

# An EPR Experiment Testing the Non-separability of the $K^0-\bar{K}^0$ wavefunction

Apollo Go CEA Saclay & CERN-EP

CERN EP Monday Southon

March 2, 1998

Contact: F. GIANOTTI Tel. 48965

#### **Outline**

- Introduction
- Entanglement and EPR paradox
- Neutral Kaon pair and strangeness correlation
- Testing EPR type correlation in

**CPLEAR** 

Conclusion

#### Introduction

If a tree falls in the forest and nobody is there to listen, does it make sound?

- <u>Realist world view</u>: Things exist out there *independent* of our observation
- <u>Tacit assumption</u>: We talk about scientific *discovery* rather than *invention*

# **QM** Innovations

But QM forces us to modify our view on the reality of a physical system by new conceptual innovations:

- •<u>Uncertainty Principle</u> -- less precise knowledge of the physical system
- Wave-Particle duality -- How can an electron be both a particle (local) and a wave (non-local)?
- •<u>Superposition</u> -- several possible outcomes exist ( or at least potentially) until the measurement
- <u>Probability</u> -- reduction of wavefunction to a single outcome is purely by chance.
- Entanglement -- A multi-particle wavefunction imply correlation even at a large distance.

# **Entanglement**

### Peculiar two-particle QM system

- Two particle created in a single QM state are spatially separated but nevertheless belong to the same wavefunction: one single wavefunction  $\Psi_{a,b}$  describing particles a and b.
- Outcome was not defined until measurement!
- Measurement on a will define the state of b instantaneously even without measuring it.

#### Examples

• Two photo singlet state: one spin up ⇒ the other spin down

$$\downarrow \frac{\text{Particle } b}{\uparrow \downarrow + \downarrow \uparrow} \qquad \qquad \qquad \qquad \uparrow \\
\text{Source} \qquad \qquad \uparrow \downarrow + \downarrow \uparrow$$

# $\Phi \to \mathbf{K}_{\mathbf{L}} \; \mathbf{K}_{\mathbf{S}}$

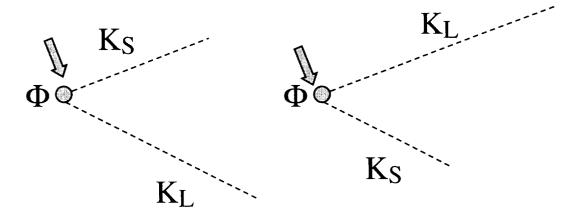
 $\phi \to K_L K_S$ : measure  $K_S \Rightarrow$  the other becomes K<sub>L</sub>!  $\supset K_S$  $K_LK_S$   $K_SK_L$  $K_{L}$  $K_L$ K<sub>L</sub>K<sub>S</sub> K<sub>S</sub>K<sub>L</sub>  $\oint K_S$ 

#### **EPR Paradox**

Einstein, Podolsky and Rosen was the first to point out this peculiar system in 1935.

When two particles are far away, how can b know instantaneously about the result of measurement done on a?

- •Transfer of signal faster than light?
- •Are the states predetermined, or randomly defined, at the creation?
- •Are the wavefunction separated (factorization) right after the creation?



Up to now, these two cases cannot be distinguished!

#### **Neutral Kaon Formalism**

#### Three basis:

- • $K^0$ ,  $\overline{K}^0$ : strangeness eigenstate
- •K<sub>1</sub>, K<sub>2</sub>: CP eigenstate
- •K<sub>L</sub>, K<sub>S</sub>: mass eigenstate

Neglecting CP (10<sup>-3</sup> effect),  $K_S \equiv K_1 K_L \equiv K_2$ 

$$\bullet |K_S\rangle = (1/\sqrt{2}) (|K^0\rangle + |\overline{K}^0\rangle)$$

$$\bullet |K_{L}\rangle = (1/\sqrt{2}) (|K^{0}\rangle - |\overline{K}^{0}\rangle)$$

$$\bullet |K^0\rangle = (1/\sqrt{2}) (|K_S\rangle + |K_L\rangle)$$

$$\bullet |K^0\rangle = (1/\sqrt{2}) (|K_S\rangle - |K_L\rangle)$$

#### Time evolution:

$$|K_S(t)\rangle = e^{-i\alpha_S t} |K_S(0)\rangle$$

$$|K_L(t)\rangle = e^{-i\alpha_L t} |K_S(0)\rangle$$

where

$$\alpha_S = m_S - i \gamma_S/2$$
,

$$\alpha_L = m_L - i \gamma_L/2$$

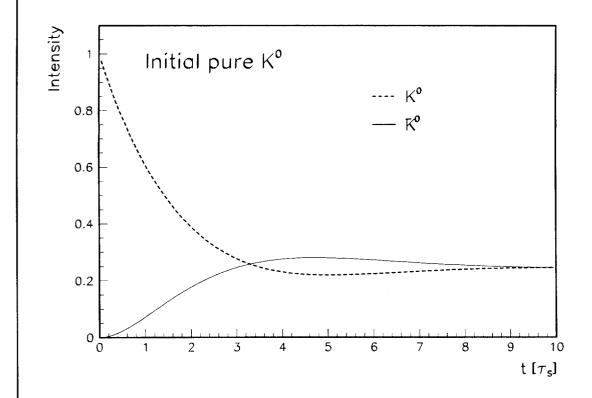
$$m_S$$
,  $m_L \Rightarrow mass of K_S$ ,  $K_L$ 

$$\gamma_S = 1/\tau_S$$
,  $\gamma_L = 1/\tau_L \Rightarrow$  decay rate of  $K_S$ ,  $K_L$ 

# **Strangeness Oscillation**

Due to the mass difference between the  $K_S$  and  $K_L$ , A  $\bar{K}^0$  can oscillate into  $K^0$  and viceversa:

For example, for a initially pure K<sup>0</sup> sample:



# Neutral Kaon Anti-symmetric Pair

A pair of neutral kaon can created in two possible QM states: anti-symmetric state (J<sup>PC</sup>=1<sup>--</sup>) and symmetric state (J<sup>PC</sup>=0<sup>++</sup>)

The anti-symmetric state ( $J^{PC}=1^{--}$ ) exhibits EPR type correlation

At the production  $(t_a = t_b = 0)$ :

$$\begin{aligned} |\Psi(0,0)\rangle &= (1/\sqrt{2}) \left( |K^{0}(0)\rangle_{a} |K^{0}(0)\rangle_{b} - |K^{0}(0)\rangle_{a} |K^{0}(0)\rangle_{b} \right) \\ &= (1/\sqrt{2}) \left( |K_{S}(0)\rangle_{a} |K_{L}(0)\rangle_{b} - |K_{L}(0)\rangle_{a} |K_{S}(0)\rangle_{b} \right) \end{aligned}$$

#### Time Evolution:

$$\begin{split} |\Psi(\mathsf{t}_a\,,\!\mathsf{t}_b)\rangle &= (1/\sqrt{2})\; (\mathrm{e}^{-\mathrm{i}\alpha_{\mathrm{S}}\mathsf{t}a}\,|\mathsf{K}_{\mathrm{S}}(0)\rangle_a\,\mathrm{e}^{-\mathrm{i}\alpha_{\mathrm{L}}\mathsf{t}b}\;|\mathsf{K}_{\mathrm{L}}(0)\rangle_b\\ &-\mathrm{e}^{-\mathrm{i}\alpha_{\mathrm{L}}\mathsf{t}a}\,|\mathsf{K}_{\mathrm{L}}(0)\rangle_a\,\mathrm{e}^{-\mathrm{i}\alpha_{\mathrm{S}}\mathsf{t}b}\,|\mathsf{K}_{\mathrm{S}}(0)\rangle_b) \end{split}$$

# **Anti-symmetric State**

Express K<sub>S</sub>, K<sub>L</sub> as superposition of K<sup>0</sup>,  $\overline{K}^0$ ; two time-dependent intensities can be calculated from  $|\Psi(t_a,t_b)\rangle$ :

• Like Strangeness ( $K^0K^0$ ,  $\overline{K^0K^0}$ )

$$\begin{split} I_{\text{like}} & \sim e^{-\gamma_S(t_a-t_b)} + e^{-\gamma_L(t_a-t_b)} \\ & -2e^{-(\gamma_L+\gamma_S)(t_a-t_b)/2}\cos(\Delta m \Delta t) \end{split}$$

Note:  $I_{like}=0$  for  $t_a=t_b$ 

Destructive interference!!

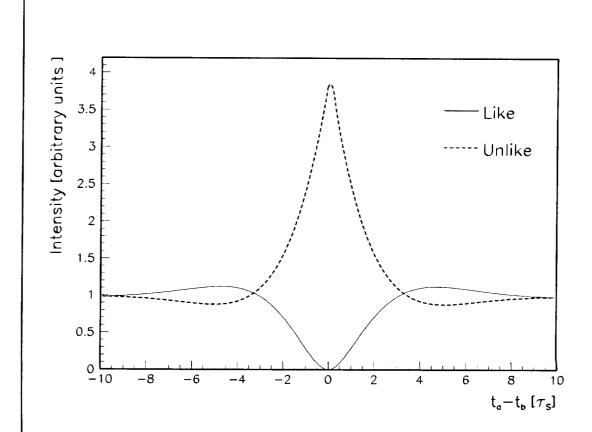
• Unlike Strangeness  $(K^0\overline{K}^0)$ 

$$\begin{split} I_{\text{unlike}} & \propto e^{-\gamma_S(t_a - t_b)} + e^{-\gamma_L(t_a - t_b)} \\ & + 2e^{-(\gamma_L + \gamma_S)(t_a - t_b)/2} \cos(\Delta m \Delta t) \end{split}$$

Note:  $I_{unlike} = 1$  for  $t_a = t_b$ 

Constructive interference!!

# **Strangeness Correlation**



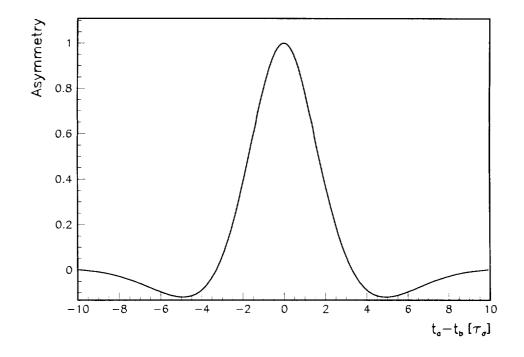
Measurement of the strangeness state of first neutral K defines the strangeness state of the second second K which evolves as if it was created with definite strangeness at that instant.

# Asymmetry

Form asymmetries  $A(t_a, t_b)$ :

$$A(t_{a,}t_{b}) \equiv (I_{unlike} - I_{like})/(I_{unlike} + I_{like})$$

$$= [2e^{-(\gamma_{L} + \gamma_{S})\Delta t/2} cos(\Delta m \Delta t)]/[e^{-\gamma_{S}\Delta t} + e^{-\gamma_{L}\Delta t}]$$
where  $\Delta t = t_{a} - t_{b}$ 



# Separability Hypothesis

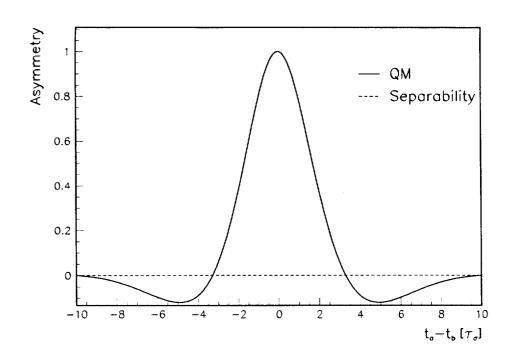
After creation, the wavefunction is separated into a  $K_SK_L$  wavefunction and a  $K_LK_S$  wavefunction (consistent with experimental result of  $\phi \rightarrow K_SK_L$ ).

The intensities of the two wavefunctions have to be added quadratically.

•  $K_S: I_{K^0} = I_{\overline{K}^0} = 50\%$ 

•  $K_L: I_{K^0} = I_{\overline{K}^0} = 50\%$ 

 $I_{like} = I_{unlike} = 50\% \implies A(t_a, t_b) = 0$ 



Allows tests of QM vs. Separability

# Neutral Kaon Symmetric Pair

The symmetric  $K^0\overline{K}^0$  state ( $J^{PC}=0^{++}$ ) exhibits a different correlation:

$$|\Psi\rangle = (1/\sqrt{2}) (|K^0\rangle_a |\overline{K}^0\rangle_b + |\overline{K}^0\rangle_a |K^0\rangle_b)$$

$$= (1/\sqrt{2}) (|K_S\rangle_a |K_S\rangle_b - |K_L\rangle_a |K_L\rangle_b)$$

Intensities become:

$$\begin{split} I_{like} & \propto e^{-\gamma_S(t_a+t_b)} + e^{-\gamma_L(t_a+t_b)} \\ & - 2e^{-(\gamma_L+\gamma_S)(t_a+t_b)/2} \cos(\Delta m(t_a+t_b)) \end{split}$$

$$\begin{split} I_{\text{unlike}} & \propto e^{-\gamma_S(t_a + t_b)} + \, e^{-\gamma_L(t_a + t_b)} \\ & + 2 e^{-(\gamma_L + \gamma_S)(t_a + t_b)/2} \cos(\Delta m(t_a + t_b)) \end{split}$$

Interference oscillate with  $(t_a + t_b)$  rather than  $(t_a - t_b) ==> I_{like}$  never vanishes

# **Testing QM in CPLEAR**

CPLEAR is designed to test fundamental symmetries. This is an subproduct of the experiment with minor modifications.

 $K^0 \overline{K^0}$  pair created in  $p\overline{p}$  annihilation (10<sup>6</sup>  $\overline{p}$ /s) at rest in 27 bar hydrogen target

 $p\bar{p} \rightarrow K^0 \bar{K}^0$  with (700 pair/s)

- mono energetic K<sup>0</sup> (~800MeV/c)
- mean K<sub>S</sub> decay length of 4cm

Two  $p\bar{p}$  annihilation sates (S and P wave):

S wave  $\rightarrow K_S K_L$  anti-symmetric state

P wave  $\rightarrow K_SK_S$ ,  $K_LK_L$  symmetric state

It has been measured with the same apparatus, the anti-symmetric state is favored:

 $K_SK_S/K_SK_L=0.037\pm0.002$ 

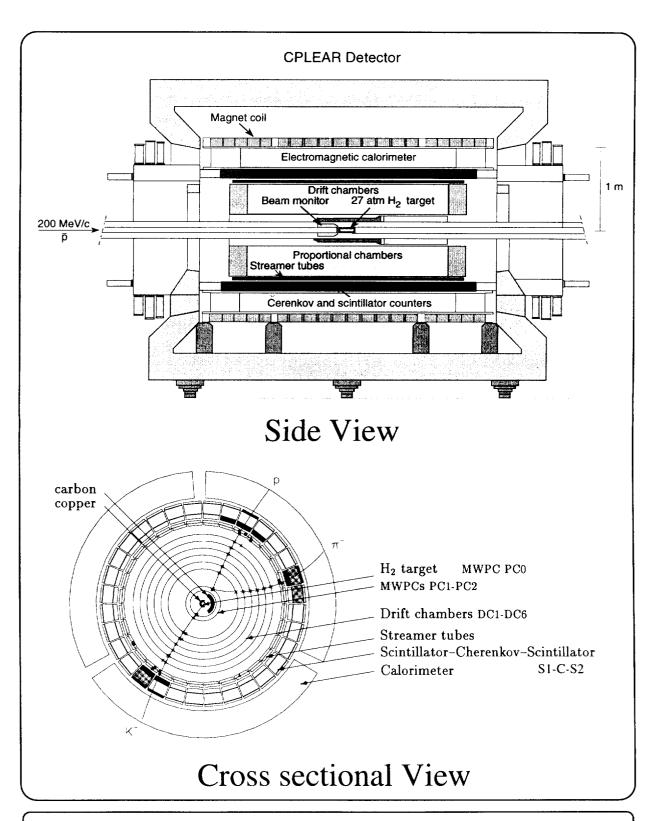
(Phys. Let. B 403 (1997) 383)

⇒ The symmetric state is small and can be considered as background correction

#### **CPLEAR Collaboration**

- University of Athens, Greece
- University of Basel, Switzerland
- Boston University, USA
- CERN
- LIP Coimbra, Portugal
- Delft University, Netherlands
- University of Fribourg, Switzerland
- University of Ioannina, Greece
- University of Liverpool, UK
- J. Stefan Institute, Slovenia
- CPPM Marseille, France
- CSNSM Orsay, France
- PSI, Switzerland
- CEA Saclay, France
- KTH Stockholm, Sweden
- University of Thessaloniki, Greece
- ETH Zurich, Switzerland

# **CPLEAR Detector**

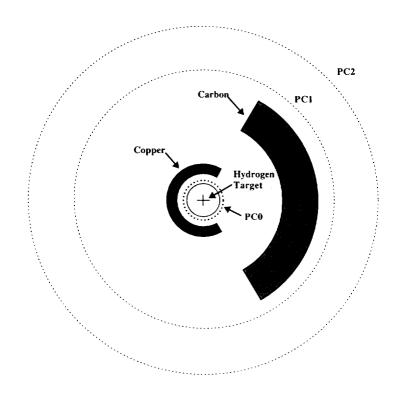


# **Experimental Method**

AIM: To measure the like-unlike strangeness correlation of the neutral kaon pair.

Done by determine the strangeness of K<sup>0</sup>s by their strong interaction products with two absorbers:

- Copper R~2cm, 0.7cm thick, 240°
- Carbon R~7cm, 2.5cm thick, 120°

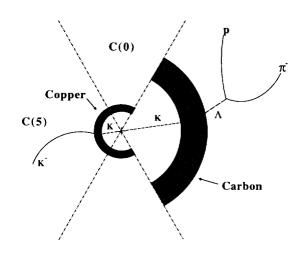


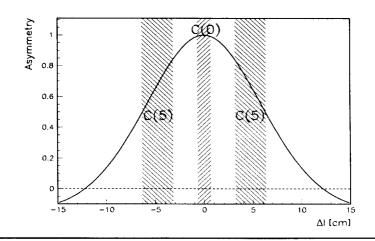
# **Experimental Method (2)**

### Two configurations:

Copper-Copper: C(0)Copper-Carbon: C(5)

| Config. | $\Delta 1$ | $\Delta t$             | Asym. |
|---------|------------|------------------------|-------|
| Cu-Cu   | ~0cm       | ~ 0                    | ~1    |
| Cu-C    | ~5cm       | $\sim 1.2\tau_{\rm S}$ | ~0.6  |





# Strangeness Measurement & Correlation

Measure strangeness of K<sup>0</sup> by the strangeness of the final state product:

• S=1:  $K^0$  + matter  $\rightarrow K^+ X$ 

• S=-1:  $\overline{K}^0$  + matter  $\rightarrow K^T X$ 

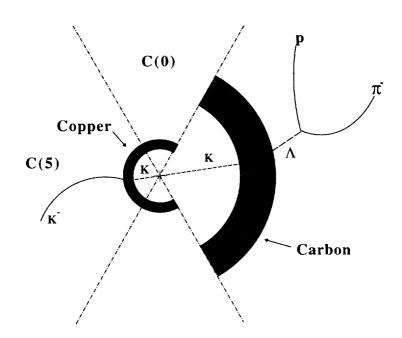
 $\rightarrow \Lambda(\rightarrow p\pi^{-}) X$ 

 $K^0 \Rightarrow K^+; \overline{K}^0 \Rightarrow K^-, \Lambda$ 

When both Kaon interact:

• Unlike strangeness: K<sup>+</sup>Λ

• Like strangeness: ΚΛ, ΛΛ



Asymmetry from comparing  $K^+\Lambda$  vs.  $K^-\Lambda$ 

#### **Event Selection**

8×10<sup>7</sup> events taken in a one week run at the end of CPLEAR data taking period in July 1996

### Trigger

- p entering target and fires silicon detector in front of the entrance window
- PC0 in veto
- At least 2 charged tracks

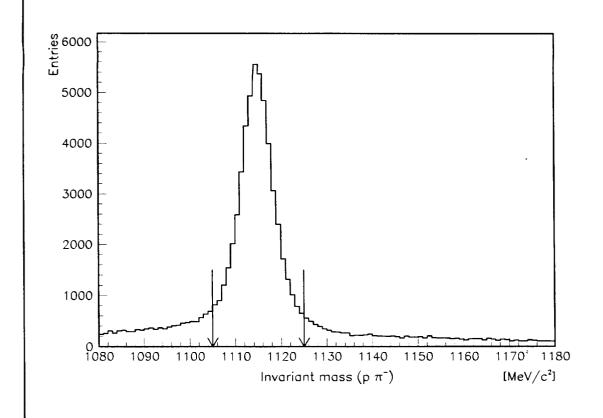
#### **Event Selection**

- At least one pair of track with opposite charge form vertex outside PC0
- Photon conversion e<sup>+</sup>e<sup>-</sup> pair rejected by opening angle cut
- $\Rightarrow$  20% accepted

Two samples:  $\Lambda \rightarrow p\pi^-$  and  $K_S \rightarrow \pi^+\pi^-$ 

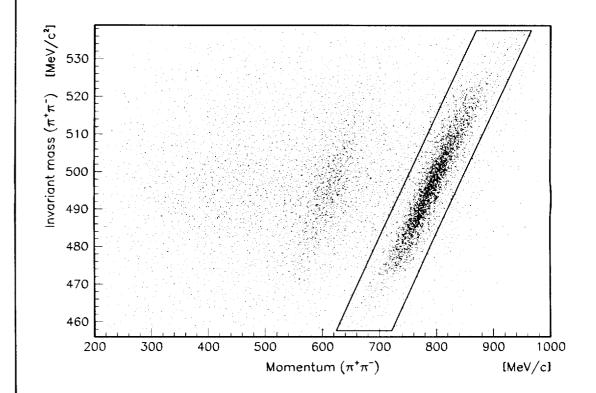
#### **A Selection**

- $\Lambda(\rightarrow p\pi^{-})$  selection:
  - positive track: C veto, dE/dx in S1 consistent with proton.
  - ¤ Λ direction extrapolate back to the absorbers
  - $\bowtie \pi^+\pi^-$  invariant mass anti-cut to reduce  $K_S$  background



# **K**<sub>S</sub> Selection

• Selecting 800 MeV/c K<sub>S</sub> by cuts in momentum vs. invariant mass plane:



# **Charged Kaon Selection**

#### Cherenkov threshold veto

- C in veto
- S1 & S2 hits
- P > 350 MeV/c
- Extrapolate back to absorbers

#### Further cuts:

- ◆ Cut on TOF against the other charged particles
- ♦ Cut on  $\chi^2$  of dE/dx

Plot Mass<sup>2</sup> from dE/dx  $\Rightarrow$   $\beta^2$ ;  $\beta^2$  & P  $\Rightarrow$  Mass<sup>2</sup>

#### K<sup>+</sup> vs K<sup>-</sup> Normalization

K<sup>+</sup> & K<sup>-</sup> have different strong interaction cross section and detection efficiencies

⇒ Need to be normalized

Using  $K_SK^+$  and  $K_SK^-$  sample from  $pp \to K_SK_L$ :

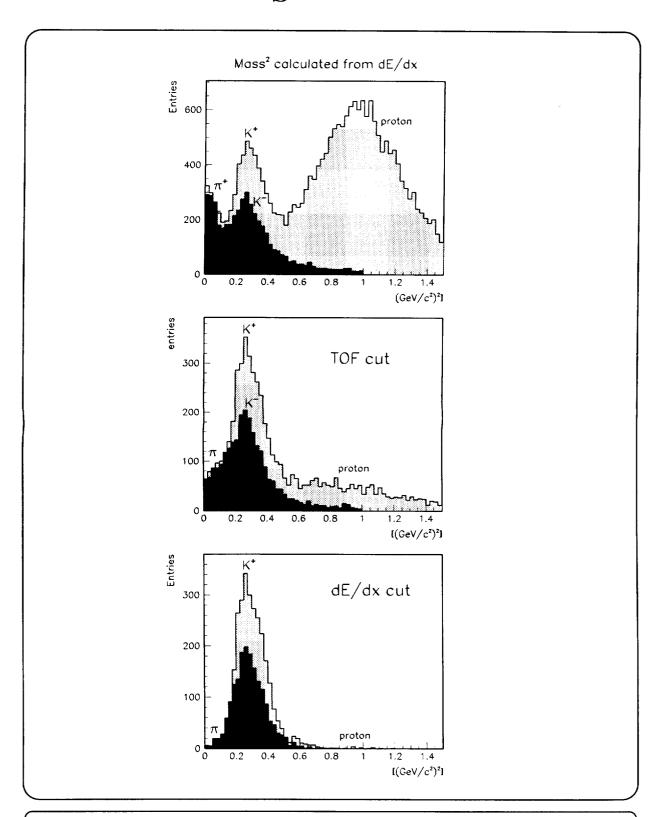
- $K_S \rightarrow \pi^+\pi^- (P=800 \text{ MeV/c})$
- $K_L$  interact with absorber  $\rightarrow K^{\pm}$  (50%  $K^0$ , 50%  $\bar{K}^0$ )
- $\Rightarrow$  K<sub>S</sub> selected with P( $\pi^+\pi^-$ ) vs. Inv. Mass
- $\Rightarrow$  K<sup>±</sup> selected as before.

#### Result:

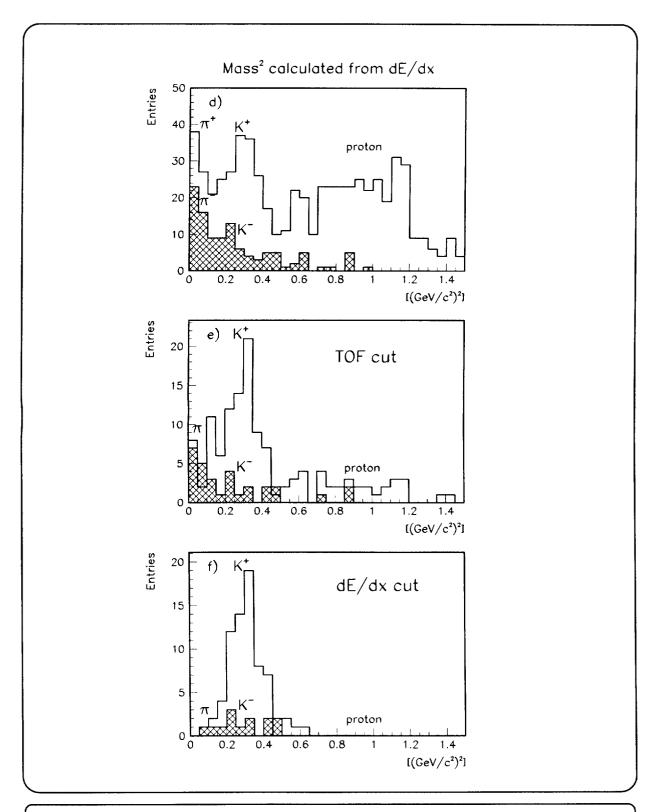
- Copper:  $K^+/K^-=1.64\pm0.06$
- Carbon:  $K^+/K^-=1.60\pm0.08$

These ratios correct for cross section and detection efficiency at  $P_{K}^{0}=800 \text{ MeV/c}$ 

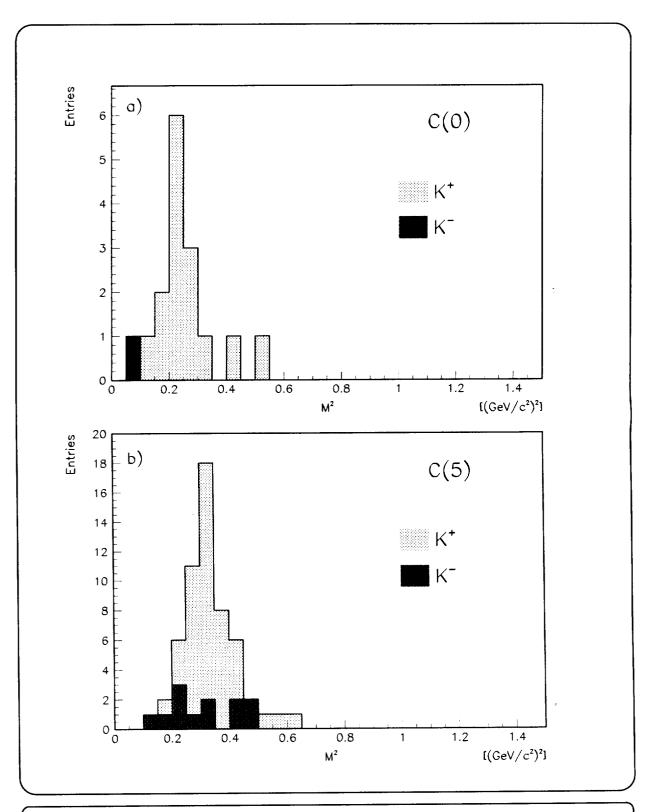
# $K^{\pm}K_{S}$ selection



## K<sup>±</sup>Λ selection



# K<sup>±</sup>∧ Results



# $K^{\pm}\Lambda$ Results (2)

After Applying  $K^{\pm}$  and  $\Lambda$  Selection:

|       | $N_{K^+\Lambda}$ | $N_{K-\Lambda}$ |
|-------|------------------|-----------------|
| Cu-Cu | 1                | 16              |
| Cu-C  | 12               | 54              |

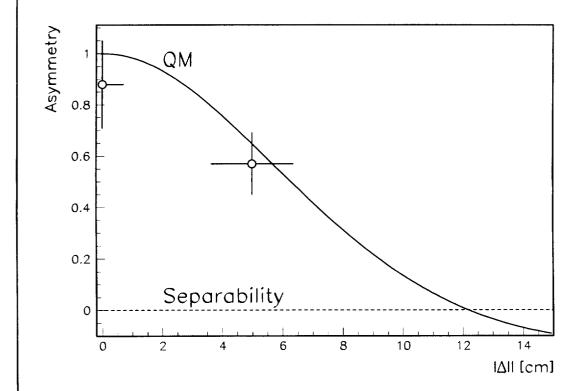
The asymmetry  $A(t_a,t_b)$  after correcting for  $K^{\pm}$  normalization, comparing with QM and Separability:

|       | Measurement | QM   | Separability |
|-------|-------------|------|--------------|
| Cu-Cu | 0.81±0.17   | 0.93 | 0            |
| Cu-C  | 0.48±0.12   | 0.56 | 0            |

Excludes Separability (A=0) with CL>99.99%

# $K^{\pm}\Lambda$ Results (3)

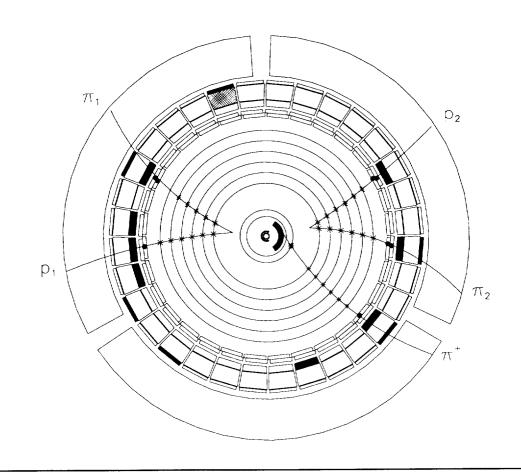
One can compare with QM correlation curve by subtracting background from data:



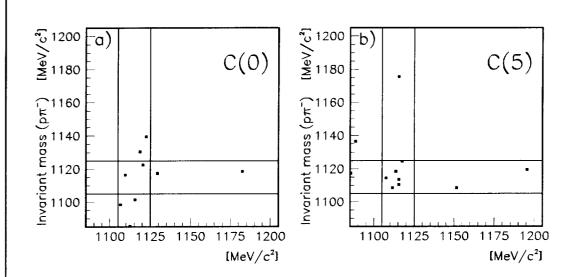
#### **AA Selection**

Another method,  $\Lambda\Lambda$ , is used as a cross check

- $N_{\Lambda\Lambda} \propto I_{like}$
- $\Lambda(\rightarrow p\pi^{-})$  selection as before
- Cut on the opening angle between the two  $\Lambda$ 's  $\Rightarrow$  reduce  $p\bar{p} \rightarrow K^0\bar{K}^0X$  background



#### **ΛΛ Results**



• Expected  $N_{\Lambda\Lambda}$  can be calculated from measuring  $N_{\Lambda}$  and efficiency of  $K^0$  production from  $\Lambda$  with and without QM correlation, including background corrections.

|       | Measured | QM       | Separability |
|-------|----------|----------|--------------|
| Cu-Cu | 1±1      | 2.1±0.4  | 16.8±3.1     |
| Cu-C  | 5±2      | 10.2±1.5 | 16.0±2.7     |

• Results are consistent with QM!