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L. THEORETICAL BACKGROUND

At the present time, the problem of creating an acoustic analogue of the laser
(which will be referred below as 'saser' - sound amplification by stimulated emission of
radiation or 'acoustic laser' ) is of great interest not only because of its evident
fundamental significance but also because there are a variety of potential applications for
such devices. As generators of directed shock waves, they could be used for direct
underwater communication and impact action on underwater objects. Propagation into
other dense media could give rise to medical, engineering and underground remote
sensing applications. If propagation through appreciable distance of more rarefied media,
notably air, could be achieved, many more applications would be opened up.

~ Recently, a theoretical scheme for a saser has been proposed by one of the present
authors in Refs.[1-6], Fig.l1-a. A liquid dielectric with uniformly distributed dispersed
particles was suggested as the active medium. Different types of oils, liquefied gases or
distilled water can be used as a liquid dielectric. Gas bubbles was suggested in Refs.[1-
6] as dispersed particles due to, firstly, their very high compressibility and, secondly,
their ability to give sound emission of the monopole type. The sound emission from solid
corpuscles is of dipole type and much less efficient. The suggested scheme for a saser is
analogous to that of a free-electron laser ( FEL ). It is well known that the useful
electromagnetic radiation is created by an electron beam moving through magnetic
periodic systems. These systems are called ondulators or wrigglers. Ondulators play the
role of pumping. Inside such a system each electron oscillates and, hence emits
electromagnetic waves. Initially the emission of each electron is added to the emission of
others but different spatial phases. Thus, the resulting emission is equal to zero. In order
to obtain non-zero emission we should put this system in a resonator to reflect back some
part of useful energy. In optical lasers this is usually realised by means of half-silvered
mirrors. In the FEL the reflection of the useful electromagnetic wave can be realised by
means of a metal net. Then, under the action of a pump wave and the useful wave,
electrons become grouped in so-called bunches. As a result, the emission becomes
coherent. It leads to amplification of the electromagnetic field. This mechanism is well
known as self-synchronisation. In the saser gas bubbles play role of the electrons in the
FEL. Unlike common optical lasers, in which atoms can emit spontaneously, gas bubbles
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can only oscillate under an external action, but not spontaneously. As has been shown in
Refs.[1-6], external pumping of this active medium can be achieved by electrical ( see,
for example, Refs.[1-3,5] ) or mechanical ( see, for example, Refs.[4,6] ) methods.
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Fig. 1. Scheme of the acoustic laser.
1 - active medium,
2 - resonator;
3 - electrodes.

In the first case the electric field acting on such a system results in the deformation
(electrostriction ) of the dielectric and, hence, chariges particle volumes. The value of the
effective pressure acting on the particle is proportional to the square of electric intensity
E and the difference between dielectric constants of liquid bubble and gas. For gas the
dielectric constant is very close to 1. As for liquids, a high value of this constant is found
in distilled water ( about 81 ). It is clear that for electric pumping, distilled water is
preferable with respect to other dielectrics. However, the electric pumped saser has one
weak point. The electric intensity necessary to common saser generation in, for example
distilled water with air bubbles, is of the order of a few tens of kV/cm. This is close to
the breakdown potential. That is why in Refs.[4,6] a new simple scheme of saser with
mechanical pumping has been proposed. In accordance with this scheme, the pumping
can be achieved by a plane piezoelectric emitter of a piston type in the case of a
rectangular resonator [4] or by radial mechanical pulsations of a cylinder in the case of
cylindrical resonator [6].

In the saser the role of a laser mirror can be played by a wall of any material with
acoustic impedance much greater ( or much less ) than that of the gas-liquid mixture. As
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has been shown in Refs.[1-6], the bubble bunching can be realised by means of well
known acoustic radiation forces. These forces are similar to those which group the
electrons in bunches in the FEL. In the saser, gas bubbles are grouped in planes in which
their emision becomes coherent. Generation conditions for a saser were evaluated in
Ref.[2]. Tt was shown that two types of losses must be overcome for generation to begin,
The first type results from the energy dissipation in the active medium and the second
one is caused by radiation losses at the boundaries of the resonator.

A further important step is made in Ref.[3] where the non-linear stage of saser
operation and a saturation mode are investigated by numerical methods taking into
account the role of bubble coagulation under the action of Bjorkens forces These forces
can be important when the gas bubbles are grouped in coherent planes. It is well known
that usual magnetostrictive and electrostrictive generators are working as generators of
piston type with large spatial directionality. Fig.4 shows that the saser radiation is a set
of many pistons or a phased array [3]. It is possible that the saser directional pattern will
be narrow-beam. Moreover, the saser differs from the above systems particularly in that it
is a three-dimension system because the whole volume of an active medium emits. It is
new physical quality,

What does it mean 'saser'?

In optics, 'laser' ( light amplification by stimulated emission of radiation ) means a
generator of coherent electromagnetic waves which has a narrow-beam directional
pattern. Most of all, such interpretation is suitable for lasers operating as stationary
generators. But, if lasers are working as generators of short pulses (for example, chemical
single-pass lasers ), than this interpretation leaves much to be desired. In fact, the length
of short impulses may be of the same order as wavelength. In this case, what does
coherency mean? In this case laser may be obviously defined as a generator of short
impulses which has a narrow-beam directional pattern. It is clear that the last definition is
more general than the first one. But, there is one additional very important matter. Laser
is a device in which the mechanism of self-synchronisation of elementary emitters ( for
example, atoms in optical laser ) is realised. In saser, small gas bubbles play the role of
elementary emitters and the self-synchronisation takes place as well. Thus, saser may be
defined as a sound generator which has a narrow-beam directional pattern and, the
operation of which is based on the mechanism of self-synchronisation. This definition is
very important for the following consideration because it can cause some
misunderstanding. Let us imagine that we have a set of coherent small piezoelectric
emitters. The number of them may be, for example, a few tens. These emitters may be
synchronised but it is an artificial synchronisation, not self-synchronisation even if the
directional pattern may be quite narrow-beam (if we increase this number then the
directional pattern will improve). None the less, such a system is not a saser but only a
phased array. It is clear that in the case of saser scheme suggested above there are
millions of small gas bubbles which can never be synchronised artificially, but only using
the mechanism of self-synchronisation. But one can ask, what are advantages of a saser
with respect to a phased array? The answer will be given below. In addition, we will
consider another example of a sound generator which could have a narrow-beam
directional pattern (this scheme was suggested by Prof. F.V.Bunkin within one of our
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discussions ). Let us take a cylinder and wind it around by detonation flex. The velocity
of detonation wave in flex is about 7.5 km/s. Let us select the turns (these system may not
be a periodic one) from the condition of synchronisation of flex detonation wave velocity
(in axial cylinder direction) with shock wave velocity in air (which is about 330 m/s ).
Thus, we will build a single-pass shock wave generator. But, it is clear that this device is
not a saser as well. This is a source of directed explosion. It should be noted that using
this device we may build a single-pass amplifier for shock waves. If we can synchronise a
shock wave impulse with a start moment of detonation wave (in axial cylinder direction)
i.e. at the entrance to this device then, it is evidently, we can obtain an amplification of
this impulse at the exit.

Alternative schemes for saser

It should be noted that there is a number of papers in which theoretical schemes
for an acoustic laser were suggested. We can distinguish, at least, four alternative
approaches. First, the self-synchronisation (due to nonlinear effects ) in a system of
incoherent mechanical oscillators ( monopoles, for example, gas bubbles in liquid ) and
the amplification of an acoustic field were considered by Kobelev et al [7]. Secondly,
sound oscillations in a Helmholtz resonator with overcooled vapour were investigated by
Kotusov and Nemtsov {8]. However, neither of these schemes have been realised
experimentally because of the weak self-synchronisation mechanism. A third approach is
developed by Prieur [9,10], Tucher [11], Hutson [12] at al. The active medium in this
approach is a piece of solid (for example, pure silicon) at a temperature of 0.5 K. Authors
of these works suggested phonon transitions to amplify sound pulses. However, such
phonons have frequency of the order of tens GHz. At such the frequencies, phonons
were absorbed very quickly in solid (thus to eliminate phonon absorption, all experiments
were carried out at low temperatures). It is clear that such an approach is not useful to
build a saser as a generator of shock waves, although the researches believe that,
eventually, acoustic lasers will be used as sensitive particle detectors (New Scientist, 27
April 1996 ). Finally, the fourth approach very interesting for us, was developed by Prof.
V K Kedrinskii et al. [13,14] who suggested the use of chemically active media to build
an ‘'acoustic laser ( although they did not use this terminology ). Kedrinsky's group
would like to create a saser by means of so-called chemically active media, i.e. liquid (for
example, water) with gas bubbles containing hydrogen - oxygen or hydrocarbon - oxygen
mixture. A shock wave runs through this medium, compresses gas bubbles which take
fire leading to the amplification of the shock wave amplitude and so on. Thus, we have a
single-pass shock wave amplifier. In our opinion, this approach may be an alternative
scheme of a saser (alike the scheme suggested by the present authors).

What are potential advantages of a saser ?

Let us consider some advantages of a saser with respect to other sources of
sound. At the present time, five main types of acoustic generators exist: electrodynamic,
electrostatic, magnetic, magnetostrictive and electrostrictive. The first three types are
generally used in air while the latter two ones are applied in underwater acoustics because
of their high mechanical self-impedance. In general, these generators act as two-
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dimension generators (piston type), because only a single two-dimension working surface
effects emission in the medium. Besides, such types of generator have large spatial
directivity. In addition, magnetostrictive and electrostrictive generators lack a discrete
spectral distribution of sound emission. It is therefore of interest to create new generator
types that do not suffer from these shortcomings. One possibility is the saser. First of all,
it is envisaged that these enable large output powers for sound emission to be obtained
due to the very high compressibility of gas bubbles (close to 1, as compared to usual
piezoelectric crystals for which the maximum compressibility not resulting in damage is
about 0.001 ). Secondly, in saser, under the action of both the pumping wave and a useful
mode inside the resonator gas bubbles become grouped in planes ( similarly to electrons
in free-clectron lasers ) in which their emission becomes coherent . Thus, a saser acts as a
phased array. Unlike the usual magnetostrictive and electrostrictive emitters (2-
dimension working systems ) the whole 3- dimension volume of the active medium
emits. This is a new concept. Thirdly, the sound velocity in the gas-liquid mixture is a
function of gas content. Using this fact, we can more easily change the frequency of saser
emission than that of magnetostrictive and electrostrictive emitters. Fourthly, it is very
difficult to build an effective generator of strong sound waves in air because of huge
difference between the acoustic impedance of air and the self-impedance of the emitter. It
is well known that by changing the gas volume content, we caii casily obtain sgung
veiocity in such a gas liquid mixture to be less than the sound velocities both in pure
Hauid {without buboies) and pure ges, Al the first sight, this mxght seem strange, but a
gas-liquid mixture is quite an unusual medium. lts density is almost completely
determined by that of the liquid component, but its compressibility is determined only by
that of the gas component ( the liquid phase can be considered to practically
incompressible ). It is possible that ore can adjust the impedance of air and self-
impedance of the saser and, thus. buil’ an effective generator of strong sound wave in air.

II. SCHEMY, OF THE ACOUSTIC LASER

Let us consider an acoustic resonator containing particles dispersed in a liquid
dielectric as active medium. For example, we can use different types of oils or distilled
water as a liquid dielectric. It is well known that the distilled water has a high dielectric
constant. Static electric field acting on the system (3,Fig3) causes deformation
(electrostriction) of the dielectric particles [16]. The value of the effective pressure acting
on the particles is equal to [16,17]

2 ——
AP:}_EE (g,.’ £,) )
87 (2¢,+ e,,)

Here g, and &, are the dielectric constants for liquid and dispersed particles respectively,

E is the electric field intensity. In the case of an air bubbles in water (¢, = 1,¢, ~81)
and at an electric intensity E = 10kV / cm the value of AP is of order of 0.5 kPa. Let us
suppose that E is a periodic time function: E = E, cos(€) . The electromagnetic waves
propagate through the medium with the velocity of light (for this medium), which is
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much greater than the velocity of sound. Consequently, the pumping pressure wave can
be considered as being independent on the spatial co-ordinate,

P(t) = P, exp(iot) (2)

Here, @ = 2Q is an angular frequency. The pressure amplitude of the pumping wave P,
can be easily calculated from (2). The constant term in (2) is omitted. Under the action of
pumping wave, the particles oscillate and emit sound waves. The initial distribution of
particles is spatially homogeneous. The waves created by the dispersed particles are
summed with different phases and result zero pressure for the useful wave. However, for
active medium in the resonator, an acoustic mode can appear. Then the particles would
grouped to bunches by the acoustic radiation forces. Moreover, it is well known that the
state of the medium with the spatially homogeneous bubble distribution is unstable not
only for a steady but also for a traveling wave [18]. This leads to self-synchronisation of
the oscillating particles and the amplification of a pressure wave.

III. PRINCIPAL EQUATIONS

For simplifications of calculations, we supposed that the dispersed particles are spherical.
Their pulsation was investigated in numerous papers (see, for example, [18-20]). In a
monopole approximation, the equation for the particle radius pulsation is:

R{t) = ~ —'lfz\—z[PE exp(iot) + P(r, 1)] 3)
p R o

The right hand side of this formula contains the resulting pressure on a particle. The first
term corresponds to the pumping wave (2), the second one describes the pressure created
by the oscillations of other particles; 4 is the scattering amplitude; » is the position
vector of a particle in the liquid; R, is the mean particle radii; p, is the liquid density.
The monopole approximation holds true at the condition &, R, << 1 (k, is a wave number
in the liquid). The case of a liquid with gas bubbles gives [19] ‘
- R,
T e,/ @ -1+id
where @, = w,(R,) is the resonance frequency of the bubble, & is the absorption

constant. The sound pressure wave P'(r,f) is described by the known equation [18]

po L P 2 Tam(r, R, HRR(DAR 5
A-C—I{Et'_z_platza[nr(rv 0-)0] 0 ()
where ¢, is the sound velocity in the pure liquid (without particles), n(r,R,,?) is the
particle size distribution function (nis equal to the number of the particles per unit
liquid volume with mean radii between R, to R, +dR, ). Let us suppose that at =0 the
distribution of the particles is spatially homogeneous, i.c.,
n(r, Ry.,0) = no(Ry ) )
For sound pressure created by the external pumping, one can obtain

7
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1 &P

AP—C—zw—(a+iﬁ)P=(a+i[3)PEexp(imt) 7
where |

o =or, t) = 4n Re ].An(r, R, t)dR, (8)
B =fr, t) = —4n|m]'An(r, R, t)dR, 9)

0
In the case of the liquid with gas bubbles we have

T Rl - 0}/
o = or, t) = 47:[(1 _0(0)2 ; (‘l’)z)zc:)?n(r, R, t)dR, (10)
. 0 0
T R,5
B =Afrt) = 47:](1 — 0m2)2 57 Ry )dR, (i1)
¢ 0

If the spatial distribution is invariable and homogeneous as time passed, then
P(r.t) = P,(t) = (o, +2| Bo) Pe eXP(I ot)

ki = (o, +i P
Here a, = a(r,0),4, = B(r,0) are independent of r, and k, =w/c,. The resulting
amplitude is also spatially homogeneous,

(12)

P. exp(i ot)

= 13
1 - [“LfL@g} o
ki

P(t) = P exp(i ot) + P,(t)

The appearance of the factor

e riB |
F_[l o } (14)

is caused by the presence of dispersed particles. The translation motion of the particle is
given by the equation [21],

4Tn[p,+%pJR3%=F,+F2+D+F,+FB (15)

. . . 4 .
The left part of this equation contains the usual mass of particle m, = 3 np, R} (pyis

. . 2
the density of particles) and apparent mass m, = Szrp,R(f ( see for example, [22] ):

£ =—4ﬂ(p,,+%p,)R§U(dR,/dt)is the drag force due to the particle volume

oscillations ( its time average (/) = 0); F, is the buoyant force which is small for small
particles; D is the viscous drag force which for small Reynolds number
Re = 2R Up, / y, (4, isthe liquid viscosity ) is given by Stoke’s low,



D = —6mu, RUF, (16)

where £, is the correcting factor which is given f, =1 for solid particles and [, = %

for gas bubbles [22]; F, s the time-average acoustic radiation force. The expression for

F, is very complicated but in the case being considered it can be represented as

Az,
R, =R OVPr0), an
where R(1)= R, + R, (1) is the current particle radius, P(r,f) is the resulting pressure
acting on a particle, the numerical factor f, is given as follows:

2c2
a2 3P
£ picy

f, = =—F———5 (18)
[1 + 2 ?"}
P

F, s the so-called secondary Bjerness force {23} which is caused by the interaction
between particles (this force is created by the secondary radiation of the particles and is
usually smaller with comparison to £, ). Substitution of all these terms into (15) and the
time averaging gives the following equation:

WU = —aVP + i {P'VP - PVP) (19
Here the functions o and S are given by the formulas (8) and (9) , respectively,

y = 127, R, p,0° Nf, | f, where N(r,t) is the full number of bubbles per unit volume of

the liquid at the point r. To simplify the calculations, all particles are assumed to have
equal radius, i.e.,

n(r, Ro, 1) = Nr, HRo- Ry 20)
Equations (7) and (19} must be supplemented with the balance equation (we shall neglect
the coagulation for particles)

—‘;ﬂ +diviny =0 o3}

IV. SOME SIMPLIFICATIONS OF EQUATIONS

Let us consider the equations

an o)
— + —(n =0
ot 6x(u
PZ . .
uz_ﬁ_-a” ci Pep P _pP,
Y OX 4 ox ox
where

a=—4nRe j'An(x,R(,,t)dRO = —4mn' (x,1)Re A
0



B=-4rIm j An(x,Ry,0)dR, = ~4m' (x,1) Im( 4)

Neglecting by the terms of higher orders one can get:

U:_EP'EEHSP§P‘+jEp'a_P__iEp£=Viupﬁ_up'f
Y ox y ox ¥ o Y ox Y X Y X

z—&l P§P—+P.a*P
Yo ox ox

Then the equation (21) takes the form

on o, a[n[PaP L p P

ot Yo OX X ox

Representing the pressure as

P = P(t) + Hx t) (22)

we have obtained the following equation where unknown functions are ‘P(z,1),n(z,1)
o _ ﬂi(n —6~(PO‘P' + Py + lP‘P')) = 0 (23)

ot Yo OX ox

Substituting (22) into (7) one can get the equation

’Y 1 Py . " . . 1 &P
Freil s —(0 +iP¥Y =(a +ipPPe'” + (a + i BP(L) +c—2—at2°
and after simplifications one can find

gY 1Y _ , o o 1 5P,

A —;2—7—(a+1ﬂ)?’:(a+zﬂ)1’,{e +(a+1,6')P0(t)+c—z dzo (24)

. I 0]
where the following substitution have been used & = &
¢

o’y 1 &’ : . o
?ax—z—(—:-;?—(a+|@‘{1 = (ol + B )FP.e'™
and given by

n n
a_aoN_o’ﬁ_ﬂO]_V:

V. NUMERICAL SOLUTION OF THE EQUATIONS

Let us consider non-linear equation system of second order with complex
coefficients:
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FY 1w v Nw_ . NN
3 —?7_(00 +l,30)7v*lyz(ao+’ﬂo) OPO

0 0 (25)
N _a,

_“(N(ﬁ(po‘qu PY 4 lw‘))) ,
ad  y, & &

where (x, t) € Q Q = [Q L] x [0 o); L - resonator length; W(x, t)-wave
function ; ¥:Q — C;

N(x, t)- particle density near x at moment t NNQ>R;

P, = FP.e'“' - pressure created by external generator of frequency o and intensity of

Pe in the media characterised by F [24]; v, A @, B, R -are parameters [24].
Initial conditions are as follows:

Wx t),_, = W, (x)
5_\}’(;,“t)|[=0 = ‘P](X),

Nx, t)],_, = Ny(x) = const.
Boundary conditions for function ¥ are as follows:

M¥(x,1) M(x,1)
TS Ix=0 =O’M x=L =
x &

After conversion the system (25) using the variable substitution as follows:
Y(x,t)= FPee" oy, 7),
N (x, t)
-, = sT)h
N T

w
KX =y,0t=T,k=—
c
introducing rational variables P, ©,:

o ) = o,(x 1) +ig,(% 1),

and setting

. a, . B a xFF" P}

ao=—g’ﬁo:_2’q=‘u,
x K ¥ o€

Y(7.7)=20,(z. 1)+ 0} (x,7) + 02(2.7),
one can get the following system of three non-linear equations with unknown functions

o6 1) 9,06 ) n(x 1):

az¢] _ﬁ2¢1 +2_5_¢£_2‘+

@ZZ 51_2 ﬁt (01 = 77”{#’1 - nﬂ(’)(DZ +(]7_ 1)a(’)’ (26)
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i & .
P __&—2‘%+¢2 = nayp, +nfsp, +(n-1BF, 27

@ZZ &2
n a( ﬁb)
L =g—\n—=] (28)
o Ta\"o
x €[0.xL]
with following initial conditions:
¥ 3p,(x,7) ¥

70: 09 ,0_:0’_1___________1__’
(P1(Z ) FP, (02(2’ ) o1 =0 wFP,
ﬁq)Z(ZaT) — \PO

or '™ FP’

and with following boundary conditions:

5401(2’,’7)‘ =0 5(01(,’(,,1')‘ =0
R ’

=xi.

) T l o,

Computation were performed with next initial conditions for functions ¢, ®,:
@,(7,0)=107 cos(y) ;
9,(2.0)=0;

—a—;;_—](z,O)zO >

5(/72(1”7)‘ =0 5‘/’2(}(,,7)
o 7

ap,
L2 (y0)=0 .
5 (l )

2
Resonator length was choose as follows L = “” Discretisation of system (26)-(28) was
K

performed using grids with step T for variable T and with step h for variable ¥ :
X = hk, k = 0 .. N

t=73, | =0..

We have used formulas of second order of accuracy to approximate derivatives of
functions ¢,,@,,n with variable ¥ and derivatives of functions @,,¢, with variables
1 in the interval (Q2x) and the formulas of first order of accuracy to approximate
derivatives of function 1 with variable  in the interval (Q 2m).

The initial values of functions ¢,” and ¢,’ were approximated by formulas of
second order of accuracy. Boundary conditions for function m one can obtain from
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boundary conditions for functions ¢, and ¢,. Boundary conditions obtained in such way
are as follows:

n(Q 1) = exp[qofa (0 6)dd ]

0 = o 22 o o

If we replace the mtegrals in above expressions by their approximations calculated by
trapezium formulas then we get boundary conditions of second order accuracy. Finally
the following discrete equations were obtained:

(o:x,ul _?(pi,,.v = Ak,,‘ B (29)

?‘PL,M +(/’i,/.| = Bk_i , (30)

T @D‘ T _FD
e jn ’qz—h"(;z';k.juqku j+l +q 2 oy Ik il = e l+qr?in,,+| s (€2))

=l k=1 N-1,
where

7
A, =07
-2 2 =, 72 .1
Tk TT P AN TPy

+Bon. oy, +au(n, - 1),

{(/’}Hu - 2(/7}(,_,' + (/’1—1,/} + 2(0;” - qol,rl

—2
i h2 {q)kﬂ J 2(pi,_/ + wi—],»;} + 2(013,_, - wlz(,/‘l

= =2 2 2 =2 2
+T(pk_,—l T T QL — QT ;T Py
’ =2 0 ' —2
_ﬂonkﬂ,‘r Dy _ﬂo(nk,, - 1)7 >
k=1..N-1,j=2...
with the following initial conditions:

B,

@0 =107 cos(hk) . @, =0,
I ! 2 2

Pri TPro » Pii=Pro

Mo =1,

k=0..N .
and with the following boundary conditions
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4p,, - 9;, =300, =0,
4o}, - 03, -3¢, =0,
4oy 1, ~ Py, — 30w, =0,
4951, ~ @y, — 305, =0,

OS?ﬁ ®

770,”] :exp{ (OST |00+ZT 0,'{’ O/+])} »

_J&o L_g'® ID
My :exp{q(()jrgx—?‘ N,o+;T?J 40571 — (3,}:2 Nojel 5

where

Oz 1) = 20,06 D) + 9i(x ) + 03(x )

A final equation system represents the three layers scheme in respect to pair functions
®y,. @, andtwo layers scheme in respect to function 1, ; . The values of ¢', ¢ on
j+1 -th level at k-th point was calculated using following system of equations:

(P:(_,u - %(Pi,pl - Ak‘]’

=1 2
TP t Py = Bk,]'
The solutions of the system are the next:

1 Al 2 AZ
Prja ~ ‘K Py = *&—
where
A=1+77
A =A,,+TB,

A, =B,, -7, .

The equation (29) was solved by factorisation method. So one needed the following steps
to create the full procedure:

1) A given initial conditions allow one to calculate functions ¢', ¢’ at 0-th and 1-th
levels; using this values and values of the function n on 0-th level the values of  on 1-
th level on boundary points one can successively calculate:

2) The values of n at the points k=1..N-1 on 1-th level;

3) The values ¢', ¢’ on j+1-th level at the points k=1..N-1;

4) The values of @', ¢° on boundary points at j+1-th level;

5) The values of 7 at the boundary points on j+1-th level;

6) The values of 7 at the points k=1..N-1 on j+1-th level.
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The constructed algorithm was tested on the mode] tasks with known exact solutions. A
good agreement between exact and numerical solutions was obtained. The algorithm was
used to obtain the solution of the formulated above task and investigation of the solution
was performed using increasing density grids. The results were published in [25]

VL. NUMERICAL RESULTS

The constructed in this work procedure. was realised using the following values for
physical parameters:

a; =001,
£, =0001
q=0.045
xL=2mr ,

2 t
A grid step of h= TE)% for x and a grid step of 1= % for © was used. Following

L

problems were solved:

1.The task was solved with parameter PeF/Pst=10 and initial conditions ¢ =10"cos(x),
0:=0. Values of the functions ®(x, t)and ny t) on layers numbers N=1000, 2000,
3000, 4000 ,5000 are represented in Fig. 2,3. The bunching is shown.

0~04J 1,10,
PN
h S TN
002 / N 1,05 :
A ! \
000]— k /o \
' \ 1,004 i -
/ 7 N o
0@ \ )
N 095 /
™ 4 4 N
0,04 L e o -
X v 090+ § i
0 H o & @ o 3 % 4 8 8 1o

Fig.3. Values of n(x, r) on the layers
numbers N=1000,2000,3000,4000,5000.

Fig.2 Values of the ®(y, t) on the layers
numbers numbers N=1000,2000,3000,4000
,5000.

2 The task was solved with parameter PeF/ Py = 10, and initial conditions

q)1=106005(3x), @2=0. A grid step of h=2pi/300 for x and a grid step of 1= % for

© was used. The values of the function 7 at the layers 3000, 4500, 6000, 7500 are shown
on the fig.4 . One can see that the bunching at this values of parameters don’ t take place.
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1,0030-
10025
1.0020
1.0015
1,0010
1.0005
1,0000
09995}

0,0004 |

0,0002 |-/

0,9990 0,0000 -
0,9985 1 i
20 oozl
0,8970 Vo Vo
-0,0004 | AV A
Fig.4. 11()(, T) on the layers numbers Fig.5. (D(X, ‘t) on the layers numbers
N=3000,4500,6000,7500. N=3000,4500,6000,7500.

3. The task was solved on the following values of parameters: P, F/Pg=1, and at the
following  initial conditions: ¢,= cos(x), ¢2=0. The results on the layers numbers
N=100,200,300,400,500,600 are presented on the fig. 5. The bunching is shown. Due to
lack of factor 10 nonlinear effect has appeared.

" N=400 %

o N=300 2t

8 N=200 1

; . A N=100

4 i f )//i}/ -1 \

2 MO L

L 2/// Rt N 3 . . .

T T 0 20 40 60 80 100
Fig.6 'r]()(, ‘r) on the layers numbers Fig.7. (D(X, T) on the layers numbers
N=100,200,300,400. N=100,200,300,400.

4. The task was solved on the following value of parameter P.F/Py=0.5, and initial
conditions: @|= cos(3x), ¢2=0. The results on the layers numbers N=100,200, 300, 400,
500, 600 are presented on the fig. 8. The bunching is shown.
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d b b onv r oo
7

04!

el

% w e B i 0 20 40 8 8 100
Fig.8. Y]()(, ‘r) on the layers numbers Fig.9. (D(X, T) on the layers numbers
N=10,20,30,40. N=10,20,30,40.

Considered examples show the bunching effect if saser parameters are in the
definite range and absence of the bunching in other range. The bunching character
also depends on initial conditions

This work was supported by RFFI grant 97-01-01040.
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3asrpak C.T. u ap. E11-97-358
Hexoropsie Bonpocer Teopun akyctuueckoro nasepa

IIpeqioxena TeopeTnyeckas cxeMa aKycTHYECKOTO aHaiora nasepa (cocepa),
aHAIOTMYHad XOpOWIO M3BECTHOH CXeMe jasepa Ha CBOGOIHBIX B/IEKTPOHAX, Iie
S/IEKTPOMArHHTHOE U3NyYeHHWE BO3HMKAET BCIIENACTBHE CAMOCMHXPOHHM3ALMH 3/IeK-
TPOHHOTO Iy'Ka, ABHKYIUETOCS Yepe3 NePUOANYECKH MEHSIOLIEEC MATHUTHOE OJTe.
Hucnennas monens i cocepa ONUCHIBAETCH CHCTEMOI TPEX HeNUHERHBIX nudde-
PCHUHATBHBIX YPABHEHHWH C 4aCTHBIMH Mpou3BonHeIMHU. [IpoBeseHo MccmenoBanue
MOIE/IH OCPE/ICTBOM MATEMATHUYECKOIO MOJETHPOBAHHUS C IOMOLUBIO KOMITbIOTEpa.
Monenuposanue nposeneHo B mmMpokom muManasome (M3MUECKHX NapaMeTpos,
OMUCLIBAIOLHX AKTHBHYIO CPelly M PE3OHATOp cocepa. Pe3ymbTaThi HaxomsaTCH B XO-
POLICM KAECTBCHHOM COMIAaCHU C TEOPETHYECKHMH pE3ylbTaTaMH jUis jasepa
Ha CBOOO/IHBIX BEKTPOHAX.

PaGora srinonsena 8 JJabopatopuu BEIMHCTHTENEHOM TEXHUKH U 2BTOMAaTH3aLHU
OHAU.

Coobenmne O6beIHHEHHOTO WHCTHTYTa AICPREIX ucaenobanuit. dyGua, 1997

Zavtrak S.T. et al. E11-97-358
On Some Questions of Theory of the Acoustic Laser

A theoretical scheme of acoustic analog of laser (saser) was suggested
and investigated numerically with the help of computer simulation procedure.
The suggested scheme for the saser is analogous to a well-known scheme of free-
electron laser (FEL) where an electromagnetic emission is created by self-synchro-
nized electron beam moving through magnetic periodic systems. A computational
model of the saser was described by a sytem of three nonlinear differential equations
with partial derivatives. A simulation was performed in a wide range of physical
parameters for active media and resonator. The obtained results are in good
agreement with the results known for FEL.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 1997
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