin4 [n (62+TC)]
<Sj>= L 0 (Sy-SyPd¥= = — 5= (4.21)
(cosi)
n 2 sin? [n (9+n)]
<S?2>=-1 | s2qy-= = - (4.22)
0 (cos% )

Introduced average and rms spin component parameters characterize spin depolarization.
From formulas (4.17) - (4.22) it follows, that they are turn dependent. Turn number, n, appears
as an argument in trigonometric functions, providing oscillation of average and rms spin

parameters. Therefore, spin depolarization is suppressed. Taking average values of trigonometric

functions
sin [——2 ]—2 , (4.23)
sin [*2 1= g (4.24)

and average values of parameters ¢, © among all particles,

¢=4nGYETD | (4.25)
p
0=~ 2n (Q-%), 4.26)

the turn-independent average and rms spin parameters are

Sy =0, §§=1-—q’~—2, S, =0, “.27)
(:]
8 (cos2 )
~4 ~4 ~2
<S%> = ? [—L—+.], <Si>= 3¢ —, <S= @ — (4.28)
4 (cosb) 256 (cos$ ) 4 (cosd )



Attained formulas (4.27), (4.28) indicate, that spin depolarization due to beam-beam

collisions is suppressed and depends on betatron tune in a ring. The most dangerous working
point is close to half-integer value, because in that case the value of cos % is close to zero and

spin depolarization parameters become large. The matrix (4.11) was obtained in linear

approximation to betatron particle motion and to beam-beam forces, therefore it cannot treat
higher order nonlinear spin resonances. Due to small value of ¢, depolarization effects,

proportional to @4 are negligible as compare with that, proportional to ©2. Among possible

depolarization effects the most pronounced are change of the values of §y and <S2>.

V. NUMERICAL SIMULATION OF BEAM-BEAM EFFECT ON SPIN
DEPOLARIZATION

A. Spin depolarization as function of betatron tune
Computer simulations utilizing numerical model of Section III were performed for the beam
parameters, presented in Table 2. For that combination of collider parameters, the values of

matrix parameters are as follow:
¢=4nGYE S = 72103 , (5.1)

6 = 21 (Q - 0.00625) . (5.2)

Initial particle distribution in phase space was chosen to be Gaussian:

R+py  x2+y?

Pk
f=1f,exp-(
° 2p3 20?

). (5.3)

During simulations, the average and rms values of spin parameters were calculated according to

the formulas:

N
<1 _
Se=x Z‘; S, (), (5.4a)
. N
S, =§ 2 Sy (@), (5.4b)
. N
S, = ﬁ Y's, ), (5.4¢)



N
V<$d> = f\/ 2 5 (S-S, (5.4d)
i=1

N
V<S2> = /\/ Y ﬁ [S,0)-S, 1, (5.4¢)
i=1

N
V<S> = «/ 2 [S)-S. 7 (5.4)
i=1

In a storage ring spin is a subject of intrinsic resonances, obeying resonance condition
Gy=ko + kQy + kyQy ; (5.5)

where ko, ky, ky are integers. Average and rms spin components as function of tune values are
presented in Fig. 5. In that simulations horizontal and vertical tunes were taken to be equal each
other Qx = Qy. As seen, spin depolarization is most significant, if fractional part of the tune is
close to 1/2, as it was predicted by Egs. (4.27) - (4.28). Also depolarization is observed, if higher
order spin resonances are exited. Nonlinear spin resonances are not treated by analytical
formulas of Section IV due to assumptions of the linear model. If tunes are far enough from that
values, spin depolarization is suppressed.

In Figs. 6, 7 results of suppressed spin depolarization for Qx = Qy = 14.43 are presented.
Average values of Sx and Sz are close to zero, as expected from Eqgs. (4.27). Average value of
Sy is slightly less, than initial value of 1, and oscillates around stable value of 0.99987. Rms
values of spin components are also oscillatory functions of turn number. Numerical values of

average and rms values of spin components are close to analytical estimations (see Table 3).
Depolarization provides small tail of distribution of Sy component, which lasts from 1 to

0.9991. Distribution of Sx component is much narrow than that of Sz component. It also follows
from Eqs. (4.28), where <S%> is proportional to ¢4, while <S2> is proportional to @2. Numerical
simulations confirm analytical prediction, that spin depolarization due to beam-beam interaction
is suppressed, if particle trajectories are stable and spin resonance conditions are avoided.

In Figs. 8, 9 results of strong spin depolarization for Qx =Qy = 14.505 are presented.
Average value of Sy is less than 0.5. Rms values of Sy and Sz spin components are several order
of magnitude larger, than that for previous case. Spin distribution has a spread from -1 to 1. It

indicates significant depolarization, as expected from results of previous Section.



B. Spin depolarization in a ring without Siberian Snakes

To estimate effect of Siberian Snakes on spin depolarization in presence of beam-beam
interaction, consider a ring without Snakes. Derivation of spin matrix rotation after arbitrary
number of turns results in awkward expressions, so we have to rely on computer simulations. In
Figs. 10, 11 results of spin depolarization in a ring without Snakes are presented. Simulations
were performed for the same values of betatron tunes Qx = Qy =14.43 as in Figs. 6, 7, where
spin depolarization was suppressed. As seen, in the absence of Snakes beam-beam collisions
result in steady spin depolarization.

C. Spin depolarization in presence of beam-beam instability
Up to now we have considered particle motion in presence of stable beam-beam interaction.
There are several mechanisms, which lead to beam-beam instability. Excitation of nonlinear
resonances and unstable stochastic particle motion due to overlapping of resonance islands is the
fundamental phenomena in beam-beam interaction [6]. Another mechanism of unstable particle
motion is a diffusion created by random fluctuations in distribution of the opposite beam. In Ref.
[7] noise beam-beam instability was studied for the case of random fluctuations in opposite

beam size

u-u,
> ), (5.6)

where u is a noise amplitude and uy is a uniform random function with unit amplitude. It was

C,=0, (1%

shown, that in presence of noise, beam emittance is increased with time as

%ﬂ- -yI+¥Dn , (5.7)

(]

where diffusion coefficient D is a function of beam-beam parameter &, noise amplitude u and
ratio of beam size, a, to opposite beam size, 20:

— 2 2. a4
D= nt“ (Eu) (20) : (5.8)

Noise in the beam-beam collision always induces instability if beam-beam kick is a nonlinear
function of the coordinate. Due to diffusion character, noise beam-beam instability does not
have a threshold character and can exist at any value of beam-beam parameter.

Increase of beam emittance is accompanied with increase of beam size. In Figs. 12 - 14
results of beam dynamics study and spin depolarization in presence of noisy beam-beam
interaction are given. The value of noise amplitude u = 0.025 was chosen arbitrary, to

demonstrate the main features of diffusion beam-beam instability. In contrast with Fig. 2 particle



trajectories at phase planes are not closed (See Fig. 12). Beam emittances and beam envelopes
are monotonous increasing functions of turn number (see Fig. 13). Increasing of beam sizes
results in steady spin depolarization (see Fig. 14). It is also expected from analytical formulas
(4.27), (4.28), where average and rms beam parameters are proportional to the powers of
parameter @, which, in turns, is proportional to beam size according to Eq. (4.5). Therefore,
beam-beam instability is a source of spin depolarization.

Spin depolarization due to beam-beam interaction was observed experimentally at the
electron-positron collider PETRA [8]. Below beam-beam limit, where particle motion was
stable, spin depolarization was negligible. Above beam-beam limit, a significant depolarization
was observed, which was strongly correlated to beam blow up due to electron-positron
collisions.

VI. CONCLUSIONS

Effect of beam-beam interaction on spin depolarization in proton-proton collider has been
studied. Employed method is based on matrix formalism for spin advance and for perturbed
betatron particle motion in a ring. Analytical calculations were done for a collider with one
interaction point and two installed Siberian Snakes in each ring. Matrix for spin advance after
arbitrary number of turns is accomplished. Performed study indicates, that spin depolarization
due to beam-beam collisions is suppressed, if beam-beam interaction is stable and spin
resonances are avoided. Depolarization depends on collider operation point. Unstable beam-

beam interaction provides steady depolarization.
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Table 1. Parameters of numerical model

Number of modeling particles, N
Number of turns
CPU time (for VAX Alpha)

5000
106
5 hours

Table 2. Parameters of the interacted beams

Particle energy, 7y

Rms beam size at interaction point (IP), ¢

Beam-beam tune shift per collision §

Beta function, B*

260
0.08 mm
-0.0125
0.65m

Table 3. Average and rms spin components for Qx = Qy = 14.43.

analytical numerical

Sy 0.99988  0.99988
Sy 0 0
S, 0 0

V<S>  1.06104 1.7-104
V<S> 7-106 5-10°

V<S2>  1.54-102 1.6102
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Fig. 1. Position of test particle with respect to opposite bunch: (a) before interaction;

(b) after interaction.
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