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ABSTRACT

The Regge and multi-Regge models for
high-energy scattering and production processes
are treated 1in the framework of the Bali-Chew-
Pignotti formalism. The compatibility of these
models with the analytic properties of the ampli-
tude is discussed and shown to require the exis-
tence of families of Regge trajectories. One of
the formalisms which permit to build families of
trajectories which satisfy all the analyticity
and factorization requirements is discussed in its
main aspects. It exploits the properties of the
matrix elements of the representations of the
Lorentz group and works for both the Regge and the
multi-Regge models. The other methods, both ana-
lytic and group-theoretical, developed in order
to solve the same problems are briefly discussed,
together with their main results. A short review
of the most interesting phenomenological applica-
tions of these results is given.
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1. INTRODUCTION

The Regge and multi-Regge models provide at present some
of the most useful tools for the interpretation of the high energy
scattering and production processes 1)0 General treatments of these
formalisms can be found in recent review papers 2)_5). Here we deal
with some kinematical details of these models, i.e., with the behaviour
of the Regge parameters at small momentum transfer. In the next
Section we try to give an idea of the large amount of work which has
been dedicated to this problem, especially in the last two years.
Though many very different formalism have been used, the final results
agree rather well. In the central part of this paper we necessarily
concentrate our attention on one of the many possible poirts of view,

i.e0y the one which seems to permit a unified treatment of the Regge

and the multi-Regge models.,

In Sections 3.-5. we describe the multi-Regge formalism
in the form introduced by Bali, Chew and Pignotti 6 , with some
formal modification useful for the following developments. The usual
Regge pole model appears as a special case. In Section 6. we discuss
the difficulties which arise when one takes into account some analytic
properties of the amplitude. In Sections 7. and 8. we describe the
general lines of a model developed by Cosenza, Sciarrino and Toller 7)_9),
in which these difficulties are eliminated. The simplest results for
two-body reactions, which coincide with the results obtained by other
authors, are described in Section 2. The results for the multi-Regge
case have not yet been written in a sufficiently compact and useful

form and therefore we do not give them here in detail., In Section 9.

we give a short summary of the main phenomenological applications.
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VARIOUS FORMALISMS AND SOME RESULTS

During the development of the Regge pole model for high

10)-18) that it was neces-

energy scattering, it has been recognized
sary to refine the model in order to take into account the fundamental
analytic properties of the amplitude. In particular, it has been
realized that, when the interacting particles have non-vanishing

spins 10)-12) or when the mass of an outgoing particle is different
from the mass of the corresponding incoming particle (unequal mass

reactions) 13)-15)

, a single Regge pole contribution has not the

right analytic properties at vanishing momentum transfer (t::O)°

In both cases it has been necessary to introduce "families" of Regge
trajectories and to impose some relations between their trajectory
functions and residues, in such a way that the unwanted singularities
of the corresponding contributions to the amplitude cancel each other.

The situation is known as "conspiracy"

The existence of families of Regge trajectories correlated
at t=0 has also been suggested by Domokos and Suranyi 19), on the
ground of the extra symmetry 20) which the Bethe-Salpeter or the multi-
peripheral 21) equations acquire at vanishing four-momentum. In the
case we are considering, these equations are symmetric with respect
to the subgroup of the Lorentz group which contains the transformations
which do not change the four-momentum transfer Q. If we consider
forward elastic scattering, we have Q=0 and the symmetry group is
the Lorentz group 0(3,1)° It follows that the high energy behaviour
of the amplitude is determined by the poles in the complex plane of
a Casimir operator of this group. The contribution of one of these
"Lorentz poles" can be decomposed into a family of Regge pole contri-
butions. By means of a suitable analytic continuation, it is possible
to use, instead of 0(3,1), the corresponding compact group 0(4).
The connection between these two formalisms is discussed in Ref. 22).

25)-26)  4ne 0(3,1) and the 0(4)

In successive works
expansions have been extended to elastic forward amplitudes involving
particles with arbitrary spins, taking into account also the in-

variance with respect to parity and PCT. The families of Regge



trajectories obtained in this way have all the properties necessary
to satisTy bCae analytieity requirements mentioned akove, but these
formalisms do not determine their coatributions to unequal mass or

non-forward scattering.

In these simple "Lorentz pole" mcdels, the different kinds
of families of conspiring Regge trajectories are classified zccording
to the "Lcrentz guantum numbers" which label the different irreducible
representations of 0{%,1). This classification has been con‘irmed
by 211 the following much more complete investigations and has a
general validity. Using the notations of Ref.,. 24), the Lorentz

quantum numbers are:

a) a comple» parzmeter N ;
b) a numrber M, which can assume the values O, %, 1, %, eca}
c) the Lorentz signature T , which can assume two values such

that

~

M
,.Cl: (~1) )

d) if M=0, there is also the "Lorentz natural parity" 0’, which

can assume the two values 1o

Moreover, a Lorentz pole is characterized by the internal
guantum numbers B (baryon number), Y (hypercharge), I (isotopic
spin) and G (G parity, defined cnly if B=Y=0). All the tra-
jectories belonging to a family have the same internal quantum
numbers as the corresponding Lorentz pols. They are all boson tra-
jectories if M 1is integral and all fcrmion trajectories if M is

half integral.

The trajectories belonging to a family are labelled by a
number Y, which takes the values 0, 1, 2,.0e o If M=0, there
is one trajectory for each value of(‘? and all the trajectories

have the same natural parity O

- s o~ e M A e = - o o - T M —— —— o ——— T — -

as the corresponding Lorentz pole,

We call "natural parity" the product of parity and signature.



If M)0, there are two trajectories for each value of Y} with
different natural parity. In this case, @ is no more a Lorentz
quantum number, but it is a parameter which labels the different tra-
jectories of the family. The t =0 intercepts of the trajectory

functions ,ﬂvy(t) are given by

Lye(0)= A-V -1

and the corresponding signatures t)’ are

*)

‘Cv = ‘U (_1)1). (2.3)

In the last two years a great effort has heen made in order
to understand’ the properties of the families of Regge trajectories
for not necessarily vanishing momentum transfer and for arbitrary
masses and spins of the interacting particles. A considerable part

of this work 7)-9),26)-45)

makes use of some properties of the re-
presentations of the groups 0(3,1) or 0(4). Though a great
variety of different points of view has been developed, we may try

t0o individuate the following three kinds of papers:

a) papers based on the 0(4) expansion of the Bethe-Salpeter
*%

26), 33)-37)

equation and on a perturbative treatment of the

part of the kernel which is not VO(4) invariant;

b) papers based on the connection [éee Refs. 18), 46[] between Regge

pole contributions and Born terms in field theory 3ED)—A“O);

In order to obhtain more compact formulae, we define the signa-
ture as i2j, where J 1is the spin of a particle lying on the
trajectory. Therefore, with our notations, signatures and pa-
rities of fermion trajectories are imaginary.

*¥%
) We do not deal here with the more detailed "dynamical" proper-

ties of the Regge trajectories which are suggested by the Bethe-
Salpeter model,



c) papers based directly on the postulates of S matrix theory,
Refs. 41)-45), 7)-9), i.€o, essentially on
i) analyticity: the ampliftude must have some analytic properties
which we shall discuss later;
ii) factorization: all the Regge trajectories must have well
defined quantum numbers and factorized residues. This is a
consequence of unitarity {éee Ref. 47), where reference to

the original papers can be founé]. For the reaction

(2)—> (3) +(4) -

the residue must have the form
(1.3) (2,4)
g)‘ Ay (e )‘ A (t) (2.5)

where, for instance, the first factor is the same for all the
reactions involving the particles (1) and (3). We rave in-

dicated by A ; the t channel helicities.

The behaviour of the trajectory functions in a neighbourhood

of t=0 has been investigated for the first time by Domokos and

2
Surédnyi 26),33) by means of a perturbative treatment of the Bethe-
Salpeter equation. They found that the derivatives at =0 of the

trajectory functions were not independent. For instance, the following

"mass formulae" were obtained

L, (t)= A-1-v +[A+B(A-v-)(A-V)] t +

+ O(tz) ) M:O, (2.6)



4

Lo (t)= A-1-v A VY-T) L7+

H[BrC (V-1 (A-¥)r ATA-v-4) |t +O(t%), M=%

(
Ly olt)= 2-1-v +[A+(B+sC)r-Y-1)(1-V) | £ +
+0(t*), M=1,

In general, for M»O0 we have

£, alt)-4, 4l6) = O(t") . o

It is rather difficult to obtain sufficiently general

.7)

N

(2.8)

*)

information on the Regge residues from the Bethe-Salpeter model.
Important results about the residues have been obtained from the
models belonging to the classes b) and c) described above. The
models based on field theoretical propagators givz perhaps the most
powerful results 39). However, in the following we deal only with
models based on S matrix postulates, which present the advantage
of being based on a set of clearly stated and well justified assump-

tions and can therefore be treated in a mathematically rigorous way.

Unfortunately, the presently available models do not give a
complete description of all the possible choices of residues and
trajectory functions which satisfy the conditions stated above. For
instance, the models developed in Refs. 7)—9), 41)-4%) describe only
families of parallel trajectories given by

P. Surényi, private communication.



Lyolt)= £olt)-V = AlE)-V-1

(2.10)
The Regge residues are described by formulae which have the

following general structure

?45)?0‘ Z D N .,L(t'e (b)) (43)(t),

A‘l A-% (2.11)

where the functioms r‘ are known kinematical factors which depend
on the Lorentz gquantum numbers, on the masses, spins and parities of
the particles (1) and (3), on the momentum transfer +t and on
the pole position ‘€ t) The functions sz1 3>(t), are arbitrary
independent functions analytic apart from "dynamical' singularities.

We call them "reduced Lorentz residuves".

From the equations of the form (2.11) one can obtain the
t =0 Dbehaviour of the various residue functions. For instance, in
the unequal mass case the residues which do not vanish identically

hsve tne behaviour 7)

“, swcr -8+ +]M-12:241]]
EA A3 ) hd ) M‘IT#MS *

(2.12)
Fcr the equal mass vertices which have some practical interest, i.e.,
those involving nucleons and spinless mesons, one gets the results
described in the Table. A similar table for arbitrary spins can be
found in Ref. 7). The parametrizations of the type (2.11) imply
alsc some constraints between different residues and between their
derivatives at 1+ =0. It is not yet clear whether these parametriza-
tions provide all the possible sets of residue functions consistent
with parallel trajectories, but, as we shall see, there is some

reason to be optimistic.



One of the most interesting features of the TLorentz pole
models with parallel trajectories is the possibility of writing the
sum of the Regge pole contributions in compact form in terms of the
Lorentz residues and of the matrix elements of the representations
of 0(3,1). This is important, kecause in the unequal mass case
near the forward direction the non-leading trajectories give appre-
ciable contributions even at high energy. From this compact formula,
one can derive the following property off the s channel helicity

7)

amplitudes ir high energy exactly forward scattering

. 6,\(0)-1-IM-I)~:)\3|I
(4> 6;:30) = 5 - () .
)F)n)\z Mg~ 72 ArAss A Ay
(2.13)
We see that, as pointed out by Sawyer 31), M 1is just the abtsolute
value of the s channel helicity flip which dominates at high energy

in forward scattering.

Very recently, Lorentz pole models with non-parallel tra-
jectories have been constructed 44)’45>. At their present stage,
these models deal only with zero spin particles and with families
with M=0; however, they can be probably extended to more general
reactions. In these models, the Regge trajectory functions are given
by a set of implicit equations which automatically take into account
the conditions (2.6) and also conditions on higher derivatives. The
Regge residues are still given by a formula similar to Eq. (2011);
however, the kinematic factors [1 in this more general case contain
all the trajectory functions and their derivatives.

47)-73)

There is another large class of papers in which some
properties of the Regge parameters near +t=0 are derived, starting
from analyticity and factorization. These works make use of purely
analytic techniques, i.e., no use is made of the properties of the
representations of 0(3,1) or 0(4). In most cases, they start

from the analytic properties of the helicity amplitudes which have
been investigated in great detail in the recent years 74)_84)0
General discussions of the principles of this method can be found in

Refs. 16),47).
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The main difference between the group theoretical models
and the analytic techniques consists in the different way of present-
ing the results. The group theoretical models provide parametrizations
of the residues [éee Eq. (2011X] which automatically satisfy all the
analyticity constraints. The analytic techniques permit to write
explicitly a set of necessary constraints. In other words, the first
method gives "sufficient" conditions, while the second method gives
"necessary” conditions. It is clear that a comparison between the

results of the two techniques permits to control their efficiency.

In general, there is a good agreement between the results
of group theoretical and analytic techniques. The simplest papers

48)-52) 4 o1 only with the leading trajec-

using the analytic method
tories; they show the necessity of introducing the quantum number
M which can be defined independently of any croup theorstical
consideration 85)0 Also the necessity of parity doublets for M)»O,
the property (2,9) and the behaviour of the residues of the leading
trajectories can be obtained in this way.

58)-63)

Some more refined papers deal also with non-leading
trajectories. They find that the classification and the composition
of the families of trajectories coincide necessarily with the situa-
tion suggested by group theory and described above. The leading power
of t <contained in the residues is found to be in accord with
Eq. (2.12) and the Table. The most recent and refined works 64)'73),
in which analyticity and factorization are exploited completely,
studying at the same time reactions with different external masses
and with different spins, have given rather complete results. For
instance, the mass formulae (206)-(2.8) have been rederived in this
way., Also the connections between the leading terms of the residues
of the different Regge trajectories have been obtained and shown to
be in accord with the group theoretical models.

The most general results have been obtained by Weis 65),
who has considered arbitrary values of M, general spins and masses.

By means of an elegant use of the crossing relations, he has been able
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to find the most general form of the leading terms in the expansion
in powers of t of the residues and of the trajectory functions,
and also to obtain important informations on the non-leading terms.
He has also shown that in the Lorentz pole models of Refs. 7), 41)
the leading terms of the residues have just the most general form.
There is no indication against the assumption that also the non-
leading terms are the most general, if one assumes parallel trz-

jectories.

It seems reasonable to believe that the parallel trajectory
approximation is a good one for small momentum transfers. Therefore,
we may conclude that the Lorentz pole models with parallel trajec-
tories can be used, affer some simplification, in the phenomenology

of high energy nearly forward (or backward) reactions.

Another direction of development of the Regge pole idea
has been its application to the high energy production processes,
which has given rise to the multi-Regge models 5)’6)’86)—103>. It
is certain that also in this case analyticity and factorization give
rise to strong constraints on the residue and trajectory functions
which appear in the model *)o However, the investigation of this
problem has been initiated only very recently. Some study on the

96)-98)

crossing relations has been carried out and some properties

of the residues have been found by means of field theoretical

models 99)—103).

A promising approach is the extension to the multi-particle
reaction of the Lorentz pole models with parallel trajectories. This

8),9)

extension has been completely carried out but some further

work is necessary in order to write the results in a sufficiently

It is clear that the trajectory functions in a multi-Regge
model have to satisfy the constraints obtained in the simple
Regge model. It seems very improbable that the analyticity

of the multi-particle amplitudes gives rise to new constraints

on the trajectories.
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simple and useful form., Nevertheless, we think that it is useful to
describe a Lorentz pole model directly in its multi-particle form.
This does not imply much greater difficulties and, looking at the

problems in their most general form, sometimes helps in understanding

their real structure.
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THE SCATTERING AMPLITUDE

We consider the following scattering (or production) process
*

involving n particles with non-vanishing masses

(M +(2)= (3e)+(4e)+ -+ (me),  m Y4 -
3.1

where (ic) indicates the antiparticle corresponding to the particle
(i). It is very convenient to describe the connected part of the

corresponding scattering amplitude by means of the function

/

where the arguments a, are elements of the homogeneous Lorentz

(3.2)

group or, more exactly, of the corresponding universal covering

group 7).

The Lorentz transformation a; transforms quantities
measured in one of the rest systems of the particle (i) into quan-
tities measured in the "laboratory system" éf + For instance, the

laboratory four-momentum of the particle (1) is given by

P(i) . l__ (a‘:) Q(’i’) ,

where L(ai) is the Lorentz 4x4 matrix and

(1) .
Q =(MA,O,0,O) y At N (3.4)

In other words, the argument a; individuates not only the four-

(3.3)

momentum of the particle (i), but also a well defined rest system.

The index m; represents the =z component of the spin of the particle
**)

*
) The discussion of Ref. 8) holds if at least one of the particles

has a non-vanishing mass.

This formalism for the description of the spin of a relativistic

0
particle has been proposed by Moussa and Stora ! 4)0
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In order to obtain a more compact formalism, we write the

amplitude (3.2) in the new form

(JI) 13- My, oo (=) Tm-Mm

: a, a,,a.t,..., 0.t
Mmu’mu‘w‘sl'"r‘wm( v o )’ (3.5)
3¢5

where t represents the Lorentz transformation which inverts all the
space-time co-ordinates and ji is the spin of the particle (i)o

We assume that the function M (for different values of its arguments)
describes all the reactions which can be obtained from the reaction
(%.1) by means of the substitution rule. An outgoing particle is
characterized by the fact that the corresponding argument of the M
function contains time inversion. The function M 1is more useful

for general theoretical considerations; when one treats in detail a
given reaction, it is more convenient to use the function M!' :éee

Eq. (3.2[], which has, as we have said, a direct simple physical

meaning,

For given values of the four-momenta, the rest systems
of the particles can be chosen in many different ways. This ambiguity
is taken into account by n covariance conditions which the function

M has to satisfy. They have the form

M (adr"'q%’c\?'“'a"'\v) E R&l\t »&)

M1 oo 'Mi, '"‘M“ ,mi ,Ynd, 'm4

. qu mm;mw‘m(a,u"'r Qg am) ) /c\ € H‘l' ) (5o6)

where H+ is the rotation group (containing space inversion) and

(h) is the spin rotation matrix corresponding to spin J and

parity TT
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The function M 1is defined only for values of the arguments

which satisfy the four-momentum conservation
- )
(2
I L@)Q™ =0,
121

Moreover, it satisfies the Lorentz invariance condition

(3.7)

Moy (3211 83 = Mo, (00170

where a 1is an arbitrary Lorentz transformation.

(3.8)

As shown in‘Ref. 8), our function M is strictly connected

105)

with the more familiar spinor M function which depends on the

four-momenta of the interacting particles.



4
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THE GROUP THEORETICAL VARIABLES

The function M described above is not directly useful
for the construction of a multi-Regge model. In order to write simple
multi-Regge formulae, the amplitude has to be written as a function
of a suitable set of variables, which have been introduced by Bali,
Chew and Pignotti (BCP) 6) (see also 97)).
these variables in a form which is suitable for the following develop-

mentse.

As it is well known, the same amplitude can be described by

means 0f several different multi-Regge models, which are useful in

different regions of the space of the outgoing momenta. Each model

can be associated to a given "coupling scheme'", which is a simply
connected (tree—like) graph whose external lines represent the
particles involved in the process we are considering *) (see Fig. 1).
We assume that all the vertices are composed by three lines (BCP

consider a more general situation).

We label the external lines by means of the integers
1y25000ynn and the internal lines by means of the integers
(n+1),000,(2n-3). For each internal line we choose a standard
orientation. When we want to indicate an internal line with the
orientation opposite to the standard one, we put a bar over its
symbol. The vertices of a coupling scheme are indicated by means
of the symbols of the three corresponding incoming lines (some of
these symbols may contain a bar). For instance, the coupling scheme
represented in Fig. 1 contains the vertices (13%8), (467) and
(257) .

——— i —— o — - —— . = S T T —— - — " ———

As explained in Ref. 106), a coupling scheme describes a
possible way of building an invariant (under the Poincaré
group), starting from the Hilbert space vectors which describe
the states of the particles involved in the reaction considered.
For a detailed treatment of the four-particle case, see

Refs. 107)-111).

In this Section we introduce
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For each external line we consider an incoming four-momentum

1

; (i‘]ﬂ)o Also for the internal lines we define the four-momenta
i

p(
P( (i) n), in such a way that four-momentum is conserved at each

vertex. For instance, for the vertex (136) we have

PH)+P(3)+P(6) - 0 .

| (4.1)
We are using the convention
P(’i') _ P(")
(4.2)
These equations can be used to express the four-momenta P(l> as
sums of external four-momenta.
We define also the variables
(£)\2 . _ )
\X/,(',:(P / A=1,.(2m-3).
(4.3)
Of course, we have
A .
\)OCi = P’li ) A= 1 o Mo,
(4.4)

i .
Moreover, for each value of Wi we choose a four-vector Q with

the property

(Q(i))z - \X/,L ' »

for ign, the choice is given by Eq. (3.4). For i n we could
take

Q“)= (\X/,;-‘.,0,0, 0) , W7 0,

Q“: (0,9, 0, (-W«;)i‘) Wi g0

= ’ (4.6)
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but in the following we shall use also a different choice., We define
the 1ittle groups H(l) containing all the Lorentz transformations h

with the property

L) Q@“-Q"

In general this group depends on Wi'

(4.7)

Now we consider many systems of reference., One of them is
the "laboratory system" , in which the four-momenta of the
particles are given by Eq. (3.3). The other systems of reference
are associated with the vertices of the coupling scheme. For
instance, in the system 3(467), which corresponds to the vertex

(467), the relevant four-momenta have the standard forms

F(‘l) . L(ﬁ_{}) Q(Q)’

PO _ L (4)Q"Y,
P L(45) Q7.

(4.8)
The boosts b4, b6, b7 are chosen once for all, according to
suitable conventions. FEach of them depends only on the three variables
Wys Wgy W They must satisfy the condition
I +[ (& )Q + (63 y
( A)Q 6 ? ’ (4.9)

Let 1 denote an internal line going from the vertex
(fo.o) to the vertex (i.o.). We call ﬁi the Lorentz transformation
which transforms quantities measured in the system :f(i;..) into
quantities measured in the system éf(i.o.)' According to our
convention on the orientation of the internal lines, we put
N A -
he= hi .

(4.10)
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~ For instance, the four-vector P(6) =-P(6)
3(135) (see Fig. 1) has the form

-L(47) QY

in the system ?(467) takes the form

= '_ (2\('("?) Q “)° (4.12)

Comparing with Eq. (4.8), we see that

L4 Q" =-[(,47) @Y,

, Wwhich in the system

(4.11)

(4.13)
and therefore
-q D (¢)
%Gz L_/C-G /&‘/(rz < H ! (4.14)
or, in general
A -1 (4) .
/eu; = /(r;, t,&,;;(,;;-’ &;GH ' 4,711,.(4 -

Note that Eq. (4.10) can be written as

’e\f = t’e‘:'t (24.16)

Let now 1 denote an external line connected with the
vertex (i...). We call hi the Lorentz transformation which trans-
forms quantities measured in the system ? into quantities measured
in the system 3 (i )e For instance,(tk)le four-vector P(4), which
. e e 0 4 .
in the system :f has the form L(a4)Q s in the system x (46'7)

is given by

L(B,a,)QY.

(4.17)
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Comparing with Eq. (4.8) we obtain

L(6) Q" = Lh,a)Q"

and therefore

g N (4)
boothl b, ta, e H =Hy -

where the factors +t have been introduced for convenience. In general

(4.18)

we have
) -1 .
A Aithia, €, hieHsy A &m.

Now we consider a "continuous path" in the coupling scheme

(4.20)

which connects two external lines and we assume that all the internal
lines are orientated towards the last line of the path. As an example,
we consider the path 1, 6, 7, 5 in Fig. 1. Then, from the group

property of the Lorentz transformations, we have immediately:

2;; :’@);2‘414

and, using Eqs. (4.15) and (4.20), we obtain (4.21)
5 = (4 047 1 st ha 3]
[L-st gl‘ ] [‘6-1t/2| ] (4.22)

It is a clear that in a similar way we can express all the ratios

a, 8 in terms of the group theoretical variables { W.,h. g In
Ref, 8), the set of equalities of the type (4.22) has been used as

a definition of the group theoretical variables.

It is important to remark that the elements hi are not

uniquely determined by the boosts a, . In fact, for instance, the
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system Ef(467) is not uniquely determined by the conditions (4.8).

Another system obtained from it by means of the Lorentz transformation

k could work equally well provided that

[ Ae)Q™ = L(£)R"
L (6409 < L (£ Q"

| (he5)Q™- L (43) Q"%

(467)

(4.23)

We call K the group containing all the Lorentz transformations

which satisfy the conditions (4.23). Other similar "covariance groups"
can be defined for the other vertices. It is clear that such a change

of the reference system 3,(467) implies the following transformation
)

%6-‘)’&/{4; ) _
'&1 __9& /&i ’ ‘&SK(QG?)’

(4.24)
/&" - 4;1/{('1}'4'&9)
h > lf? &%‘c&c,
(463)
'3!9.—-) ’fr &!}; &:, '& t&ték (1.25)

A transformation of this kind does not influence the left-hand side
of Eq. (4.22).
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Now we may describe the amplitude by means of a function

T of the new variables defined by

m'mq.,,/mm (a,',..., a.M)_-_-
E Rn ’31 (&) e :’;:6:”"(&,)-

'M1 ‘e M'

(1)
.Tm; res 'm',, (WM+1 ’"'I\X/An -3 L‘MM e MZM'3) /L' H

(4.26)
From Eq. (3.8) we see that the left-hand side depends only on the

ratios ar_1as, which are given by Eq. (4.22). The dependence of
the left-hand side on the elements h.l (Lé}ﬂ is completely
determined by the conditions (3.6) and this fact has been taken

into account in writing the right-hand side of Eq. (4.26).

If (irs) 1is a vertex, from the invariance of the elements
a; under the transformation (4.25), and from Eq. (4.26) we see that

the function T does not change if we perform the following set

of operations U{EK‘irs)>

a) if 1 4is an internal line, perform the following substitution

hi= b kA hi  dom,

b) if 1 1is an external line, perform the following linear trans-

(4.27)

formation on the spin index m,

A4 ~1 T ALMm
_‘TM_’EP\ ' ('(’4. '&1"4) m; '
4 : 4 (4.28)
M 4
c) perform the same operations for the lines r and s.

Similar covariance properties correspond to the other
vertices. We call them the "vertex conditions". They are the only

conditions imposed by Lorentz invariance on the function T
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THE MULTI-REGGE MODEL

Our main purpose is to describe Regge or multi-Regge models,

which approximate the amplitude when all the group elements hi

(i)rﬁ go to infinity. This is possible (in the physical region) only
when the groups H . (i)rﬂ are non-compact. For Wi positive,
H(i) is isomorphic to the compact group 0(3). Therefore, we have

to assume that all the variables W, (1)n) are negative *). In

this case, all the groups H(i) (i)ln) are isomorphic to 0(2,1),
which contains all the Lorentz transformations which do not operate

on the 2z co-ordinate.

Now we have to choose the boosts bi and bi in a suitable
way. We shall indicate by uz(/4) a rotation of an angle /u
around the 2z axis and by az(s ) a pure Lorentz transformation
with velocity 'tgh3 along the 2z axise For the four-vectors Q(i)
it is convenient to use the form (4.6)° Then we have H i)==0(2,1).
Moreover, we may choose the boosts in the subgroup containing the
Lorentz transformations which act only on the 2z and time co-ordinates.
We consider only the two cases which are of interest for the Regge

and multi-Regge models.

a) Vertices with two external lines, as the vertex (136) of Fig. 1.

We put

R

= QA (34),
= A3 (%) Ma(m) b

e~
W

We consider Wi==O as a limit point. The existence of a
regular limit of this kind is the origin of the conspiracy

conditions.
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s 3 = (MI-M3+ W) [2 Mo W) ]
. 1 1 -1
MB; = (M»,‘M;'W()[ZM3(~W‘)1] .

b) Vertices with two internal lines, as the vertex (467) of Fig. 1.
We take

(5.2)

4 IFY (35),

=
"

|
"

a%(gi) u%(v) t )

(5.3)
<rM3‘ B} (\X/;.‘Wc‘mz )[ZML'(‘W‘Y{]-"'
. t 1
LM 3;7 = (W/;‘ \y/""Mq )[7’ M"‘ (-W;)%] ' (5.4)

The function T defined by means of these conventions
coincides (apart from some signs) with the amplitude introduced by
BCP 6)0 Following these authors, we define a multi-Regge term as a
contribution to this function in which the dependence on the group
elements hi is given by the "functions of the second kind" on the

*x
group 0(2,1) ).

*) Every matrix element of an irreducible representation of
0(2,1) can be decomposed into the sum of two functions of the
second kind, which have simple asymptotic properties. For
details, see Refs. 7), 107), 112)-114).
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For the simple Regge pole mode, this group theoretical approach has
been discussed and justified in Refs., 107)-109); the connection with

the usual Regge pole formalism has been treated in Refs. 110), 111).

The rules for the construction of a multi-Regge term, with

factorized residues are the following:

a) given a coupling scheme, for each vertex (irs) write the

(4nn)
ﬁ (WA',WQ,W/))

M Mo M, (5.5)
b) for each internal line r write the expression
Lom, mg ()= (280 (WaY+1) oty [T(£a(Wa)-ma)] -
. ~'C',:07;,-f4, £ n(Wa)-1 - 2Mp
Am,-'mz (he) 4 ’ (5.6)

where er(Wr) is the trajectory function, 1:r is the signature
and G'I, is the natural parity. These parameters are just the
quantum numbers which label the irreducible representations of
0(2,1)o A indicates one of the corresponding functions of the

second kindj

c) for each internal fermion line which is not directed towards the

external line 1, write a factor (-1);

d) sum over the indices o, mf, 1‘=(n+1),...,(2n—3).

These rules do not take into account the "vertex conditions"
given in the preceding Section. It is easy to see that, with the
conventions we have chosen, all the covariance groups K(irs)
coincide with the group K generated by the elements uz( ) and
s'==suy(1r), where s vrepresents the inversion of the three space
co-ordinates. Imposing on a multi-Regge term the vertex condition

corresponding to a given vertex, and using the properties
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A(;‘Ce (M,%(/‘)'e’) (_,(_/m/“)AO“'Cl (h)

cTX

AT (wh) = LA™ AL (),

)

(5.7)
we see that the only effect is a set of constraints on the residue
function [Eee Eq. (5.5[] corresponding to the same vertex. These

constraints are

(LR 5)
{3 (Wi,WQ,WO).:o A mirmprmy 0

MM, m, " (5.8)

1) (AnN)
(422) (WAJ,WQ,WO) =0 0nly (WA,WQ,Wo)

(5.9)

p

~Mi,~Mpy =My A Mn

where (;‘i is the natural parity of the Regge pole if 1 1is an

internal line and

224
G-/L = ”A. 4 L&
(5.1Q)

if i 1is an external line,
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THE ANALYTICITY CONDITIONS

After this introduction to the BCP formalism, we can meet
our main problem, i.e., to investigate the analytic properties of a
multi-Regge term. We have to remember that the basic analytic pro-
perties of the amplitude are expressed in terms of the spinor func-
tion 105) (which depends on the four-momenta of the external particles).
Its singularities are called dynamical because they have a direct
physical meaning. Therefore, we need the connection between the
analytic properties of the spinor amplitude and of the function T
introduced above. Of course, the function T has to be defined also
for complex values of the arguments. Therefore, we introduce the
complex Lorentz group, the complex little groups and the complex
covariance groups. Now, the boosts bi belong to the complex Lorentz
group and are defined also for complex values of the variables Wi'

A1l the preceding formulae can be extended to the complex case.

We shall use the following result which has been proved in

Refse. T7), 8).

Preposition: If all the boosts bi and bi are entire functions of
the variables Wi’ then the function T is free of kinematic singu-
larities and constraints. This means that, if D 1is a Lorentz in-
variant open subset of the space where the spinor function is defined
and D' is the corresponding subset of the space where T is defined,
there is a one to one correspondence between the spinor functions
Lorentz covariant and analytic in D and the functions T which

satisfy the vertex conditions and are analytic in D',

This result cannot be directly applied to the function T
of the preceding Section, because the boosts defined by Egs. (5.1)-
(5.4) contain singularities. In fact, the boosts (5.1) (vertex with

two external lines) are singular for

“0% = C),
W = (Mg £ M3)°,

(6.1)
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The points defined by the last equation are just thresholds and pseudo-
thresholds. The boosts (5.3) (vertex with one external line) are

singular for

r W, =
< [X/;_:O,

1 1
‘ :t vca;z' i: \XV;.L = r¢111.

.

(6.2)

As shown in Fig. 2, the last equation (6.2) represents a parabola in

- the plane (W6, W7)° We call it the "threshold parabola'.

In order to use the proposition stated above, we have to
define some new boosts %i and %i which depend analytically on
the variables Wi’ From Eq. (4.9) we see that also the four-vector
Q(i) (i>n) should be an analytic function of W.. Therefore, we

have to modify also our choice (406) introducing the new four-vectors

B9 = (4w 0, 0, £ (1- Wy)) , A,

Q™ =M A4 em
' -_—
(6.3)
It is possible to show that, if the equalities (6.1) or
(6.2) do not hold, the connection between the old and the new boosts

can be written as

~N

-1
'(ré, = Qian) i Mo (6.4)

where a(.rs> is the same for all the boosts corresponding to the
same vertex (irs). All the elements in Eq. (6.4) depend on W,

W Ws’ Moreover, the elements us have the property

L (4 ;) Q(i): @'(‘;).

Tr?

(6.5)
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By means of the new boosts, according to the general form-
alism, we define the function ﬁ, which is free of kinematic singu-
larities and constraints. The connection between the functions T

and T has been given in Ref. 8) and is

~ ~ ~ )
T'm,, wMay (qu ) '"rWz'n-z ,LMM ) Xﬂzm-&) -

] R”‘ (taa3"t): R - . (Eat)

/Hn1uu ﬂ"au
.\I;:; o 'W\'m (\X/M'H ) "'r\x/zm-3 ) Am-ﬁ (AN '&Z'h-% ) !
(6.6)
where
Jo-bagt by
(6.7)

From Eq. (6.4) we see that at least some of the elements
uy have to be singular at the points described by Egs, (6.1) or
(6+2).

Using Egs. (6.6) and (6.7) and the rules a)-4) given in
Section 5, we may write down a multi-Regge contribution to the
function ﬁ. It turns out that it has unwanted singularities due
to the elements uy which appear both as arguments of the matrices
R of Eq. (6.6) and in the arguments (6.7) of the 0(2,1) functions
A which appear in Eq. (5.6). These are singularities in the
“variables Wi and one could hope to cancel them by means of a proper

choice of the residues (5.5)

However, when one of the variables Wi is small, another

kind of singularity becomes dangerous. These are singularities in
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the variables Hi for fixed values of the variables Wi and there-

fore they cannot be avoided by means of a proper choice of the residue
functions. Theses singularities are due. to the fact that the functions
K(h) continued analytically in the czmplex little group are singular

for values of the argument such that

Ltb('el)=i-1 . -

Singularities of this kind are unavoidable in a Regge or multi-Regge
contribution. However, as we are interested in the high energy
behaviour, these singularities are harmless if they can be confined
in a low energy region. Unfortunately, this is not the case. For

instance, we have (see Fig. 1)

SM = (P(S)+P(q))": (Q(E)L(E:Z_GZ‘Z‘; ~3) Qm)z:
= (Q(«)_L( ‘: b, 1;_63 1%3)62“) 1,

(6.9)
. . . **)
and it is easy to show that if we take, for instance , h6:=e,
we have in general
/(Zbﬂhﬂ fs = ‘:x:> ’
34
W0 (6.10)

so that the function K(h6) has singularities at arbitrarily large

"subenergy" 834.

*
) Ltt(h) means the element of the 4x4 matrix IL(h) which
connects time components to time components. In the usual
Regge formalism, Eq. (6.8) means simply cos19t==t1.

*%
) e vrepresents the unit element. Clearly, Ltt(e) =1,
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This is just the difficulty whic? was treated for backward
13

elastic scattering by Freedman and Wang and has forced these

authors to introduce families of Regge trajectories.
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A LORENTZ POLE WMODEL

The difficulty mentioned above was avoided by Freedman and

13) introducing an auxiliary expansion in terms of Khuri

115)

now considering a more general and difficult problem and, in order

Wang

poles , which does not present complications near W=0. We are

to reach some conclusion, we have to choose a more refined expansion,
in terms of the matrix elements of the representations of the Lorentz
group (Lorentz pole expansion)o The advantages of this auxiliary

expansion are the following:

a) a Lorentz pole contribution with factorized residues can always
be decomposed into a family of Regge pole contributions with

factorized residues 7)’23)’24);

b) the treatment of the vertex conditions [see Egs. (4.27), (4.28)]
is facilitated by the group properties of the representation

matrix elements.

If we assume that all the Lorentz poles have M=0, a
"multi-Lorentz" contribution to the function T can be constructed
by means of the following rules, which are perfectly analogous to
the rules given above for the construction of a multi-Regge contri-
bution to T. If some of the)Lorentz poles have Nf)(% some addi-

9

tional indices are required o

a) For every vertex (irs), write a Lorentz residue of the form

me) (\X/4',Wn, WA) |

Ai M ) Mp n My (7.1)
If i1 is an external line, ji simply means the spin of the

corresponding particle.

b) For each internal line r, write the expression
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jiﬁmma A7 Mz (21,’2) =7 [)\”'(W’L)]Z .

NG‘,T:tOI'A (W) -4 Y \ -
NN 2\We (C,ZX«,L C/'L) (_,1)%

I’ﬂr,/mﬂ ! 1;’: ,-M,,Z
(7.2)

~
where a, represents the "function of the second kind" on the
group 0(3,1) *>. The function )\r(wr) represents the "Lorentz
trajectory". The element Ch depends analytically on Wr’ Wi’
Ws’ where (irs) is the vertex which coatains r. This element
and the element coy which has similar properties, have to be
chosen in a suitable way, as we shall see later. Tr and O‘Jr

are Lorentz quantum numbers.

c) Write a factor (-1) for each fermionic internal line which is

not directed towards the external line 1.

d) Sum over the indices jr’ m_, J

T mf’ r=(n+1>,ooo,(2n-3>o

f.’
We remark that in this way we obtain a function defined
when the elements Ki are arbitrary Lorentz transformations? How-
ever, this function has a physical meaning only when rﬁieﬁ Y. As
a consequence, we have that the Lorentz pole parametrization is not
unique, i.e., different Lorentz residues could give rise to Lorentz

pole contributions which coincide in the physically meaningful region,

We remark also that we have included in our rules a "fac-

torization rule" for the Lorentz residues. This rule has no direct

physical justification 44) similar to the one available for Regge

residues 47). In a non-factorized model, one should replace the

Also the matrix elements of the irreducible representations of
0(3,1) can be decomposed into the sum of two functions of the
second kind, which have simple asymptotic properties. For

details, see Refs. 23), 24), 114), 116).
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product of the residue functions (701) by a single function which
depends on the same indices and parameters. In deaiing with this
factorization problem, one has to take into account the fact that in
general the Lorentz pole parameters are not uniquely determined by
the physical amplitude. The real problem is to know whether, between
all the possible Lorentz pole parametrizations of a family of parallel
Regge trajectories, there is one using a single Lorentz pole (one for
each internal 1ine) with well defined quantum numbers and factorized
residues. The answer is yes for exactly forward elastic scatter-

ing 64)-73)

and a similar result seems probable in some more general
cases. If the Regge trajectories are not parallel, it is clear that

many "counterconspiring" Lorentz poles must exist in the >\ plane,

‘at least for Wi;éO.

Our program consists of building first a simple model
satisfying all the necessary factorization and analyticity conditions
and then eventually of generalizing it more and more., Therefore,
we start by considering families of multi-Regge terms which can be
described by a single multi—Lorentzlcontribution with factorized
Torentz residues. This factorization assumption, also if not neces-
sary, is very useful because it implies as a direct consequence the

(necessary) factorization property of the Regge residues,

We have to check that the Lorentz pole contribution

described above satisfies the following conditions:

a) it has no unwanted singularities if the subenergies [:see

Eq. (6°9XI are sufficiently large;

b) it must be possible to decompose it into a family of multi-Regge
contributions with factorized residues and well defined qﬁantum

numbers;

c) it has to satisfy the covariance "vertex" conditions given in

Section 4.
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The first condition is satisfied if the elements c. and
cn are properly chosen. In fact, the representation matrix elements

which appear in Eq. (7.2), continued in the complex Lorentz group,

are singular for 7)

Ltc(c’;”g‘zc’.‘):t/" (7.3)
Te3

Then, for instance, if we consider the singularities in the variable

ﬁ% (see Fige 1), we may take
~ ~
-1

CG: '66 /8\41

~_4~

4&2’ 4&3
(7.4)

and from Eq. (6.9), we see that Eq. (7.3) for r=6 1is equivalent

S;q = (MZiMQ)z,
(7.5)

so that the singularities appear only for small values of the sub-

7

)

energy 834. Other choices of c. and cx give a similar result,

but are more convenient for other reasons, Ref. 7)o

In conclusion, if we neglect the points where )\r(Wr) is
integral, our multi-Lorentz term is analytic when all the subenergies
are large. Of course, one can introduce "dynamical singularities" in
the Lorentz trajectories or in the Lorentz residues. Other dynamical
singularities can arise from a divergence in the infinite sums which
appear in the multi-Lorentz terms, but one can easily choose the
Lorentz residues in such a way that these singularities do not appear,

if they are not desired.
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~ At the points where ;\I(Wr) is integral, the functions

Cz, develop some singularities which have to be cancelled by suitable
factors contained in the Lorentz residues or by means of a cancel-
lation between different Lorentz poles. This problem, discussed in
detail in Ref. 117), is similar to the one that appears in the usual
Regge pole formalism 1)'4), where phenomena like sense Or nonsense
choosing, compensating trajectories and ghost killing mechanisms

take place. It is interesting to remark that when the behaviour of

the Lorentz residues is consistently chosen, all the Regge trajectories
of the corresponding family follow well defined ghost killing me-

chanisms 117).

The decomposition of a Lorentz pole contribution into

7),23)924)’114)7118)'120) is just a com-

Regge pole contributions
plicated mathematical exercise, which can immediately be generalized
to the multi-Regge case 9 o The result of this decomposition is an
infinite sum of multi-Regge terms labelled by the set of integral
non-negative parameters \%n+1,..o,)%nf3° The interpretation is that
the Lorentz pole exchanged along the internal line 1r generates a
family of Regge trajectories labelled by the parameter ]?r; the
same thing happens for the Lorentz poles exchanged along the other
internal lines., Then, choosing in all the possible ways for each
internal line a member of the corresponding family of trajectories,
we build all the multi-Regge terms which appear in the sum. As we
have already said, it follows from the calculation that the Regge
residues are factorized if the Lorentz residues have the same pro-
perty. Therefore, condition b) is automatically satisfied. The

trajectory quantum numbers are just those described in Section 2.

The condition c) is perhaps the most delicate in this

formalism and we shall discuss it in the next Section.
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THE VERTEX CONDITIONS
It is convenient (and possible 7)’9)) to choose the element
Cn in such a way that *
~n o (4"20)6
-1 71 4,/
(8.1)
We remark also that from the definition of the function éi
we have 24) ﬁ .
-4 —~~
a5t | (ua)-] R™ )..'z(u) ()L”?),\ (a)
A ) v o 4" g,
m
c +
'MéH,'_ ) Lc(; (a)# “1.
(8.2)
It follows immediately that the vertex conditions described
at the end of Section 4, when applied to a Lorentz contribution, are
equivalent to a set of constraints on the residue function (7o)
For the vertex (13%6) (see Fig. 1) the constraint takes the form
T RET @RE)REE (R4
m 1M, 1 1 4";4M} 3 ‘4{ 3
m 'm ’Wl
1 3 ¢
T 47 (13¢)
e <2) Y s i (W) -
R ‘M_ '("g '&\'6'6 6 /m,,/mﬂ)—‘-m; ¢
(137) ( ~  ~ M3t A
- 4
YO (W), heK == 0 (1)
Wy Wy T M7

The superscript ¢ means that the group is complexo.



ha |

- 37 -

The problem is now to find a parametrization of the type

(13%) (UI/¢)

qu;OZ’ ’MZ

Y

= "'—"’W’a"”b’)f’w“z 6 Y‘L ‘) )

& A (8.4)
such that, if we assume that the functions X' are arbitrary in-
dependent analytic functions, we obtain all the analytic solutions

of Eq. (8.3%). The functions ii are just the "reduced Lorentz
residues" which appear also in Egqe. (2.11). The functions EEE:

are known kinematic factors.

This problem has been solved for vertices with two external
particles in Ref. 7) *) and for vertices with one external particle
in Ref. 9). In both cases the most difficult step is to choose the
boosts %i and the elements ¢y in such a way that the arguments
of the three representation matrices R which appear in Eq. (8.3)
turn out to be identical. Then, the procedure consists of adding
vectorially the three angular momenta described by the indices of
the residue. The resultant angular momentum j(13€) can be inter-
preted as an "orbital angular momentum" which has to be added to the
spins of the particles (1) and (3) - in order to obtain an object
with total angular momentum jg‘ The quantity 3(136)’ which in
Eq. (8.4) is hidden in the summation index d; , plays the main role
in determining the pseudothreshold behaviour of the residues. This

81)-83) based

is in accord with the treatments of pseudothresholds
on a generalization of the well-known fact that the threshold
behaviour of partial wave amplitudes is determined by orbital angular

momentum,

This solution does not eliminate the singularities at the

2
threshold W6=(M1+M3) .
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In conclusion, we can say that it is possible to build
"multi-Lorentz" models, which satisfy all the analyticity and facto-
rization requirements. They can describe only families of parallel
trajectories, but present the important advantage of providing a
compact expression for the sum of all the multi-Regge contributions
belonging to a family. This compact expression, suitably modified

and simplified, can be useful for phenomenological purposes.
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APPLICATIONS

The information on the small t behaviour of the Regge
parameters obtained by both the analytic and the group theoretical
methods has found some phenomenological application in the following

fields:

a) resonance spectroscopy: the mass formula (207) has been tenta-
tively used for large positive t, 1in order to classify the
known baryon resonances by means of a small number of families

121),122)

of Regge trajectories For some suggestions about

meson trajectories, see Refs. 123),124);

b) high energy multi-particle production: the relative scarcity
of experimental information does not permit at present a clear
test of the kinematical details of the multi-Regge models, which,
on the other haand, are Jjust now beginning to be understood

theoretically;

c) high energy elastic or quasi-elastic forward (or backward)
reactions: as this is the most important application, we shall

discuss it in some more detail.

From the discussion of Section 2, it follows that one has
to classify the known Regge trajectories according to the Lorentz
quantum numbers which describe their behaviour near +t=0. It is
necessary to check that this classification is consistent with all

the existing data and eventually to use it to obtain predictions.

Unfortunately, for the low-lying trajectories, this task
is rather difficult and the results are uncertain, due to the
presence of an unknown contribution of Regge cuts, which, being not
subject to factorization constraints, do not necessarily possess

well-defined Lorentz quantum numbers,
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From the properties of the Lorentz pole contributions 24),
we see that the trajectories which appear in the asymptotic expansion
of spin-averaged total cross-sections have necessarily the Lorentz
quantum numbers M=0 and § =+1. The trajectories P, P!, 9 ’

w A2 are certainly of this kind. Of course, their SU3 partners
must have the same Lorentz classification. For reactions dominated
by the exchange of these trajectories, the high energy forward

amplitude is essentially non-spin flip.

The first suggestion for the existence of M =1 Lorentz
poles has been found studying p-n charge exchange scattering 125)’126).
The differential cross-section for this reaction presents a forward
peak which, being very narrow, can be explained only by pion exchange.

However, due to the Lorentz pole selection rules 24

, an M=0 pion
cannot contribute to forward nucleon nucleon scattering and so it
has been suggested that the pion belongs to a Lorentz family with
M=1. This is not the only possible explanation of the data 126)

but it is accurate, simple and natural.

However, the most suitable reaction for the investigation
of M=1 DILorentz poles is pion photoproduction. In fact, at the
pion-photon vertex the helicity flip is necessarily *1, so that
only Lorentz poles with M=1 can give an important contribution
to the high energy forward amplitude 55)’127)’128), [éee Eq. (2.13[].
Also in this case a narrow peak due to pion exchange is observed and
the data are well explained assuming an M=1 pion trajectory 129)’130).
A stronger evidence in favour of the M =1 pion exchange in photo-
production has been obtained by means of the "finite energy sum

124), 151)'134), The most refined form of this technique,

124),133),134) permits, to a -

rules"
using "continuous moment sum rules"
certain extent, to suggest that the contribution considered is due
to a pole and not to a Regge cut. A complete discussion of the
reactions mentioned above, taking into account the factorization

constraints, can be found in Ref. 135).



- 41 -

The results mentioned above seem to be in favour of the
M=1 pion, but one has to remark that the photoproduction high energy
data can perfectly be explained by a model involving an M =0 pion

plus cut contributions 136)’137)0 Very recently it has been shown

138)
that a model of this kind can be consistent also with the continuous

moment sum rules.

The simple M=1 pion model seems to be in contradiction
with the experimental data on ? meson production 139)’14O>. How-
ever, it has been shown that these difficulties disappear when the

contribution of other trajectories (eog., the A1) are considered 141).

It has also been suggested 142),143)

that the B trajectory
is generated by a Lorentz pole with M=1 and forms a parity doublet
with a trajectory ?' having the same quantum numbers as the P
trajectory. Also this assumption seems to be corroborated by photo-

production sum rules 144) and also (indirectly) by piomn-nucleon scat-

145)-147) 135)

tering sum rules and by other comnsiderations

A joint study of many resonance production reactions connected
by factorization has been performed recently by Devenish 148). Also
in this case, the assignment M=1 for both the pion and the B

trajectory seems to be favoured.

These assignments of the Lorentz quantum numbers are in
accord with an elegant and symmetric scheme proposed by Ahmadzadeh,
Refs. 149),150), which takes into account also SU3 symmetry and

exchange degeneracy.

The main objection against the assignment M=1 for the
pion trajectory comes from more theoretical considerations. It has
been shown by Mandelstam 151) that many results of the theory of
current algebra and partially conserved axial current can be obtained
from the assumnption that the pion, in the limit of vanishing mass,
decouples from pairs of equal mass particles (or complex systems of

particles), but does not decouple from pairs of unequal mass particles.
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It is a very general property of the Lorentz pole formalism that a
single Lorentz pole can never generate a zero mass particle coupled
with equal mass vertices 117). This is due to the fact that the
ratio between the residues at t=0 of different trajectories (which
is determined by the formalism) is such that, if one trajectory
generates a zero mass particle, some other trajectories of the same
family generate poles of the amplitude which cannot be interpreted

as due to particle exchange and are therefore unacceptable,

If we are not willing to introduce a new family of trajec-
tories which compensate these unwanted singularities 152 y, the first
Mandelstam requirement is certainly satisfied. From Eq. (2.12), we
see immediately that if M» O, in the unequal mass case the residue
with A1—A3=O (iee., the "sense" residue, which describes the
coupling of the physical pion) vanishes identically at t =0,

151),153

Therefore an M)»O pion decouples also from unequal mass

vertices and we have to assume that the pion has M =0.

In order to explain the photoproduction data, if we want
t0 avoid strong Regge cut contributions * , We have to introduce
twb different trajectories with the pion quantum numbers 153)’155)_157),
one with M=0 and the other with M=1. These trajectories must
have very similar t=0 intercepts and therefore rather complicated

mixing phenomena are expected 155)'-15().

If we want to preserve SU3 symmetry and exchange degene-
racy as in the Ahmadzadeh scheme, we have to introduce many other
trajectories. A scheme of this kind has been discussed by Fox and
Sertorio 158); these authors have obtained in this way a satisfac-
tory description of many quasi-elastic processeco.

- —————— T ——— Tt i ——— T —— - ——— " o - - —— T o T —— T o —— —————

I+ has been suggested ! that the discontinuity of a Regge
cut is large only when a Regge pole is present in the unphy-
gsical sheet. Ir this case the cut contribution can be appro-
ximated by means of the pole contribution and has well defined

Lorentz gquantum numbers.
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FIGURE CAPTIONS

Figure 1:

A coupling scheme corresponding to a multi-Regge
model.

Figure 2:
The two co-ordinate axes and the paravola represent

the pairs (w6, W7) such that the boosts defined

by Eq. (5.3) are singular.
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