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ABSTRACT

Using analyticity and crossing relations for helicity
amplitudes in two-body elementary particle reactions pro-
ceeding via strong interaction, the connection Dbetween the
high energy asymptotic expansions of these amplitudes in the
direct and the crossed reaction is derived. This connection
is simple and generalizes in a straightforward way the cor-
responding relation for spinless particles. Besides allow-
ing a proof of Pomeranchuk type theorems for differential
cross-sections and polarizations, the result constitutes a
very convenient parametrization of the helicity amplitudes,
useful in the theoretical analysis of two-body experiments

at high energy.
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Iem INTRODUCTION

In this paper we discuss some consequences of analyticity in
energy, for fixed momentum transfer, of scattering amplitudes in high
energy two-body scattering of strongly interacting particles (hadrons)

1)

is used throughout. Our main result is the derivation of asymptotic

with arbitrary (integer or half-integer) spin. Helicity formalism

relations between the helicity amplitudes for the direct reaction
a+c- b+ d and the crossed reaction b + ¢ — a + de The relations
obtained are rather simple (see Section IV, in particular Egs. (IV.1-5)).
They may be considered as a direct generalization of the asymptotic
relation for the single invariant scattering amplitude in the case of
spin-zero particles 2)’3)’4)’5). Besides allowing a straightforward
extension to particles with arbitrary spin of the (generalized)
Pomeranchuk theorem 6) on the high energy connection between the dif-
ferential cross sections for the two reactions, the formalism is par-
ticularly well suited for the discussion of asymptotic connections
between different polarization measurements in the direct and crossed
channel. Above all, however, the derived relations form the starting-
point for a convenient parametrization of the helicity amplitudes in
strong interaction processes, which seems to be useful in the theore-
tical analysis of the experimental results on two-body reactions at

high energy.

2)33)54)55) gna

fairly general. PFirst of all, we assume the helicity amplitudes to

The assumptions we need are standard ones

be analytic functions of the usual Mandelstam variables s, t and u j
the exact analyticity properties are discussed in the remarks 1 and 2
at the end of Section III. From this condition we then derive cros-
sing relations for helicity amplitudes. Such relations have already

7),8)

the main point being that we need the crossing relations arising from

been given , but they have to be modified to suit our purpose,

a continuation in the upper half s plane.
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Once we have derived appropriate crossing relations for the
helicity amplitudes, we may impose the same requirements concerning
boundedness, continuity and non-oscillatory behaviour of the amplitudes
as one does in the treatment of spin-zero particles 2)’3)’4)’5); and

derive the asymptotic connections mentioned above.

Although asymptotic relations for scattering of spinning

particles have been considered previously 2)53)

the helicity forma-
lism has, to our knowledge, never been applied %0 such problems. We
would like to emphasize the power of this formalism also in the pre-

sent context.

The set of assumptions which we use underlies, explicitely
or tacitly, practically all current discussions of high energy two-
body hadronic interactions. Thus, they have been used in more general
treatments of meson-nucleon and nucleon-nucleon elastic scattering,

2)9359459%)$9)

like derivation of Pomeranchuk-type theorems or in the

d:scussion of the ratio of the real to the imaginary part of the

forward scattering amplitude 10); Moreover, most dynamical models

for high energy elastic as well as inelastic two body processes

(eegey the Regge pole model 11)9 the periphal model 12)) satisfy

these assumptions. It is well known that some featurces of these

models agree remarkably well with the experimental data, whereas

others seem to be incorrect. In this respect 1t is of great interest

to analyze whether some of these model-dependent results in fact can

be reproduced under more gereral assumptions and from this, if possible,
to suggest generalizations and improvements. The asymptotic relations
between helicity amplitudes, implying a congistent treatment of the
spins and based on the very general assumptions of analyticity, bounded-
ness and "reasonable" behaviour of the amplitudes in the physical

region, constitute an important first step in such a prograrl,.
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The complete plan of the paper is the following : in

Section II, we introduce our notation and kinematical definitions.
Section III is devoted to the above-mentioned modification of the
crossing relations for helicity amplitudes. In Section IV, we give
the asymptotic relations for these amplitudes. The connections
between the crossed reaction and those reactions obtained from it
by application of time reversal or charge conjugation invariance
are discussed in Section V, while Section VI, finally, indicates

a few appliéations of our asymptotic formulae, most of which will

be taken up in subsequentbpapers 13)’14).

In Appendix A we propose
another phase convention for a two-particle helicity state, and thus
also for the helicity amplitudes, than the commonly used one of
Jacob and Wick 1 , while Appendix B contains a direct proof of the
crossing relations for helicity amplitudes, continued in the upper

half s plane.

There might be readers who want to use the final results of
this paper without following all steps in the derivation. For the
benefit of those, we recommend the following procedure : after a glance
at the definitions and the notations in Section II, one might immedia-
tely go to the principal result, the asymptotic relations as given in
Section IV, in particular Egs. (Iv.1-5). Section V may be consulted,
in case of interest, to get the relations between the crossed reaction
and the processes obtained from it by use of time-reversal or charge

conjugation invariance.



IT.~- KINEMATICAL DEFINITIONS AND NOTATION

Consider the three two~particle reactions

O+ ¢ — b +c (direct reactions, s channel), (II:1)

b —~ = 4 ¢ (t channel), ~ (11.2)

)
+

gl
¥

¢ —» & o o (crossed reaction, u ‘channel), (II.3)

where 5 denotes the antiparticle of particle a, etc. As it is indi-
cated in Fig. 1, we let the mass and four~momentum (counted as ingoing
for all four particles) be denoted by (ma, A), (mb, B), (mc, ¢) and
(md, D) for particles a, b, ¢ and d respectively. All masses are

assumed to be positive, From conservation of total four-momentum we have

g -+R~+~C+D =0. (‘11‘4)

The conventional invariant (Mandelstam) kinematical varia=:

bles 15) are given as (our metric is + + + -)

S:_(;:Hc:]gL ':—{Bﬂ“D)?l N (11.5)

pz- (AR = -e+D)? (11.6)

u = --()J*D)Q:”“(B"*C)Q) (11.7)
related by

Sru-+t = m:+m;+wf+w5 = ) (11.8)

)

since all particles are on theilr respective mass shell. Sometimes we
shall find it more convenient to use, instead of s and wu, the

3)

variables
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Seg = S+ "5* - ‘%Zw\& ) (11.9)
— : N
Uy = U+ Lt - 3Lm?, (I1.10)

connected through the simple relation

II.11
St~+ u{ =0 , ( )

The physical four=-momentum for particle a, i.e., its positive
timelike momentum energy vector, in the s, t and wu channel respec—
tively is denoted by ka, P, and s etc., for the other particles.
Their relations to the momenta Ay....,D are given in the following

table.

Physical four-momentum of particle

Physical region

of the a b c d
s channel Ry = R R,=-B R = C hd:" D
"4 channel Pa= H p,=B  p=-C  py=-D (11.12)

u channel ﬁq:’):,’ %(b: R cz{c':C ?dr-D

This table says that, e.gey; in the t channel we should in
all above relations replace C by the negative of the physical momen-

tum P, for particle c.

Furthermore, in the centre of momentum system (cgm.s.) of each

channel, we define a scattering angle through the equations

65/1781/5
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Rk . kxR ) -
s channel D%Qg E‘—Bﬁ, 5 san G, =(»4xqi) " ) ’\"?53 %—i—gj’— ,  (11413)
IR 11 B, IR | IR, %, x &,
-~ 24 ‘?"X‘E;’ =y :3’ o
- Pe - N - X Pe
b chamel e ©, = Pa P )"’“"%:‘(Pi :,) :) W, = ae p » (11.14)
}Po«’ 'lPC‘ an" ch( ‘qu PC ‘
- e IR )
. X :
u channel C/cr_\@ < 3 d &M«@ ('{c d} ﬁu 4‘“3‘1 ,(11.15)

AT Zl 6. g ol

where all three-momenta are referred to the respective c.m.s. Finally, we
sometimes use E to denote the total energy in the c.m.s. for the two
reactions (II.1 - II.3), so that s = E° in the s channel while in

the u channel E2 = U,

In the physical region of the s channel we have
s > max [ (ma+mc)2, (mb+md)2], while the momentum transfers squared
=t and ~-u vary, for fixed s, 1in certain intervals determined from
the condition 0 < 8, < 7. 1In the same way, +t 3 mex [:(ma+mb)2,
(mc-l_-md)ej in the t channel where -s and =u are momentum trans-
fers squared. Finally, in the u channel we have u ymax e +md)2,

(mb+mc)2] while =5 and =t ~are momentum transfers squared.

As it is also exhibited in Fig. 1, we denote the spin and
helicity of particle a by (sa,)\a),' of its antiparticle by
(Sa’ )\5), etcey for the other particles. The expectation values of
the transition matrix T between helicity states in the c.m.s. of the
respective channels (c.m.s. helicity amplitudes) 1), as functions of

the Mandelstam variables are denoted by
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s channel G)\h-)‘d) >‘e\)\c(sf ?,u\/

t channel FT

(s 2w
Agxd/} )\q )‘E ! ‘

) (I1.16)

u channel i"/)‘a )‘d)}‘g >\( .S"t,u\ .

<

These helicity amplitudes are defined with respect to a
co=ordinate system having its y axis paraliel to respectively .Hs’
Ht and Ku of Bgs. (II.13-15) ; our phase eonXention for helicity
amplitudes differs from that of Jacob and Wick and is given in

Appendix A.

There are all together (2 sa+1).(2 sb+1).(2 sc+1).(2 sd+1)
helicity amplitudes in each channel. However, if some invariance
principle, like space reflection (P), time reversal (T), charge con-
jugation (C) or identity of particles, is invoked, the number of
independent amplitudes is often considerably less due to the symmetry
properties of the helicity amplitudes, listed in Appendix A. In
particular, we shall in this paper always assume parity conservation
and make frequent usc of Eq. (A.6) 3 T dinvariance will also be

assumed.

When 1t is unnecessary to spedify explicitely all helicities,
we shall denote them collectively by {Xk and the helieity amplitudes
by G{%k , etc. lNoreover, we may use the relation (II.8) to reduce
the number of independent Mandelstam variables to two, the particular
choice being dictated by convenience in each case ; when there is no
rigk for confusion, we shall simply leave out the arguments. Occasio=-

nally, we shall use Sy and u, as variables instead of s and U



The normalization of the & channel c.me.s. helicity
amplitudes is such that the s channel differential cross scction,

for unpolarized incident particles, is given by

do
(s,t) =
i
1 | 1 ¥’ ,'
- ) : - (s t\‘
16 Mg, w2 wm ) (E’SQH)-(Q&c-rl\ ‘%;b kb)d)’)‘“)‘; (11.17)
xc )‘d

where

>\(‘S;w€«/ ”W\:) = (3~'\V\:‘W\Qli- Z4‘M2' fw,z‘

(11.18)

arises from the flux factor. This normalization means that for scatte-
ring of spinless particles, the helicity amplitude equals the single
invariant amplitude (except possibly for a phase). Analogously, the

u channel differential cross section is given by

dc‘(u‘f) -
: L
= H (u t)
16"‘7‘; )\(u 'mb v“:) (95-” stl } PYD) o b,\ , (11.19)
/\ >‘cl
The t channcl helicity amplitudes have a similar
- normalization.

65/1781/5
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ITI.~- CROSSING RELATIONS FOR HELICITY AMPLITUDES

In this section we give a formulation of the crossing rela-
tions for helicity amplitudes, which is appropriate for the derivation
of asymptotic formulae. We shall do this here by modifying those cros-

sing relations, which already exist in the literature 7)’8).

In carrying out this modification, we follow throught the
notation and method of the paper by Trueman and Wick 7), to which we
refer as T.W. These authors consider the s +t crossing relations,
i.e., they derive relations between the analytically continued s chan=~
nel c.m.s. helicity amplitudes G {'XE and the t channel c.m.s. heli-

S
city amplitudes F \ } in the physical region of the t channel.
Although, for conventional reasons, we are more interested in the s¢eu
crossing relations, we keep for the time being to this set  crossing.
The s¢u crossing relations can readily be obtained at the end, essen-~

tially by relabelling the particles.

Since Tae final result depernas crivicaliy on thne patn os
continuation, we start by recalling how T.W. make the analytic conti-
nuation of the amplitudes G{}} . Their path starts in the‘physical
region of the s channel, approaching the real s axis from above
(outgoing wave condition). Since u, although allowed to vary,
always stays real along the path, the variable t starts off approa-
ching a point of the negative + axis from below according to the
constraint (II.8). TFurthermore, the T.W. path intersects the real
s and t axes (better : the real s t u plane) and ends up in the
physical region of the + channel approaching the real  t axis
from above (outgoing wave condition in the % channel). Consequently,
the variable s, which in general is negative in the physical region
of the t channel, approaches the real axis from below. Although
it would require at least a three—dimensional diagram to picture this
path, it suffices for our purpose to indicate it as path T.W. in the
complex s plane of Fig. 2 (in the case of mazmb:}& 5 mozmd=m) 3

a more correct picture is given in Fig. T.W. 1.



10.

The T.W. path intersects the real s t u plane (tho real
s axis in our Fig. 2) at a point such that the path does not end up
on an unphysical Riemannu sheet ; this is discussed at some length in
T.W. We now argue that at this point, and in a region of the real
s t u plane around it, the helicity amplitudes for parity-conserving
reactions are cither all real or all purely imaginary, depending on
whether the relative parities in the initial and final states are the
same or different. This is immediately clear for pion-nucleon scatte~-
ring, treated explicitly in T.W. A proof, valid for parity-conserving
processes in general, can be based on the expressions for the heiicity
- amplitudes in terms of invariant amplitudes (seey, cegey the discussion
resulting in Bq. (3.2) of Ref. 17)), combined with the observation
that the intersection point (tacitly) is chosen in a region where the
sc§ztering angle GS is real but the = :2?nne1 Celle Se mqmonta

kg and ﬁ% are purely imaginary

To summarize, along the path T.W. all three variables s, &
and u vary, subject to the constraint (11.8), but only s and %
take complex values. At the (unphysical) point of intersecetion with
the real s t u plane, the helicity amplitudes are either all purcly

imaginary or all real.

The resulting s&t crossing relations between the analy-
tically continued s channel c.m.s. helicity amplitudes (}{AK

and the physical t channel c.m.s. helicity amplitudes E‘&XS read

(s,u) =
C;)‘b)\cﬁjkakc

X—-x; S, Sy
".'_ (_)xq‘ )‘b IZ,)\(") < . C’X \ (Wa) . C}AB) (’L{/b\ .
No AT A ta b
IIT.
S . Clsd ( ey
dexe Yl S Y %} N xét’ “b .

~

65/1781/5
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1.

Here we have introduced the symbol "=", which we shall
often use, to mean "equal apart from a phase factor, which only depends
on the spins and the intrinsic parities but not on the helicities
see remark 3 at the end of this Section. Furthermore, the crossing
angles ‘u’a’ etc , entering in the rotation coefficients dsﬁa Ne? ete,,
are given in Egs. (T.W. 42-43) with the following identification

7.W. notation W, Y, X, %4 )»1/1 Ty, O

Our notation -’!,/6\ ’lyb W, Y Mo, M W, M, é)é

Equation (II1.1) differs from Eg. (T.W. 41), with respect to
the phases (apart from the notation). This has the following explana-
tion. Since in our future applications we shall need the st cros-
sing relations as well as the s*u ones, we found it inconvenient
always to have to specify which particles are chosen as "particles 2"
for each particular reaction, as is necessary if one adopts the T.W.
phase convention, being the same as in the original work by Jacqb and
Wick 1). We therefore decided to omit the phase factor (_)sz— 2 in
the definition of a 'tWO-par‘ticie helicity state in Egs. (13-14) of
Ref. 1). It is this new phase convention which causes the difference

between our Eq. (III.1) and Eq. (T.W. 41). The further consequences

of our redefinition of the phase are listed in Appendix A.

So far we have only reviewed the treatment in T.W. Therc are

mainly two reasons why we have to modify these crossing relations :

a) We want one of the kinematical variables (the variable u
in the set crossing) to stay constant along the path. This is
impossible in the T.W. prescription, since for large enough valucs

of u, the path-would end up on an unphysical Riemann sheet.

b) For the application of the Phragmén-Lindeldf theorem 2)’3)’4)’

5),20)

, which uses analyticity in the upper half complex s plane

to relate the boundary values of an analytic function K: one of the



12,

helicity amplitudes, which from a) now is a function only of s:]

on the positive and ncgative real axis approached from above, the

path of continuation must stay in the upper half s plane.

In summary, we nced the continuation for constant u along
the path B.S. of Fig. 2.

To derive the crossing relations for this path B.S. conti-
nuation from the T.W. relations, we need a connection between the
boundary values of G‘)X on the negatiﬁe real s axié, approached
from above and from below (cf. Fig.2) ; for the time being we noglect
the condition a) above and suppose that u varies in the same way
along path B.S. as along path T.W. Now, from the previous discussion,
the functions G y4 (or the functions i'G*kk ) are all real at
that point, and in its real neighbourhood, where the T.W. path inter-
sects the real axis. For the sake of argument we assume G{X} to

21).

be real Then we conclude immediately that all G{ - arc

X
real-analytic functions on the physical Riemann shcet, iJe., that for

arbitrary complex s and wu on this sheet

%
[C;(&*,M”)j = G (s,u)
1y {8y KR

(111.2)

where a star denotes complex conjugation. In particular, for u real

and € > 0 tending to zero

)\(S-{Elu\) ,

[Cﬁ£5+4€Lq] :(:&1

(111.2')

which is the desired connection. We find therefore that thc crossing

relations for the helicity amplitudes with the analytic continuation

along the path B.S. are obtained from the T.W. relations (III.1) simply

by rcplacing G T\ (s,u) on the left hand side by G*&AX (s5u) »

65/1781/5
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Finally, the condition a) for the path B.S. may be restored,
since for the continuation of s in the upper half plane nothing prevents

u from staying constant.

Instead of deriving the crossing relations for the helicity
amplitudes in our conventions via the T.W. crossing relations, one may
of course redo the whole proof of T.W. using our conventions. Appendix

B indicates this derivation.

The crossing relations are now essentially in a form suitable
for our applications. Howéver, we shall in fact need them in our conven-
tions for the s¢>u crossing. This modification is mainly a matter of
terminology although some éére concerning the phase féétors is required 3
observe in this context our definitions (II.13-15). The resulting
crossing relations between the s channel c.m.s. helicity amplitudes
G Wy ccontinued along path B.S. of Fig., 2, i.e., in the upper half
s plane now for constant value of % 22), and the physical wu channel

CeMeSs helicity amplitudes H {)X y Tread 2

* .
(5,¢4) =
My >d} >\c,)‘c

- Aa~rd XE->; s — s —
= (-) Z‘% (-) NN CAR a/);/\bc%)-
A

)
1

X
]z

LI
a_

A gy A 7). b G
'\C)\c Wc) c)‘d)‘é‘”f)cl‘) H)\a )\;) xg )()(ul )'

The crossing angles here are given by [@bserve the notation
(11.15) end (II.18)_}.
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'/5 5 Y —
A (.S/’VV\O”"V\CD) ')sﬁujwflwz] veey Y, <

4 k! 2 Y L
= —(S+m, -—m:]-(u-r m,‘*mj)*ﬁ'ma-(mn-»m:-m::wj )
/ﬁ 1 o
\ Q 5 a .
)\ (S/M’\b,"’hd)l }\ (Mjwbﬁ"’\'y\a\)tmwb?—

= - (S +m 2w ) 2 b 2 b ?
o (o m () +Zom, (mem=m =) )

iy 2 L i, 2 2 -
A (.S/WC,”‘\“)I )Q(M/"‘“c:wla)' w3 Ve =

- 1= 2 2 2 1 1
- (.S“'M‘ MA)-:(M—}'\V\C-umb)*ka.mcﬁ.(wa*mb—’\‘nc -WG“Q‘] ,

i, 2 ) ) -—
A 2(S my ) A 3(u,~n;) w e Yy

2, 2y L2 2
T S+ - ) sty 'MA) +g%d'(mj*m:-m‘1-mj) )

PUE K R, s 21 .
[U")‘('S/’ma JW‘C)] ' S“M% =MG'A (M/Mbl""c}' Su\m@ﬂ
{

> - /
[‘U')(‘S; WU:IM;)] 'thrwb'xz(u/q“:/hc})'s";’eu )

)

R~ '/.3 - - s 2 2 :

[ur M, w2 ] ™ s = mg ) (1,mg ™) sen,
Y. - !
2 > - /

(III.4-a)

(111.4-Db)

(III.4~c)

(III.4-4d)

(I11.5-2)

(III.5-Db)

(II1.5=-c)

(III.5-4)

The high energy limit of the expressions, which we need in

thé next Seétion, is readily derived.
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The crossing relations (III.B) constitute the main result of
this Section. We finally add a few remarks on their derivation, before

we apply them in the next Section to obtain asymptotic formulae.

1) Our fifsf remark concerns the analyticity properties of heli-
city amplitudes 17)’24). These amplitudes may be considered as linear
functions of certain invarient amplitudes (cf. for instance the
treatment of pion-nucleon scattering in Appendix B, subsection c),
assumed to be free from kinematical singularities. The coefficients
in front of the invariant amplitudes are known functions of the
variables s, t and u. But even if the invariant amplitudes have
a simple singularity structure, as given, e.g., by the Mandelstam
rebresentation 15), the singularity structure of the helicity
amplitudes is in general very complicated. This forbids our writing
dovn any kind of simple integral representation for the helicity
amplitudes. However, it does not prevent us from using assumed or
real knowledge on the analyticity domain of the invariant functions
to establish an analyticity domain for the helicity amplitudes, the
physical values of which are obtained as the values on certain parts
of the boundary of this domain. It is only this fact we have used

above.

15)

2) In the T.W. derivation, the Mandelstam representation for

the invariocat eapnlitudes was assumed., In our approach, resulting in
BEq. (III.3), we may relax upon this condition slightly. What we
need is the analyticity of the helicity amplitudes, for fixed 1,

in a domain which is the upper half s plane minus any bounded
region of it ; in particular we require the analyticity domain to

be bounded by the positive and negative real axis outside a suffi-
ciently large semi-circle centred at the origin. We note in this
context that for scattering of spinless particles such an analy-

ticity structure has in fact been derived from field theory 25).

65/1781/5
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In the T.W. proof of the crossing relations there remains
anvoveraall, hélicity-independent phase factor undetermined, sym=
.« This is so becausec in

the actual proof the step taken from Egs. (T.W.29-30) to Eqe(T.W.31)

HES

bolized in our eguations by the sign

(in our Appendix B from Egs.(B 16-17) to Eq.(B 18)) simply cannot
give.the phase. 1In fact, from this proof, one cannot even decide
whether the unknown factor has modulus one ' This drawback can be
overcome by observing that Fqg.(T.W.31), or our Eq.(B 18), is nothing
but a substitution law for helicity amplitudes. Assuming necesgsary
analyticity properties, such a law can be proven, including all
factors, using reduction technique ; in particular the proof

shows that the unknown factor necessarily has modulus one. Concer-
ning the ambiguity in its phase we shall not be concerned with this
question here, however important it may be from a fundamental point
of view, since in the actual applications this ambiguity either
does not matter or can be settled for each particular reaction from

other arguments.
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IVe- ASYMPTOTIC RELATIONS BETWEEN THE HELICITY AMPLITUDES IN
THE DIRECT AND CROSSED REACTION

In the preceding Section we have derived the crossing rela~
tions for the helicity amplitudes. We shall now use them in order to
obtain asymptotic relations between these amplitudes. The assumptions

2)43)y4),5)

we need are standard one requires the amplitudes not to
oscillate for energy tending to infinity in the pliysical regions of the
s and u channel, and also that they are bounded by a power of s in
the upper half s plane. DMore precisely, we can list the assumptions
in the following form : |
Assumption T The helicity amplitudes are, for + fixed in the
physical region, analytic functions in the upper half s plane,
obeying crossing relations given by Eq. (III.B) of the preceding
Section. PFurthermore, they are continuous along the real axis and

bounded by a power of s 1in the upper half s plane.

égggggﬁigg_l; . Por t fixed in the physical region and the energy

tending to infinity, the helicity amplitudes for the direct and crogsed

reaction can be represented by asymptotic series of the form

XD
’7 (;}

_ ay
C".U\j(sf'” T2y S [y, - f] ' L“?} e'“"] ((1v.1)

h-,

" s |
H{/\k “, b= L L‘m' +}'[(~3u;‘3—’]1 I-Ma((/aau- ].,,,(Iv .2)

We prefer here the variables s, and uy [ see Egs. (II.9-10) for
their definitioné] to s and u in order to simplify some of the
subsequent equations, the point being that the condition (II.11)

implies the very simple transformation 8y Uy = —s; under

65/1781/5
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crossing s & u., In EgSs. (IV.1-2) we assume the functions

78 = D, WD, e

all to be real, implying that the amplitudes ¢ O

do not oscillate as the energy tends to infinity.

) _ () () 1 Gl
oy ﬁm(”/ L‘m‘ kmm )

may, in general, be complex. Finally, we assume

- > - -
dJ 2> da” )
if da' = c;’a*_,_' we further require

IO TR

etc.

and H{M
The functions

(1v.3-a)

(IV.3=D)

(1v.3-c)

Under these assumptions one is now able to prove that for all

obeying the inequality

CXO - Olé < il )

(IV.4)
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there exist, for parity conserving reactions, the following simple
relations between the expansion coefficients
(3) L\(i)
Sy

of Eqs. (IV.1-2)

*

~

) () ~ 4774
\ = ) 3 .
%MM;/\Q)\C k’}’\\d)"‘)‘b\ e 4,{ o{a—ddrz 1 . (1v.5)

(4

The proof of the formulae (IV.5) proceeds along very similar
lines as the proof for the spinless case 2)’3)’4)’5). Therefore we do
not give it here. We emphasize that the relations (IV.5) are valid only
under the condition (IV.4). TFor higher terms in the expansion corres—
ponding relations still do exist but they are more complicated. The
reason for this is that the crossing relations for the helicity ampli-
tudes are diagonal only if Eq. (IV.4) is fulfilled ; otherwise they
mix together different helicity amplitudes. Probably, a more suitable
choice of amplitudes could simplify the formulae also in higher appro-

ximationss

65/1781/5
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Ve SOME APPLICATIONS OF TIME REVERSAL AND CHARGE CONJUGATION
INVARIANCE

The asymptotic formulae derived in Section 4 relate the
helicity amplitudes at high energy for the direct reaction (11.1)
and the crossed reaction (II.2). By invoking invariance under time

reversal, we may relate the helicity amplitudes

}JCT) (T)
for the process
a +cd > b +c¢ (time-reversed crossed reaction),

(v.1)
to the helicity amplitudes

o = H
9N AZ )\ci; )‘E >\c
for the crossed reaction (II.2) ; application of Eq. (A.9) gives imme-

diatly

= () .2
M e g TPVESTIVE (5-2)

}-’/(T) _ )‘E’)\c"‘ )\;\+Ad H
Together with the asymptotic formulae (Iv.1-5), this equation
establishes a connection between the helicity amplitudes for the reac-

tions (II.1) and (V.1) at high energy.

In an analogous way one may derive relations between the

helicity amplitudes for the crossed reaction and the amplitudes

) _ 4, €c)
Hin = HAQM,’M)?

for the reaction
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b+c =5 a + (charge-conjugated crossed reaction),
(Ve3)

if charge conjugation invariance is valid. From Eq. (A.11) we get
T s X0, H
_ S A, M C(V.a
Aa)‘d,)\b)‘sz o 'h Te Vo /\C )‘G')J-%“)>B=>blh9:)2 ; ( )

where T; is the charge parity of particle a (or a), etc., for

the other particles.

Finally, invariance under C.P.T., i.e.; combination of charge
conjugation, parity and time~reversal, may in an obvious way be used

to get relations between the helicity amplitudes for the reaction

o+ gl — h + (CeP.T. reversed crossed reaction),

(v.5)

and those of the crossed reaction,
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VI.- SOME APPLICATIONS OF THE ASYMPTOTIC FORMULAE

So far we have developed a rather intricate mathematical
formalism. What, then, have we gained from this work in terms of
physical insight ? We would like tc¢ end this paper by pointing out
in answer to this question, some applications of the derived formulae.
However, the detailed applications, studying particular reactions, re-
quire papers of their own and will therefore be postponed to subsequent
publications, in which we shall treat pion-nucleon elastic and charge-

exchange scattering 13)

collision 14).

and vector meson production in meson-nucleon

The first and obvious conclusions one can draw from the
asymptotic relations between the helicity amplitudes for the direct
and crossed reactions as given in Egs. (IV.1—5) is the asymptotic
connection between the differential cross—sections for the two processes.

From the definitions (II.17,19) we get immediatly

~

| J | :
Lo (330 22050y = Lo, (351,”)'%(5,%}

S +o0 { S+ o

6}4&,‘4 . {W (VI-1)

6)

This is then the generalization of the Pomeranchuk theorem
to the differential cross—section in collisions of hadrons with arbi-
trary spins. By applying the relations (V.2) and (V.4), further simi-

lar relations are easily derived.

Besides the asymptotic relations for the cross-sections, one
may also be interested in analogous relations for different kinds of
polarization parameters. All such measurements are most conveniently
expressed in terms of spin space density matrices, in our approach

referred to the helicity basis. To give an example of the procedure,

65/1181/5
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let us compare the helicity density matrix S))‘d )c,'f‘ forl)article

d in the dircct reaction with the corresponding quantity ?)\d)é!

in the crossed reaction, assuming the initial states to be unpolarized
and parity to be conserved. From their definitions these density
matrices are, if we impose the normalization that the traces should

be unity, given by

¥
I ' b= Ls C’ ) "L
° ?"d A A Mo he oAy Aa N /\b);; )«ch ) (Vi.2-a)
- = 3
= | & |
16 /\L:‘)\b Xb)d/' Aﬁ xc‘ ? S (VI.Q—b)
A Ao

I"' ?XA )'d‘ - Z H)\;;%d/")\g}; H

Axgh,

¥

' (VI.3-a)
)‘5 >\d ./ ); )‘c )

™

2
- } H)\a\‘)u;}\g)“; ‘ . (VI.3-b)
y

L -

e
~

In the very high energy limit, only the first terms in the
expansions (IV.1-2) necd to be considered and thcy give limiting values
to g ; ? which satisfy, from (IV.5)

(o e\,ﬁ; = lia

!
E-ob iE > on ?)‘a Ao (vi.4)
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In particular, the polarizations Pn and §n along the
scattering plane normal, defined in Egs. (I1.13,15), are given in

terms of the density matrices by

"
oo e v 2
I, % [ (s, ena) (5= 0] J'M(?M-mﬂ ) (71.5)

py 5 | Vﬁ - o |
Pt ¢ ' - -+ ¢ )
ph Z,\; [ Sy +3g) (Sg= My I\] lw( ?)‘a”'z kd\ N (vI.6)

from which we conclude

e T | - (VI.7)

In a similar way any kind of polarization measurements may be
discussed and possible connections between them for the crossed and

direct reactions may be established.

It should be observed that the relations of this section are
all independent of the over~ali phase in the crossing relations.
Moreover, we emphasize that the connections (VI.6, 4 and 7) are derived
taking into account only the first term in each of the éxpansions
(Iv.1-2). 1In the present day experimental situation, this does not

seem to be a good approximation 4)’10).

On the contrary, at least a
second term should in general also be taken into account. It is in

this respect that we hope our fofmalism to be most useful. In our
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opinion, the simple parametrization, in terms of the parameters o
(maybe also ® ¥ jeee) g and h of Egs. (IVv.1-2), connected through
the equalities (IV.5), is the main domain of application of our formulae.
We shall ill?;gr?Z§ this point in the forthcoming publications already

9

referred to
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APPENDIX A

SOME CONSEQUENCES OF OUR PHASE CONVENTION FOR A
TWO-PARTICLE HELICITY STATE '

Since for reasons given in Section III we deviate from the
generally accepted phase convention of Jacob and Wick 1) (7.w.) for a
two-particle helicity state, we list here the formulae of J.W. for which
our convention introduces deviations. Moreover, we add the transforma-
tion property of a two-particle state, in particular a particle-antipar-
ticle state, under charge conjugation. To make the comparison with J.W.
as easy as possible, we use in this Appendix the notation of J.W. through-

out.

Thé J.W. Convention Our Convention

a) Two-particle state

< e - e Gee o o ——

(F.W. 13-14) . _
: , ’ L 4(8)
. L = > (&) . ¢ .
=Ny ] _ -7, (4.1)
= e (- N ’ e 4 Q
You, O e WYy ) Yoo, W%agi .

b) Helicity amplitude

Denoting the helicity amplitudes for the reaction a + b—->c + d

by
(JoW. 26=31) E p (A.2)
& 3]
'hc)\d)‘xﬁxb( ) ) : Medg s da Ay f‘P)J
we have
'SJ-A:I Sb‘>'b o~
- (" 4 (- ]
itxcxdjhxb ) &) ’_xcxc‘/' e Xy

(A.3)
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In general, we shall assume the scattering plane to be the x-%z
plane with the y axis parallel to Ba X Bc’ the cross product of the
c.m.S. momenta for particle a and c¢, as we have indicated in Section ITI.

This implies that we have chosen @ =0 in Eq. (A.2).

The subsequent formulae in J.W. up to and including (J.W. 39')
stay unchanged, since they do not make explicit use of the phase conven-

tion.

, ] - )
(F.W. 401) P"f/p)\mg VPN 2
S,rs IR DY ‘:773 s, .S (A.4)
= ) 1, | RS ,.,,
(G ¢ Wono| T T b ¥pr, .-

This means & different over-all phase (-) 2 ; the only essential change,
besides obvious replacements in (J.W. 40~ 41), is thus that ? of
(J.W. 43) has to be redefined :

4 ng ) (A.5)

<JIW° 4‘3) \2(_ ch . 4*5""3 -‘Sb QC Vld -)*S“Sd “sa"'Sb

T M ’ e ‘

For Cp = 0, i.e., the scattering plane being the x-z‘ plane, the

implication of space reflection invariance is thus

F [6 = J) =
(J W 44—) 'f) )C‘J a")b(e ? O)— A >‘|J")a{-)‘b ) ) (A.6)
LD R V0 N - . (_5\‘_)“’ “Aa*Ay F [
= ¢ - < - 9 =
qﬁ “ \f)\;%d} oJE:) ) ¢=0), ?3 AeddjAady ! 6 9).

The subsequent formulae up to and including (J.W. 44") remain unaltered.
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d) TIdentical particles

——— -t o a o ovn -

(J.W. 45) Plﬂ VP)\,)?L = lelq))?"ﬁ)‘ﬁ = ( )
i;—-)“-&vAQ ) ‘,‘,] ﬁs “ﬂ'] Ao7
- (- . 2 .\laa - , " ‘a
) ¢ Vo, =€ W,
(T.W. 46) RQIJ;N;;\“)'Q>= p«s_‘l'“/‘ \1/\2>:
195 :’-—33 +)\1-')«_1 (8.8)
=V AT NS =(-) AMANS

There is also a corresponding change in (F.W. 47-48).

e) Time reversal

The Egs. (J.W. 49-55) stay unchanged. For completeness we quote

here the implication of time reversal invariance for the relation between

5/1781/5

the helicity amplitude% F-)‘c)djv)‘; Ao for the reaction a + b—-c + d
< . : .

and the amplitudes FAc\N, s Xe \cl for the time-reversed reaction

c+d-a+b [cf. Fog (JuW. 55) |, if time reversal holds :

(T) xc’ >‘=‘ - >‘a *
F -) °.

) - (4.9)
AaXp s h 8 LIPYIDIO T

a result which is equally valid in the J.W. convention. We have here
adopted what we think is the most consistent definition, namely to define
the y axis in the c.m.s. of the reaction ¢ +d —a + b to be parallel
to 30 x'_ﬁég i.e., opposite to the y axis for the J;eaction a+ b

c + d.
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f) Charge conjugation

- e - . —— o W S Gy B0 op O

With the antiparticle of particle 1 denoted by T, etc.,

the effect of charge conjugation C is, for both phase conventions,

C Yprn,ha) = vy VoL, ) (4.10)

2

where U1 and 5-2 are the charge parities of particles 1 and 2,

respectively. In particular, if 2 = 7, Eq. (A.10) reads

C?PNMT(I,I) ~ wph,);(izl\ =

dg
= ()

(A.11)

1

P v o (ETY

where 51 is the spin of particle 1 and where P1 7 is the operator
9

interchanging particles 1 and 7T. The corresponding transformation of

the partial wave helicity states is readily obtained [@f. Egs. (A.7—BI].



65/1781/5

31,

APPENDIX B

CROSSING RELATIONS FOR HELICITY AMPLITUDES CONTINUED
ATONG A PATH IN THE UPPER HALF s PLANE

We give here a direct derivation of the crossing relations with
our conventions for the analytical continuation, i.e., having the path
entirely in the upper half s plane and having u fixed (in the s -t
crossing), as explained in Section III. The proof is copied from the
proof of Trueman and Wick 7) (r.w.) ; to facilitate comparison with T.W.
we adopt throughout this Appendix the notation of T.W. Only those points
in the derivation, for which our convention gives rise to changes, will

be indicated.

In the formulae below it must also be noted that our choice
of phase for a two-particle helicity state (see Appendix A) deviates from
the one of T.W., the latter being the same as that introduced by Jacob
and Wick 1).

As in T.W., the only case we shall treat explicitly is the one
in which particles a and D of Pig. 1 are spinless ; moreover, the
masses are assumed to be pairwise equal : m, = My =M m, = my = Mo
The geperalization to all particles having spins and to unequal masses

should be obvious.

Besides the relations already given in connection with

Eq. (III.1), we have

T.W. notation & P A M € T 5, Si 4 Yy Pr Pa

a

: : I ! ! |
T.W. notation G759, 9, :-Q2 p,=-P, P; = p, ‘gi& ;S;
Our notation Pa - Po ~ Pc Pe) }\(s/m:/m:) Als, 'm:l m:j )

our notation A, Ay A, Ay Sa Sy S Sa kR, Rk Ry
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b) Continuation of kinematical quantities

e e e e

Defining all roots of positive numbers to be positive and
letting an arrow provisionally mean "contlnued along the path B.S. of
Fig. 2 to the end p01nt" (note that our conveptlon is to have u fixed

along the path), we find

/5 = VT VT

Tt — - VA ) (B.2)
S —--5 )
AT F e

|/ - v .
d;t 7 L | ‘ (B.5)

(B.6)

(B.1)

WD

anls — g PO @)

Here, Eq. (B.4) refers to the'discussion in T.W. of Egs. (T.W. 23-24).

To arrive at the correct signs in Egqs. (B.6-7) it is essential
to observe that @ of Eq° (T.w., A 3) is defined entlrely in terms of
the vector components, the continuation of which are glven also in our
conventions by Bq. (T.W. 17) ; therefore we, to00, have~,¢ = -2E p q sin et
as in Eq. (T.W. A.5).

..._..._.—---—-_.—-.——_———-—_—_—_—-————..——_.———_-h--..._

v Tet the s channel scattering amplitude for M N elastic
scattering be ﬁ(p2) T u(p1) where, as in (T.W. 1),

65/1781/5
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Ts lisuy=z - F}(s,u)-&s.j;,»;y(%-l,.,?ﬂ).g(siu) ) (B.8)

In the t channel (frM - ni), +he amplitude is ﬁ(pz) T v(P1) where

T = Tltu) =- ﬁ(tuhé—; iv(9,7Q) Bt (8.9)

(cf. Bq. (T.W. 17) and (T.W. 22') for the notation). Choosing the Dirac
¥ matrices to be Hermitian, we then have the following connection
between the values of the functions A and B at the end point of pati:

B.S. and the invariant amplitudes in the t channel 27)':

¥ " - -
A (SJM) = R{{,u) /: B*($,H\ = B(t)“) . (B.10)

As usual, a star denotes complex conjugation. We emphasize that the

value of the variable u stays constant during the continuation.

By repeating the derivation in T.W. leading up to Eq. (T.Wa 1%)
and observing Egs. (B.1-7,10), we find for the values of the s channel
c.m.s. helicity amplitudes G)n) (s,u) at the end point of path B.35. in

Pig. 2, neglecting an over-all factor i,

G-}*(SJM]& S A }‘_'_'(i,u) + o A - F_"_(tu) ) . (B.,7%a)
C;1*- = - F (1 (B.11D)
_(.SM\: mi»l"_}_’“‘,ux-wy( _ !M)) \DBe il
tafv = q ¢ (Ba‘.‘b

)

where F/ﬂk (t,u) are the t channel c.m.s. helicity amplitudes.
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Equations (B.11) are the deblred crossing relations for the
helicity amplitudes in this partloular ‘case, We note the similarity
between our formulae and (T. W 11 13), the only dlfference being that,
due to our path B.S. contlnuatlon as manlfe%ted in particular in Eq.
(B.10), the amplitudes G

rison it should be observed that the dlf’ferent phase conventions cause

enter complex conjugated. In this compa-
no trouble due to the particular choice of "particle 2" made in T.W.

4) "Geometricsl! derivation of the crossing relstions
To give a derivation of the crossing relations valid for any
spin we follow T.W. and continue the s channel c.m.s. helicity ampli-

tudes by writing, as in BEq. (T.W. 20),

(B.12)

(s,u <) ‘(["p ‘G Py ‘ .,
N v) )‘Z’; u/‘/‘ p 4) G’/‘Lx. P 32 ) P?ﬁa) u/\'}\(pw‘ep]

Bach factor in this equation is then continued separately.

Consider first the "generalized" helicity amplitudes
,\) (pz,q2 H p19q1) To continue these quantities, we use the second
argument of T.W., i.e., the one starting at Eq. (T.W. 25), and write

c',u',\’( f Pfu (-?a /"«(-P”/(:?’\:“

3 y (B.13)
:Lu. ( _;-Pa) C\/AX(P;,‘?}Q/P,,?) u“ Pw’é)
where /{ is an arbitrary, real Lorentz transformation, which is kept
fixed along the path of continuation. The relation corresponding to
(T.W. 28) turns out to be

¥ : )\—/\ -4

Mxx(m;f)——éll (= L 1\ Lﬂufj ;E:)‘: (B.14)



35.

To arrive at this result it should be observed that the rotation angles
involved often may be expressed directly in terms of the three-vectors

(scalar or vector products) and that, consequently, the continuation of
these angles follows directly from (T.W. 17), independent of the parti-

cular path of continuation chosen in the s plane.

Furthermore, for the uncrossed particle, i.e., particle d of

Fig. 1 in the s — t crossing, we have

N -1 Y} i

(/,t/,l/‘(j'jpﬁj*)' (/{/A/.A(jjpﬁ =p,) = (- }A/‘ u F’) (5.15)

from the properties of rotation coefficients. Thus, instead of Eq. (T.W. 29)

we get at the end point of the continuation along path B.S.

E - Py : -1 -1
G/»A,(j P:)*IQ:;;"‘} Ei)’g ?7) |
(B.16)

Vo O AAep - - o :
:LM //\’[/f r_“’,’Pa)'U)a)U,'F,)'Cﬂ ,(pQ,—Q . P 31)’

#A BV AVARE PN B

Comparing this relation to the transformation law for the .t channel
"generalized" helicity amplitudes

P AR g, 47, =

/‘ ! .
_ o | . (B.17)
= o
}.)‘ M/u/‘ zPa\ U/H 4; P) (Pj, /%JQJ}/
iEbserve the difference between this formula and Eq. (T.W. 30) due to

the different phase conventioné] we may conclude, as in T.W., that if

there exists a direct connection between o*

PN and EP‘X it must be;,
apart from a helicity independent phase factor, which in this treatment

remains undetermined 28)

C’ [PQJ Qa;"Pv)?*}v% (_)/M

s /x Ffu /‘5;1} ) (B.18)
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: . z
or, since we assume parity conservation, from Eq. (A.6) 2)),

e

* —
C" (PQ,;Qﬁ;“EM?ﬁ\:—: j—/‘-,-)(Pa,P1,' %1)Q3\ . (B.19)
I+ remains to consider the continuation of the rotation coeffi-
bients in Eq. (B;12). Since at every stage of the continuation the four
vectors ;}, 5}9 52 and E; may be assumed to lie in one plane, which
we have chosen as the x-z plane, these coefficients depend only on one
angle each, namely an angle of rotation around the v axis.' We denote
this angle for particle ¢ by %*; for particle d by L. These
primed angles are defined in the same way as the corresponding unprimed
angles in T.W. as long as the two velocity points ©C and C in T.W. (see
Fig. T.W. 4) are éonnected by aAreal Lorentz transformation. Due to
different conventions concerning the analytical continuation, however,
the final values of the primed and the unprimed angles may differ (see

Egs. (B.20,22) below).

Since the rotation coefficients in Eg. (B.12) then are real
at the initial and final points, the complex conjugation causes no
trouble ; we may simply disregard it. The values of the crossing angles
X{ and 7(é at the end point of the continuation require, on the other
hand, careful examination. Consider first the cosinus. The expressions
(Tr.W. 34) remain unchanged, since they refer to the case when the two
velocity points O and C of T.W. are comnected by a real Lorentz trans-
formation. Observing the Egs. (B.3—4) and their generalizations to

unequal masses we then find, at the end point of path B.S.,

J

cn AL = Ty Ay 5 (B. 20-a)
!

cmxi = = ey 7(_qt ) (B. 20-b)

where the expressions for the unprimed angles in terms of the Mandelstam

varisbles and the masses can be found in Eq. (T.W. 42).
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As to the sinus of the crossing angles, finally we observe

that Bq. (T.W. 37) may be written

S (pid =)

Yy

, ? .
s ¥ 2 dmp [CRI G ] e (B.21)

- -
where g; is the unit vector parallel to the normal Py, X dy of the
previously defined =x-z plane ; g} is invariant under the continuation.
Continuing Eq. (B.21) to the end point of path B.S., observing Eq. (T.W. 17),

we now obtain

"4 1 (B.22a)

' ¢ 4 .
Sam 7(_5 - San X (B.22b)
2)

where ein ¥ 4 and sin X‘Z are given in Eq. (T.W. 43).

Collecting all results we find that the final value of the
anatically continued s channel c.m.s. helicity amplitudes G ,, (s,u),
in the path B.S. continuation of Fig. 2, is related to the t channel

c.mo.s. helicity amplitudes (t,u) through the crossing relations

P
M

#x (B.2%)
=) 5 -clfcx),d“s’(;(')af:,,(m)

o ta) ey A By
To obtain the second equality in Eq. (B.23), we used the symmetry relation

Sﬂ ’ ‘ SQ-‘*/}’
i Tr+ A = (- . , :
o(/‘/“(’ a) = () LwlAa) | (B.24)

for the d-functions,
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By evaluating the crossing angles as in Eq. (T.W. 38), we
rediscover Eq. (B.11) from Eq. (B.23).

The crossing relations in the general case of unequal masses

“and all particles having spins are feadily obtained'(see Section III.).
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E. Phragmén and E. Lindeldf, Acta Math. 31, 381 (1908) ;
Cf. also E.C. Titchmarsh, '"The Theory of Functibns”, Oxford Univer-
sity Press (1952), pp. 176-186. '

Since the crossing relationms are Up to a common phase equalities,

this does not 1imit the proof.

This value of +t should of course be in the physical region of

both the & and the u channel.
2 A

Observe that the use of the sign £ allows factors like (-) 2@

s to be discarded.

Ting Lie Chau Wang, "A General Method of Constructing Helicity
-Amplitudes Pree from Kinematical Singularities and Zeros",
UCRL-16240, June (1965), and Phys.Rev. to be published.
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25)

26)

27)

28)

41.

J. Bros, H. Epstein and V. Glaser, Communications in Math.Phys. 1,
240 (1965).

In this proof one also sees where assumptions like parity conserva-

tion and time-~reversal invariance enter.

Cf. the corresponding relation for the s — u crossing in
Ref. 2)’3).

See remark 3 at the end of Section III.
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Pigure

Pigure

1

2

43

FPIGURE CAPTIONS

I1lustrating the notation for the reactions (11.1-3).

The path of continuation in the complex s plane used

in the derivation of the crossing relations for helicity
amplitudes in the Trueman-Wick conventions 7) (path T.W.)
end in our convention (path B.S.) for masses m = my = fk,

mC = md = m. See the text for further details.



FIGA

s-plane

FIG.2

P/65/344



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

