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1. INTRODUCTION

In this paper we would like to discuss the high-energy, fixed
momentum transfer behaviour of the polarization in the elastic 7p scatter-
ing, including charge-exchange scattering. The discussion is based on the

following two general assumptions:

a) the elastic ﬂ+p and ﬁ-p amplitudes dc not oscillate for energy

‘tending to infinity and fixed momentum transfer, and

b) they arc analytic functions of s, for fixed t, which obey the

usual crossing relations.

These two assumptions (a more precise formulation of them will
be given later) imply several relations between the scattering amplitudes
of the direct and crossed reactions (in this case the ﬂ+p and W—p elastic
scattering) in the high—energy limit. They have been discussed by séveral
authors. A review of the results obtained can be found in the papers by
Logunov et'al.') and by Van Hove?»?) , The general formulation for the
scattering'of'particles with arbitrary spin, using the helicity formalism,
Wwas given by the present authors®, We would now lilke to apply these

‘geheral formulae to the particular problem of w#p scattering.

Starting from the high-energy relations for the mp scatterlng
'amplltudes, the polarization at high energy in the elastic 7p scatterlng
has been discussed by Logunov et al. ) and by Van Hove ) These authofs
conflned themselves to the discussion of the first approximation, i.e.
they considered only the llmltlng value of the polarlzutlon at extremely
high energy. The purpose of the present papér is twofold. We would like.
firstly to re-derive the results given by Logunov et al. and by Van Hove,
using the helicity formalism, and secondly to consider the second approximas-
tion, i.e. the way the limiting values arc recached. The general behaviour
of the elastic cross-secctions at the present machine energies shows that
the asymptotic high-energy limit is not yet obtained. However, the second
approximation in the asymptotic expansion in terms of inverse powers of
energy is, in general, sufficient to describe the experimental data for
energies > 5 GeV with quite good a cﬂcol,tracysﬁ) Taking into account this

experience, we hope that the estimations we can make on the basis of the
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2.

considered second approximation will describe correctly the main features

of the polarization at high energies.
As the principal results of the present paper we consider

a) the parametrization of the high-energy mp elastic and charge=
exchange scattering which we hope will be useful in the descrip-

tion of the present and future experimental data; and,

b)  the analysis of the consequences of the optical models, in
particular of the assumption that the non-spin-flip amplitude
dominates the high-energy scattering for the polarization in

the high-energy ﬂ+p and nkp elastic scattering.

The next section contains a survey of the relations which express
different polarization parameters in terms of the helicity amplitudes. In
Section 3 we give a proper formulation of the assumptions a) and b), as
well as the relations between the helicity amplitudes implied by them. In
Section 4 we re-derive the results obtained by Logunov et al;i), and in
Section 5 we discuss the second approximation of the asymptotic expansion.

- The consequences of the optical model are discussed in Section 6. Our con-

clusions are listed in the last section.

An Appendix contains a derivation of the rotation angle appearing
in the transformation of helicity states for a Lorentz transformation from
the centre of momentum to the laboratory system; +this angle enters in the
polafization parameters of the laboratory system expressed in terms of the

centre-of'-momentum systom helicity amplitudes.

2. . POLARTZATION FORMALISM IN THE HELICITY REPRESENT.TION

In this section we derive expressions for all kinds of polariza-
tion parameters in terms of quantities characterizing the pion-nucleon
scattering. - These results are already well known7), but to our knowledge
they have never previously been derived using helicity formalisma) from the
outset., Since, in our opinion, this formalism is the best one for discussing
polarization phenomena, we thought it worth while to present the derivation

in some detail.,

65/181,6/5

p/mn



3e

In this section we shall pay no attention to the charge con-
flguratlon, but only requlre the scattorlng to be kinematically elastic,
i.e, thatvthere is a pion of maus 4 and a nucleon of mass m (but no other
particles)'in béth initial and final states. We refef to Fig. 1 and to
Ref. L) for further nbtatibn. | .

As quantities characterizing the pilon-nuclecn scattering, we
take the c.mss. (centre~of-momentum system) helicity umplitudes, T2
where A = * Y2 and K=t 1 are the hbllCltlbu of the initial (or target)
nucleon and the final (or recoil) nucleon, respectively. These amplitudes
are functions of the total c.m.s. energyﬁE and of the c.m.s. scattering

angle ©, By virtue of parity conservation [cf. Eq. (A.6) of Ref. 4)],

- A
=)y 7T

=¥ - 7 W A (2.1)

implying that there are only two indepehdent helicity amplitudes, which

we choose as T 1, and T, = =T, They are normalized in
/a: /2 - e = AT

such a way that for scattering on an unpolarlzbd target the differential

cross—section reads

de A /t*/z +/—/—; “_/L/ - (2.2 a)
LE g6 Ao wt p) (07T |

/1 (A} - %_‘)./M 2) - | (/ /\3 - /]/_-yzlzij/ /M,Z ) . 4 ”];M (2 2 b)

The use of helicity states means that we attach to the initial
nucleon a right-handed co-ordinate sys%emix Y 2, called for short its
helicity frame, with the z-axis in the direction of motion and with, in
our conventions, the y-axis along the normal 7= (ﬁNx kN:)/l kN’l to
the scattering plane. Correspondingly, the helicity frame x’y’z’ of the
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final nucleon has its z'-axis along the line-of-flight of this particle,
while its y’=-axis again is the normal A. These co-ordinate systems are
indicated in Fig. 1. According to its definition, then, the helicity is
the spin pfojection along the z-axis (z’-axis) in the rest frame of the

target (recoil) nucleon.

Polarization experiments are most conveniently discussed in
terms  of spin space density matrices, in our approach referred to as the
helicity basis.~> If the target nucleon has a polarization vector, Ef, il.e4
if it is 100+ |P,[f% polarized in the direction I;t/ligtl , its helicity

density matrix is |

p = 7 (f + 2?‘) (2.3)

whéfé g = (Gk, G&, Gz) are the conventional 2x 2 Pauli matrices and where
all vectors are referred to the helicity frame of the initial nucleon.

By applying the rule of forming the density matrix in the final
state from that in the initial state and the transition matrix, we obtain

for the helicity density matrix of‘the outgoing nucleon

, ==
K o
e 4

) 79 o e \
£ (Ty 7 /:%/_ T Fax T (244)

where a dagger denotes hermitian and a star denotes complex conjugation,

Manipulating this equation, we find

(2.5 b)
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o .‘;Z;jD = ‘QAigvl(GZL#—Z:;}) , v‘(2.5 ;)

—

A"MS = = .; . A/_;, ..> 
§ = (73+ /"‘)-VL')VL + Y(ax Vl,))(n,

+Z /éﬁx ") (2.5 4)

Ly =7 -7 )

(2.5 e)

!

I 7

©

2 (T, 7"

(2.5 )

Here, all vectors are referred to the helicity frame of the final nucleon;
in particular, ?‘t’ is the vector, which has the same components along the

x'y! gl -axes as does B, along the x y z-axes., We emphasize that p’ is

t
obtained from p by a transformation involving the centre-of-momentum svstem

helicity amplitudes.

Due to the fact that polarization experiments are invariably
referred to the laboratory system, we have to cast Egs. (2.5) into a form
which is suitable for analysing such experimentsg). To this end, we must
perform a pure (active) Lorentz transformation £(V) with the velocity
v = ﬁN/m from the laboratory system to the c.m.s. (ef. Fig. 1c¢). This trans-
formation has the property that

E(;;)kt= kN’ (2.6 a)
L) kg = Ty s | (2.6 D)
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Now, helicity states are invariant under Lorentz transformations
along the direction of motion. The helicity of the initial nucleon is
thus. invariant under the transformation 3(3); this has, in fact, already
been used above when we wrote down the helicity density matrix for the
target nucleon, On the other hand, for a pure Lorentz transformation along
directions other than that of the motion, the helicity is not invariant.
Under the transformation £(v), in particular, the helicity states of the

outgoing nucleon do change according to the transformation 1aW’°)
. 4 : ,
| A /R ,
5 -~ : u
L) >=2 [, .~ CONNCR
L( £, v E,.~> D 3 6D
PR . , L A

Here, IER,V > is a helicity state in the laboratory system, 'ﬁNf’ K> a
helicity state in the c.m.s., and L(¥) the transformation operator on the
helicity states, induced by the transformation 2(3). Finally, the rotation
r entering in the spin - ‘£ rotation coefficients DZ%(r) is a so-called Wick
rotationfO), in this particular case a rotation around the normal n by a

~certain angle w,

p2(x) = als(o) . (2.8)

Ky

In Appendix A we prove that, in fact,

W = @R, (2~9)

where @R is .the angle in the laboratory system between the beam and the
recoil nucleon, defined to be positive for a clock-wise rotation around the

-9 . - - . . -
normal n as is indicated in Fig. 1.

From Lorentz invariance we thus arrive at the following connection
between the c.m.s. helicity density matrix p’ and the laboratory density

matrix pR of the recoil nucleon
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f)ly’ R , v/?/ k v’) =(/?_‘,\/_/L-.25[,L /—kz)v.’> =

""Z(kg, L/kv,,%>(£~ x/§/é 71,)(/? ”/L/ JV/>:=

o (2.10)
4 ' ¥
7/ 2
Z O(Vn( a::) fkkj 0/&’)/’(6@)
Padt

After some algebra, finally we find that pR may be written

¢ =4I /4—?(?’?") j ﬁ‘j (2,11 a)

=R e o o S
= (PrEfR) A eR (AR ARES

(2,11 1)
R = Yoo 1965 * Z-xﬁl:n’f?:

(2,11 ¢)
A = Y am ”5% -7 40;;{73'

(2.11 a)

Here, the notation of Egs. (2.5 b~ f) has been followed. Furthermore, all
vectors now refoL to the co-ordinate system x| yR fR of Flg. 1; in parti-
cular, ?R is that vector which has the same componpnts along the.)gR Yp -

‘axes as ft has along the x y zZ-axes.

 The expression (2.11) is the desired hclicity density matrix for
the recoil nucleon referred to the la aboratory system., It may bec used
directly to relate the results of different polarization experiments to the
Com.s. heliecity amplitudes T++ and T+_. Conventionally, three such types.

of experiments arc usually performed:
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Se

The target nucleon is polarized in the direction of the normal

n to the scattering plane, ﬁt = Pt- Z, and the recoil nucleon
polarization is analysed along the same axis. This situation
contains as a special case the experiment on an unpolarized
target, 'ﬁt = 0. From Eqs. (2.11) we obtain immediately that

the outgoing nucleon also is polarized along 7 with a polarization

Pn given by

> _ P+P,

= : (2.12)

A+ PR

The target nucleon is polarized in the scattering plane perpen-

dicular to the beam direction, ﬁt = Pt- §t (;t is the unit vector

along the x,-axis), while the polarization of the recoil nucleon

is analysedtalong the gR-axis, i.e., in the scattering plane per-
pendicular to the line-of-flight (sec Fig. 1b). This is usually
called the "R-experiment". From Egs. (2.11) we discover that R

of Eq. (2411 ¢) is just the polarization, divided by P,, of the

outgoing nucleon along the ;R~axis.

The target nucleon is longitudinally polarized, ﬁt =P, ;t (Zt is

the unit vector along the z —axié), while the recoil nucleon is

t
analysed as in the R-experiment., This type of experiment is
usually called the "A~experiment". Analogously to R, we find
that A of Eq. (2.11 d) is just the polarization, divided by Pt’
of the outgoing nucleon along the XR“&XiS.

For pion-nucleon scattering, one is in the fortunate situation that

the three polarization experiments outlined above, complemented by differential

cross~section measurements on an unpolarized target, are enough to obtain a

complete'knowledge of thc two helicity amplitudes (at a given angle © and

energy E), apart from a common phase. For experiment (1), in this respect

it is even sufficient to make the measurement using an unpolarized target,

since the use of 2 polarized target would tell us nothing new concerning P

which could not be learned from scattering on an unpolarized one. Observe
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also that, since

2.

P2t g (2.13 )

e, ey 2 2 . ) :
FPoy R + A" = A (2.13 )

the determination of two out of the three quantities P, R, and A (or P,
Y, and Z) fixes the absolute value but not the sign of the third one. For
the helicity amplitudes T _ end 'T+._ (with relative phase ¢), the sign of
Y tells us which one is the biggest, while a knowledge of only |P| (of |Z])
means that one cannot distinguish ¢ frombnq>(¢ from‘ﬂ-?¢). |

For other processes, suéh as nucleon=-nucleon scattering, more
polarization measureménts have to be made to determine all amplitudes.
Here it is clear from the presentation how the formal “reatment in the
helicity representation of such experiments should go, and that the helicity

formalism is a very convenient one for discussing polarization phehomena.

+ o
3+ HIGH-ENERGY BEHAVIOUR OF THE 7~ p ELASTIC AMPLITUDES

In this section we shall apply the general asymptotic relations
for helicity amplitudes obtained in the preceding paper@ to the special
problem of ﬂip elastic and charge-exchange soatterihg. Let G++ and G+m be
the helicity amplitudes for W+p elastic scattering, We denote the amplitudes
for W-p elastic scattering by'H;+ and H+Aa [Reference 4) may be consulted

for the further notationg]

We now repeat the assumpticns we have used in Ref. 4) to derive
general asymptotic relations between the helicity amplitudes. The first
group of assumptions concerns the analyivic properties of the amplitudes G

and H, We assume that:
a) both G and H are, for fixed t, analytic functions of s in the
upper-half s-plane, except possibly for a finite region. For

8- o in the upper-~half s-plane, they are bounded by a polynomial
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in s. Finally, they are continuous along the real axis, except

possibly for a finite region.

b) G and H obey the crossing relations which, for t fixed and for

large real s, take the form"):

e (s,t) = B _(ut) (3.1)

n

[t}

6, (s,%) = H_(s,1). (3.2)

In these relations it is understood that the analytic continuation
is performed in the upper-half s-plane. The more detailed descrip=-

tion of this process can be found in Ref, L).

The second important assumption is that the amplitudes G and H
do not oscillate very rapidly for t fixed in the physical region and s- o«
along the real axis, This assumption means that there exist asymptotic
expansions of both G and H, for t fixed and s- «, in terms of non-oscillating
functions of s. A simple example of such an expansion, which we shall use

henceforth, is

w(t) ) ﬂ&)
— T, 3 ¢ A + G P o
C/MA dunt 7 A (3.3)
ol () N )
»? - g (5.4)

where the dots indicate further terms. In order to exclude oscillations

we have to assume that the functions a(t) and p(t) are real.
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Using these assumptions, one can prove thet there exist relations

between the coefficients of the expansions (3.3) and (3.4). We have? 1 2)
- % C A (E)
h (t) = g9 () ¢
A MA (3.5 a)
w¥, R
h (f;) =y }l/f) e G/ /56‘)( 4
A /4 * (3.5 b)

The relations (3.5) represent strong constraints on the asymptotic behaviour
+
of 7 p elastic scattering at high energy, and show that at high energy these

two reactions are indeed closely related.

We now propose to analyse the high=energy bchaviour of the ﬂip
elastic scattering using the asymptotic cxpansions (3.3) and (3 4) as a
mathematical tool but without invoking any detailed dynamics, "It seems
reasonable that at hizh energy the first few terms of the expansiohs'wili
be sufficient to describe the experimental data with a good accuracy. Our
point is’ simply that, by considering the ﬂtp date together, the number of
phenomenological parameters needed for the description is strongly reduced
by the relations (3.3) to (3.5)’3).

. In the next two sections we shall discuss the first and the
secohdpépproximation, i.e. the first and the second term of the expansions
(3.3) and (3.4). However, before we come to that we would like to recall
some special features of .the 7p scattering amplitudes which WlllAbe ‘useful
in further discussion. The amplltudes G and H can both be written as a
superposition 6f thg C=+1 and C = -1 oxohongo amnlltudes, where C is the

charge conjugation quantum number. We have

R I <L 2 \,____,cz‘.;z . |
@‘ o=/ + (3.6)
A A A AN R
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e+ =1
Ha =1, -7 (3.7)

/ l .M).

/

where the superscripts denote C = 1 and C = =1 exchange amplitudes,

respectively., Accordingly, the coefficients g , and h . also split
! M H

A
into the sum and the difference of C = +1 and C = =1 exchange terms

7 - t + A (3.8)

(3.9)

For simplicity,'we have omitted here all indices, It is easy to see that

the relations (3.5 a) imply

[75 C’j = f(M e " (3.10).

(3.11)

with analogous relations following from Eq. (3.5 b).

In the special case of mp scattering, the determination of the
charge conjugation quantum number exchanged also fixes other exchanged

quantum numbers' 4)

« Thus, C = +1 exchange corresponds to I = 0 and P = +1
exchange, where I and P are isotopic spin and parity, respectively. Corres—

pondingly, C = =1 exchange amplitudes correspond to I = 1 and P = -1 exchange.
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HIGH%ENERGY LIMIT OF THE CROSS-SECTIONS AND POLARI&ALIONS

a

In thls section we discuss the consequences of the analytic and .

non-os01llatony charactor of the scattering amplitudes for the high-ehergy

limit of the cross-sections and polarlzatlonb in 7p ulastlc and charge=

exchange scattering.‘ To thls end WC shall subsultute the asymptotic
expansions (3.3) and (j.4) 1nto the formulac (2. 2) and (2. 5) and calculate

the measurable quantltles in terms of the hellcltj umplltudes.

Since we are interested only in the high-energy limit, it is
enough to keep the highest power of s in the expansions (3.3) and (3.k4),

i.e. to put

x {4}
c = ) ﬁ‘
’“* . | = 7.0 C(5a1)

H.,, /L.(U lX() H o - /L+(£~/4”((“'J

- -
(3-.2)
where the functions 8,9 8, h ~and h _ obey the:relations
% a - ¢ TT ol
—= O 0 = .
h,, = P A, 9, ¢ (4 3)

Since a is a real function of t we conclude

o b5l hf = g e

andﬁﬁhefefore

L do™ | ,j
£~ 02 5“ w* | (4.5)
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where superscripts + and = refer to the ﬁ+p'aﬁé W-p scattering, respectively.
This is a well=known conditionfs), which extends the Pomeranchuk theorem'®)

to the elastic scattering.

Let us now discuss the behaviour of the polarization coefficient
P [see Section 2, in particular Eq. (2.5 c) for its definition], which
gives the polarization of the recoil proton in the scattering on an un-

polarized target. We have

RN R VNS

A (/_/H Hf) L 7;(/1“ Af) -
AR (50 ge) = - R(eel)

(4.7)

If follows from Egs. (4e6), (4.7) and (2.5 c¢) that in the high-energy limit

the polarization P changes sign when we pass from #+p to ﬂ~p scattering’7):

/g,m. 7>+ —_ /é&% P_

| Eeeo

(4.8)

Note, however, that in general the condition
p P +
./g‘ Al ( ”:'T > — - j (4.9)
E -0 '
is not valid., The reason is that in the case when

/g‘;‘*" P‘f = ,ﬁm ‘P_’ = O (4‘10)

E o0 E = o0
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the 1mportant contributions to the polarization come from the further termo
in the expansions (3.3) and (3.4), We postpone the discussion of thls ‘

problem to the next section.

Let us now see how the dlfferent aSDumptlons concernlng the
domlnance of enchange quantum numbers in the aeymptotlc ﬂ p elastic amplitudes
1nfluence the values P" = 1m P’ If one assumos that the elastic amplltudes
are domlnated at hlgn-energy by pure C = o or purc C=~1 exchunge (as
being opp031te to a linear comblnatlon of both of them), we have fromIEqs.

(3.8) and (3.9):

=r (= L - o (an)
H—P-f + + ,L/.’__,.. - G—;—- |

where the upper and lower signs-correspond to C = 1 and C = -1, respectively.
It follows from Eq. (4.11) and from the formula (2.5 ¢) for P, that in this

case

b DT Lo ¥ (1.12)

il

Combined with formula (4.8), this gives

A P = O P = O (413)

f oo L Fesoe

~The assumptlon of ' the dominance of ‘a given parity. {+ or =) exchange at high
energy gives precisely the same condition because, as we have indicated in. .
the precedlng sectlon, 1t is equlvalent to the assumption of C 1 0or C = =1
domlnance. The condltlon (4 13) w1ll therefore be satlsfled in the Regge—pole.
model, Whlch assumes that the hlgh—energy behav1our of the amplltudes 1s ' |
domlnated by the exchange of the vacuum (C -v1 pﬂrlty +), Pomeranchuk Reggb-
pole.

65/1846/5
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.In order to have a non=-vanishing polarization in the high-energy
limit, both C = 1 and C = -1 exchange amplitudes must give contributions
to the high-energy scattering. This case has been studied recently by
Dosch and Friedman?a), within the framework of a particular model. These
authors calculated the polarization at high energy in Wip elastic scatter-
ing under the assumption that the amplitude is dominated by two terms:

a) a C = 1 exchange, spin independent part, which was assumed to be purely
imaginary, and b) the'élémentary p-meson exchange contribution (corrected

for unitarity), i.e. the exchange of a partiéle wifh C = -1 and negative

parity. Both these terms behave like sef(t) at high energy and therefore

according to Eq. (4.8) the calculations give the opposite sign for the

polarization in the ﬂ+p and ﬂ-p scattering.,

Let us now consider the behaviour of the other polarization para-
meters ¥ and Z, as they are defined in Egs. (2.5). They are directly
measurable in the A and R experiments, as explained in Section 2. -Using

the relations (4.3) and the formulae (2.5), one easily gets

+ -
S Y@ = b V(4] ()

E— o £~ oo

and

yim 22 % ¢) = lom 7 2?5) (415)

‘g-aao g = 0

where the superscripts +~ ~nd -~ refer to the W+p and w~p scattering, respectively.
The relations (4.14) and (4.15) show that the high-energy limits of the polari-

zation parameters R and A are the same for ﬂ+p and ﬂ—p elastic scattering.

o Because of iSotopié spin invariance, the charge-exchange>scattering
is related to the elastic ﬂ+p and w-p scattering: the amplitude foricharge—
exchange is proportional to'thebdifference between the amplitudés for ﬂ+p
and 7 p elastic scattering. Denoting the amplitude for charge-exchange by M;

we have

M= L(@-H) (1.16)
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It follows from this formula that the charge-exchange scattering
is described only by the C = ~1 exchange amplitude of the elastic scatter-
ing. Accordingly, we write
/\/I = wl 2(7")} j —:u- r 42 (4‘17)

//A A M

where y(t) is the exponent in the leading term of the C = -1 ‘exchange

amplitude. Since the functions m_, and m_ satisfy [cf, Eq. (3.11)]

» CJC S I '

+ o # -
we have

,}j&d ()Vi+¢ ﬁf;i)»;zr A (ﬁ“{&”+«-”ﬂ++) =  (b.19)
p: Y j;h (Am_:: »n4+,) :~—-iﬁu.(?4++,ﬁf:ﬁ§

)

and therefore

_/A/WL /P = O (4.20)

£~ o0
that is, the polarization of the recoil neutron in the charge-exchange

scattering on an unpolarized target vanished in the limit of extremely high

energyjﬁz).

5. HIGH-ENERGY BEHAVIOUR OF THE POLARIZATION

To discuss the behaviour of the polarization at high, but finite
energies (as opposed to the high-energy limit discussed in the preceding
section), one should go beyond the first approximations (4.1) and (4.2), In
this section we shall consider the second approximation, i.e. we shall also

keep the second term in the expansions (3.3) and (3.4). Furthermore, we shall
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assume that the high-energy, small momentum transfer elastic ﬁip amplitude
is dominated by the C = 1 exchange. This assumption is strongly suggested
by the present experimental data which show that the energy dependence of
the cross-section for elastic mp scattering (where both C = 1 and C = -1
exchange may contribute) is very weak, whereas the cross-section for charge-
exchénge scattering (where only C = -1 exchange occurs) decreases rather

quickly with increasing energy (approximately in the region above 5 GeV/ec,

V6,19 =21
Tch.ex,® 1/5)¢s ).

The assumption that C = 1 exchange dominates is expressed by the
equalities [see Bq. (4.11)]

A = g /Z\,+“ = 9._ (5.1)

v+ [+

The coefficients g(1) and h<1) contain, in general, contributions

from both € = 1 and C = =1 exchange. It is therefore convenient to write

gm = A rd - (5.2)
K= 4-d

(5.3)

where for simplicity we have suppressed the helicity indices. It is clear
from Eqs. (3.8) and (3.9) that b and d describe the C =1 and C = -1 exchange,
respectively. The general formulae (3.10) and (3.11), have the following
consequences for the coefficients h = g, b and 4 ‘

I
g = 3¢ N CED

y - | (5.5)
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or, equivalently, .

?«93 = - T4 7-4«?

Re b = - ok Lt Red =t L cd (5.5

4]

The formulae (5.4) and (5.5) show that the present approach
describes the elastic and charge-exchange mp scattering in terms of eight
parameters (which are functions of t): «, g, Im 8po Mg, s Imd ,Inbd , Imd
and Im d+_. The number of free parameters being rather large, it is impossible
to-determine all of them from the present experimental data without further
simplifying the assumptions. We shall therefore give only a-qualitative

discussion of some possibilities which arise in this context,

In the most general case, if we make no further restrictions on
the eight parameters entering our formulae, the situation is very similar to
that in the Regge-pole model of high-energy elastic scattering. A4s is well
known, the experimental data suggest the presence of at least three Regge-
poles in the high=energy wp scatteringé’za). They are the two vacuum Regge=—
poles P and P’ and the reggeized p.  In our approach we also have three
different contributions to the amplitude, i.e. g, b, and d amplitudes, which
describe the exchange of the same quahtum numbers as P, P/ and p, respectively.
The only difference is that according to our philosophy it is more natural to
assume that the parameter B(t) (i.e. in the Regge-pole language, the trajectory
of the Regge=~pole in the physical region of the s-channel) is common for the
b and‘dJamplitudos, whereas in the Regge~pole approach one takes two different
trajectori9323)‘ It is interesting tc note that in the actual cross-section
calculéfions in the Regge-pole model for elastic mp, Kp and pp‘scattering,
which have been done recently by Phillips and.Raritaé), the parameters of
thesgltwo trajectories appear to be very close to each other. Therefore, the
general discussion in our case would be very similar to that given by Phillips

and Rarita7) and we shall not try to present it here. .
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6. CONSEQUENCES OF THE OPTICAL MODEL FOR TEHE HIGH-ENERGY BEHAVIOUR
+
OF THE POLARIZATTION IN THE 7~ p ELASTIC SCATTERING

As pointed out by Phillips and Rarita7), and by Leaderzah the
polariéation measvrements represent a very important test of the Regge-pole
model of the elastic scattering at high-energy. The recason is that the
Regge=pole model predicts a rather large spin-~flip part, comparable to the
non=-spin-flip contributinn, in the amplitudes dominating the elastic scatter-
ing in the limit of extremely high energy (i.e. in the Pomeranchuk exchange
term). On the other hand, it seems that the optical models rather favour
the situation in which the spin~flip part of the¢ amplitude is negligible com-
pared to the non-spin-flip part in the higa~cnergy limit?%), It is thercfore
iﬁféreéting’to investigate the consequences of that second possibility, and
see Whethef one can get out of it some definite predictions for the present

machine energies. In terms of our parameters, this assumption reads

?4-» = ' (6.1)
We shall also assume that, for t fixed and energy tending to infinity, the
elastic scattering tends to a finite, non-vanishing limit. This assumption
(which is in contrast to the Regge-pole model prediction), seems more natural
in the framework of the optical model, and is also strongly suggésted as the
simplest extrapolation of the present experimental data?®s 26), The existence

of a finite, non-vanishing limit of the elastic differential cross—section

implies that

@) =1 (6.2)

The immediate consequence of the condition (6.,2) and the relation (5.L) is

Ke g++ =0 (6.3)

j++ =2 ¢ (6.4)
55/18L6/5
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where ¢ is a rcal function of t.
Taking into account the conditions (6,1) and (6.4), we arrive at
the following formulae for the cross-sections and the polarization para=

. - . )
meters in the 7 p and 7 p clastic scattering:

ot . [ I S - 0 R
A - o el Py ks -
f{:.:"' = / ¢/ ‘/ { ra Afi , ’ ) A
At AT BN C (6.5)

o g et Relbrd)
c (6.6)

(6.7)

C | (6.8)

From these formulae we first see that the assumption (6.1) enables
us to estimate the ratio |d++/d+_|2 in terms of the differential cross—

sections. We have

‘ 2 /0/0" ” 9{5"‘
/11. — 5/+- + — At - E J
doe |y A e A fe” A fes)
it (e D) A

where o
= { ¢ 7('_;& | 6.10)
———Q_ Z @3 gl (6.10
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We expect this ratio to be rather small in the region 0.05% -t X 0.4,
First of all, the curved shape of the charg e~exchange elastic cross-—
sectlon for small t in the loga ~ithmic scale suggests the presence of a

6,20, 21, 27 ze)

rather large spin-flip amplitude in thlo process”? Further-

more, the difference between elastic ﬂ+p and T p differential cross-
sections changes sign when -1t increases from zero to higher values:
(dc*/at) - (do"/dt) is negative for t = 0, and definitely positive for
-t > 0.2 (GeV/c)?, 1In the case we discuss, this change of sign can be
explained only by the fact that d++ passes through zero in this region
because the assumption (6.1) rules out possible cancellations from terms
involving g+_29)¢ In fact, the experimental dota at 13 GeV/c primary

momentum suggest

£ ) A .
A £ 0's 0os ,g—z“éoé(em)

We are now in a position to discuss the possible value of the
difference p+-p~ between the polarization in the ﬂ+p and 7 p elastic
scattering in the % region indicated by the formula (6.11) . The sign of
this difference depends on the sign of the Re d+“ which is unknown. For

the absolute value we have
b ,
™~ - A p-! / Re d - /
/PAP}': 4 (6.12)

ne

This formula can be re-written in terms of the measurable quantities in the
q

following way

1
. - A o | A 2
),P - P / =4 e?m)wf ‘40'0‘/(% - ATt (4 /‘) (6.13)

where we have used the relations (5.5), For t- 0 at fixed energy the para-

meter A-» e because d__ = 0 for t = 0, and therefore P -P 50, as eXpected3°).
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The parameter $(t) has been estimated by Logan?'), by Phillips and Rarita®)
and by Hﬁhler21), to be not very different from 0,5 in the region lt|§,0.4
(GeV/c)®. This information, together with the estimation (6.11), enables
us to estimate the possible values of IP+-P~| in that region. Assuming
that B(t) is actually cqual to 0.5, and taking into account the estimation
(6.11), we get

Ao @* [ ot ) e

_
s+ ALt [ (640k)

-l:D*__ ”P”, = V2’

The value of the right-hand side of the Eq. (6.14) is ~ 0.3 at 6 GeV/c and
then decreases approximately as p-1? where p is the incident laboratory
‘momentum;v Let us also remark that, independently of the values of the para-
méteré‘ﬁ'and.A, the formula (6.13) gives an upper limit for the value |P+-P—I

‘WhiCh is ~Vv2 times lorger than the value given by (6.14).

Similar estimations can be obtained for the difference between the
polarization coefficients Zf and Z . The formulae (6.6) and (6.8) as well

as the condition (5.5), imply R
27 = (P”’L—-. P)aE e
" Assuming, as before, B 0.5, we got
27- 7 = PP - (6.16)

which shows that the differcnce Z' - % must also be rather small at the
present machine energies.

The parameters vel and Y are equal to 1 up to terms of order less

than sﬁ— a’ therefore we expect their difference to be very small,

Very little can be said on the sum of the polarization parameters

in the ﬂ+p and ﬂ~p elastic scattering, because their values depend on b+_,

65/1846/5

p/mn



2L,

which we have no possibility of estimating from the present data. Let us
only note the relation between (P+ P7) and (2%+ 27) which follows from
the condition (5/5):

+ - -~ /] . o
-[.. ‘ﬂ i b D 5
/7 = TP e

In conclusion, we see that the conditions (6.1) ard (6.2) give
rather strong implications for the behaviour of the polarization in the
.+ - . . . . 3

elastic 7 p and 7 p elastic scattering at present machine energles‘z).

One can summarize them as follows:

a) There exist simple velatlons (6 15) and (6.17) between the polari-
zation parameters P‘ and Z~ of the elastic scattering [see Section 2,
in particular Egs. (2.5) and (2,11) for the physical meaning of P
and Z], and the parameter B, which determine the rate of change of

the 7 p charge-~exchange cross-section with energy.

b) The present data on the 7 p charge-exchange scattering provide an
upper limit for +he absolute value of the difference of the polari-
. + N + - .
zation parameters P ~P and 7% - Z in the 7 p and 7 p elastic

scattering.

¢) The polarization paramcter Y (cf. Section 2 for its definition) is
expected to be very close to © for both ﬁ+p and 7 p elastic scatter-

ing.,

If the experimental data in the region, say around 10 GeV/c, will
show that any of the statements a), b), or ¢) is incorrect, this will strongly
suggest that the assumption (6.1) is not valid?z), i.c. that some spin-flip

amplitude is present even at highest energics.,

We now turn to the discussion of the charge-exchange scattering.
As has been shown in Section 5, ths polarization P®* vanishes in the first
approximation. To cstimate the second approximation, one has to introduce
further terms in the expansion of the C = -1 exchange amplitude. As at

present we know absolutely nothing about these fine effects, we can give no
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serious estimation of the polarization in the high--cenergy charge-exchange
. S ex .
scattering, There are no compelling reasons why P~ has o be zero at
the present machine energies. It has, however, Lo decrease with encrgy
’

1
approximately like p /2 where p is the primary laboratory momentum?z).

s _— . . ex ex
The limiting values of the polarization parameters ¥ = and 2
for extremely high cnergy can be expressed in terms of the ratio A?, defincd
by the Eq. (6¢9), in the following way:

yex’ - A1

/114-<Z - (6.19)

It scems that the corrections to the formulae (6.18) and (6.19),
induced by the higher order terms should not be larger than 10% for 10 GeV/c

primary momentum®>)

7. CONCLUSIONS

Assuming the existence of an asymptotic expansion in terms of real
powers of the c.m. energy, and the "usual® analyticity propertics (see Section 3)
of the elastic ﬂ+p and ﬁ-p amplitudes, we have discussed the behaviour of the
polarization in ﬁ+p and ﬂ-p elastic scattering at high energy. A considcrable
simplification, as compared to the standard treatment”a) has been obtained by
using consequently the helicity formalism4’8). We have considered both the
first and thc sccond approximations in the asymptotic expansion, i.e, (a) the
limiting values 1 the polarization, and (b) the way these limiting values are
reached.

The problem (2) has been discussed before by Logunov ct al.1) and

by Van Hovez), We have re-derived their results in a form which is more con=-

venient in the direct application 4o the experimental data. For the reader's
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convenience, we repeat here the main results one can obtain by this method,

c 1. In the limit of extremely high energy, the polarization of the
recoil proton in the scattering plane is the same for ﬂ+p and
ﬂup elastic scattering. Thz polerization for scattering on an
unpolerized target has the same absolute value for W+p and ﬂ~p

elastic scattering, but with the oppcsite signs.

2, The additional assumption that the charge~exchange cross-section
tends to zero in the high-energy 1limit implies that the polariza~
tion of the recoil proton in 7 p and 7 v elastic scattering on an

unpolarized target also vanishes in that limit.

3« In the % p charge-exchange scattering on an unpolarized target,
the polarization of the recoil ncutron vanishes in the 1limit of

extremely high energy.

In the investigation of the problem (b) we have analysed in some
detail the consequences. of the assunption that the non-spin~flip elastic
amplitude dominates the #p elastic scattering in the high-energy limit,
which corresponds to the diffraction model of the clastic seattering., It
appears that this assumption, combined with the present experimental data
on charge-exchange and elastic wp scavsering, prevides some interesting,
experimentally measurable consequences for the polarization in the 7p elastic
scattering in the few Ge&V/c region. 'ney arc listed at the end of the Section 6,
It seems that the experimental verification of these consequences would be of

some importance for our understanding of the elastic scattering at high energies.
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APPENDIX

The Wick Rotation

In this Appendix we prove the relation (2,9) for the Wick
rotation angle w entering in the Lorentz transformation of the recoil
nucleon's helicity states in going from the laboratory system to the
C.MeSe |

Let us introduce the Tollowing notation, besides that of

Figs. 1 and 2:

1t

velocity of c.mes. in

<
I

cosh v =+x(v) =

1 : iyl /m

1T=v the laboratory system
sinh v = v-y(v),
.. => . .
cosh ¢ = y(u), u = ]kRI/m = velocity of recoil nucleon
in the laboratory system,
= velocity of the recoil

cosh o/ = y(u'), u = l.f{N,I/m
, R nucleon in th,e,c.;p.s,

From the sinus and cosinus theorems for the Wick triangle'®) of Pig. 2b,

we obtain
A WO - A un '&,—e (&.1)
Ak T S g/
o wsho — eth
o w = X e _

(A.2)

the last equality following easily from the Lorentz transformation formulae

_ //;Q/ cot % = [0 { //‘;/wjg' J“E;V'f (8.3 a)
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(A3 ¢)

2, = 1 (B —ulR fcort]

If we now observe that u’ = v, since the reaction considered is

truly elastic, we get immediately from Egs. (4.1), (4.2) and (A.3)

S oD

1

- B, (A )

Co{ o

i

cor O

(A )

The equality (2.9) is thus proved.

v

In terms of the invariant kinematical variables [see Ref. L;.] s We

have

4/;'_ P ﬁ { mt ,M.L\) : _9, S ,t. P : 2
A (/‘;'W’;/‘V> ( ) T ) Lod r (‘H'W f) (A.5)

where the function A is defined in Eq. (2.2 b). At high energy, in particular,
V-7

cor 8, = ?/

Gmt- g

-fo'r' § - o0 P % J‘X@Cﬁ,

/| + O(}s‘{.j]’)

(A.6)
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Figure captions

Fig. 1

Fig, 2
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I1lustrating the kinematics and the notation:

a) in the c.m.s;

b) in the laboratory system; as well as

¢) the Lorentz transformation from the laboratory system

t0 the Cc.mes.

T1llustrating the derivation of the Wick rotation angle w:
a) the momentum vectors of the recoil nucleon in the‘c.m.s.

and in the laboratory system;

b) the corresponding Wick triangle.
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Erratunmnm

A. BiaYas and B.E.Y. Svénsson, Polarization in high~energy =np elastic

and charge exchange scattering (CERN preprint TH.635, 17 December 1965)

The following misprints have been found:

p.2, line 7: read "optical model" instead of "optical models"
p.b, line 7: read 'referred to the" instead of 'referred to as the"

p.5, line 13: read “analyzing" instead of "analysing"

) S - -
p.5 line 15: read " kN/EN " instead of " v = kN/’m "

1 s -5 00 1

p.9, last line: read " |s|—=>o" instead of
p.10, line 11: delete ‘very rapidly"

+ —
p.21, Eq. €6.9): the expression ( %ﬁ%-- %§§~) in the denominator should

be squared.

p.22, line 15: read "difference P' - P~ " instead of "difference
+ - n
p -p
p.27-28: the definitions of v, u and u' should read, respectively:

N -> =Y
v=lk /B u= k| /8 u' = kg [ /Bp s
moreover, 'u' should be changed to "v'" at all places

in Egs. (A.3 a-c) .
Fig. 1 (c): read " ‘\?—- ‘1‘:) /E_ " 1instead of " -\7 = g /m "
’ : TN/ TN = Ky

Fig. 2 (a) : read " 1(¥) k, " instead of " 1(v) Ik "

(14.1.196%)



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

