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ABSTRACT

The joint decay distribution for reactions like K+p —-» KXN¥
and '§p —» T¥N* is derived in terms of the joint spin space den-
sity matrix, using helicity formalism.  The predictions of the pe-
ripheral model for these distributions are briefly discussed, and a
general test of the peripheral model is given for the case of pari-

ty violation in one of the decays.
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INTRODUCTION

In recent years, considerable progress has been achieved on quasi-two-
particle reactions in which both outgoing particles are unstable. Examples of

such reactions are

K'+p— '+ A (1)

K4 p—> KX - N¥ (2)

bf5 -+-f> .;_5, }J:g + ﬁj*a | : (3)

Prp— A+ AT " (4)

Once the spins and decay properties of the unstable particles are known,
the angular distributions of their decay products provide valuable information on

the production process.

The joint decay distributions for reactions of the types (1), (2) and

1)

gave the separate decay distributions of

5)

K¥* and N¥, using the helicity formalism. Li and Martin
decay distribution for reaction (2) in the case of vector exchange.

(4) have been derived by Byers and Yang °, Schlein 2), and Durand and Sandweiss

respectively. Gottfried and Jackson 4)

finally gave the joint

Here we shall derive the general formulae for the joint decay distri-
bution for reactions like (2) and (3) for unpolarized initial state and fixed
scattering angle, using the helicity formalism., For reaction (2), the result is
of course equivalent to that obtained by Schlein 2 , but it seemed worth while to
reformulate the problem in the helicity formalism and using co-ordinate systems

4)

appropriate for the comparison with the peripheral model °,
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2.

It is élear that by considering the joiht-deéayvdistfibution one can get
more information than by studying each decay separately: the latter précedure
determines 6 production parameters (3 from each decay), while the former gives
1% additional production parameters 6 (a production parameter is a bilinear com-

bination of production matrix elements).
The plan of the paper is the following:

In Section 2 we present the general formalism which then is applied to
reaction (2) in Section % and to reaction (3) in Section 4. Section 5 treats a
different problem, namely the predictions of the peripheral model for the produc-
tion parameters, In the case of reactidns like (1) or (4), a test of the peri-
pheral model is given, independent of the quantum numbers of the exchanged parti-

cles, This is a test on the phases of the amplitudes.
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2,  GENERAT, FORMALISH

a) J01nt dens1ty matrlx

- e = e E e

The processes to be studied are of thebgeneral type

a-:b——bc-l--c‘ y

where a denotes the incident particle and b the target proton.’

Se

Particle "4

is the outgoing isobar, while ¢ represents the vector meson in reaction (2) and

the anti-isobar in reaction (3).
to which we refer as JW.

are denoted by
<)\()\JIT(XH>\°>\5>

where x is the cosine of the cms production angle.

From parity conservation, one has (JW-44)

: )\C'A,: “, +>\
(=X =2l T - )Q,~xb/ n-(-1) ®

where 71 =*1 is independeht‘of the helicities,
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The production amplitudes in the helicity representation

(6)
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Next, we choose as spin quantization axis (z axis) for  c .the direction
of the momentum of a din the rest frame of c¢. The y axis is taken to be the
normal to the production plane. This defines in the rest frame of ¢ a right-
handed co-ordinate system which we call the c¢ reference system. In the same
way we define the d reference system as the co-ordinate system in the rest frame
of d which has its 2z axis along the momentum of b in this frame and its y
axis along the normal to the production plane. The advantage of this choice for
the discussion of the peripheral model is explained in Ref, 4). Denoting by m

and n the spin components along the respective quantization axes, we have

{m n‘T(?);' )\QAI;,B =

=2 dm“m 9 ) i

¢ el

4;{);,”(;‘)1}“ M,)/ (8)

5,- A
where S, denotes the spin of particle ¢ etc, The sign (-=1) d ~d in Eq. (8)

is due to the phase conventions Z;%e the discussion following (JW.1527. The angles

appearing in the rotation functions are defined through the equations

t R o= Ve .
4%, Ebh Q(X'1Q)/*O§VQ‘V/ ©

twc/’ V (xA_s-) Oy« T,

(10)
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where Mc’ Ec and v, denote the mass and the ¢ms energy end velocity of parti-
cle ¢, ecte. Note that the quantum numbers m and n in (8) are not helicities,

except for x =1,

When both incident particles are unpolarized, the joint spin dénsity
matrix of the outgoing particles is

gn n -
*
- Z < I TWIAAS ' wITUY X, ALY . (11)
Aa >‘b

From this, the separate spin density matrix for c¢ is obtained by summing over the

magnetic substates of d:

-~

™

7 ™m!
=2 Cun (i

and analogously for the spin density matrix of ‘d alone:

?Y\n' = 2) €V::/ -1{ (13)

We choose the normalization such that

Y nm V. amm N ' |
L fan 220 LR b

mon
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Note that this implies jz fT(x)}“ = 1., This unconventional normalization of T(x)

is used in order to avoid an extra normalization factor in (11) and in some e¥-

pressions in part ¢ below,

Because - ? is a Hermitian matrix we have

, ¥
m v

m'm
?“ﬂ’ - ?h‘h »

Also from Eq. (7) one proves

G ) Tu

This means especially

nm
nn real ,
m - real if 'Z(n-m)_ is
/ o B
%)'n , N purely imaginary if 2(n-m) is odd

b) Decay matrix elements

' ":(15)

(16)

(17)

(18)

Up to now our discussion has. been completély ‘general; noﬁ we haye to be

more specific, We assume that in the decays of particles ¢ and 4,

parity is

conserved, and that each decay is described, in its own rest frame, by a decay
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direction., For the isobar N¥, (particle d) this is the direction of the decay
proton, which we denote by fg « At the same time, >V3 will denote the proton's
helicity. TFor particle c, the decay direction is denoted by é; o The meaning of
this direction depends upon which particle is represented by c. For the anti-
isobar /reaction (527, 6? is the-direction of the antiproton: and ;ﬁi will
denote 1ts helicity. For the decay of a vector particle like K* or the ?
meson, Ci is the momentum direction of either of the two decay mesons, whereas

for the three-pion decay of the s meson, & will denote the normal to the

decay plane., In these latter cases, the index A is of course unnecessary,

o

A A

The angles of (O} ([3) in the c(d) rest frames are denoted by Gd ,
%& (Oﬂ ’ qag). They are deflned as the polar and azimuthal angles in the c(d)
reference system discussed in part a) of this section. The a21muthal angles cp

are equivalent to the Treiman-Yang angles, For the metrix elements
M(O(Q)

of the decay of particle c¢ we then have 4

/

¢ n \ - "'/ A
Mm("“‘fkd‘“ugi,‘ﬁ @nkid} MO (19)

where it is convenient to normalize

S, d
é;)M N = b

4)

For parity conserving decays one has

SC / 5o.:
MR = M) e
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where ?l = i1 _independent of the helicities, Let us further introduce the
vi vquantities, :

S L T M2 TN |

Mm“'(d)z%\‘\ Mm(o(/'kd\”m,(d/'Aﬁ‘) R (22.3)

o

These are elements of a Hermitidn matrix, which for parity conserving decays have

‘the property

I4

¥ Ay -m s,
r75‘ (d):.(—/fm M (a)
: : | ?n m

: /
'YhJM

. . (23)

We also note the following properties, valid for both parity conserving and parity
violating decays, which can easily be'provedfusing Eq, (20) and the properties of

‘the rotation functions, -

7 SC Ay 35(“’/ ‘ . v
%V/mm(o{) = (24.2)

J::/QJ MY @)s S O (26)

. - :
In exactly the same way we introduce the matrix elements Mnd(fB; )»5) for the
decay of particle d; these elements obey formulae analogous to Egs. (19)—(24)

above. In particular, we define
| Sel AN - 37 Ny Sel A Sel | A *
Mnn' (/S) - %—;‘ / lv\ (s ,‘A,&\MM.(/S/' >\(b) - (22.b)
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¢) The joint decay distribution

The matrix clements between the incident particles and the decay products
are now given by

<, x(s)T(x;oz,/’s‘nmp -

- 57 . S A scl A L | ‘ i
pe 2__\ MM (c(/'/\d) }th ([S/' >‘{’3)('m . ‘T("H)‘d)‘b>

(25)

When both incident particles are unpolarized and;thé polarizations of the décay

particles remain unobserved, the cross-section is

dexdf _de pop Wixd g
dx (g c/Q/g dx < ' ‘P}/

(26)

where %g: is the differential production cross-section for reaction (5) irres—

pective of the decays, fﬂc and fﬂd are the partial relative widths for the

observed decay.modes of ¢ and d, and

W(X;J(‘,/E\:- Z \<A<>\|T(’X'J,{?A>\ >\b>lg:

s ’ o
A A :
Xah,
N’ s< ) cl A ™
= L' M ,{d) M , J ?m  (x) (27)
o -
m "
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- -
gives the joint distribution of of and [ ) din the ¢ and d reference systems
defined above.

. . : A . h
By integrating over o , using Eq. (24.p) and the definition (13) we

obtain the sceparate decay distribution for the decay of particle d 4)

) ~ . .
\«/()g[s) = L MM..(P) SJW,,‘(?),;_ oo (28.a)
In the same way for the decay of c:
A — S )
. — /¢ A ™ m
W”/d)-L,”MM.(o;)g (xy. (28.1)
v
Further, by integrating (27 ) over both c? and /:3\ - we obtain
N A0, Wi ig) = 1
,(f o /3 /3 Vs (29)

‘ =
consistent with having split off the factors gx—g, r‘c and | d in (26).
For the rest of this paragraph, we combine the 'indices m and n into
one index i and m' and n' into another index k. e also suppress the argu-

- -\
ments x, o and F) . Then Eq. (27) reads

W = Z_= M{k ﬁ"h”) 1z (m n)) Ik 5 (m'w’r')/

r ? (30)
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(30.&)

Zﬁhe notation g?ik’ which will be used in this section only, should not be con-
fused with the symbol égn, introduced in (13i7. The indices i and k assune
)

(2sC+1)(2sd+1) values cach., The sum in (30) is, however, reduced when care is

taken of hermiticity and parity conservation. Let us write

14

W:A+B; H=L M. B= én’\?""f"? RNCH

The hermiticity relations (15) together with M, =M*, reduce B to the form

R=-9 @[éap%?ﬁ“]/ (32)

where the dash indicates that only one member of the index pairs
. (k,i) is contained in the sum.,
obtain

(i,k) and
Moreover, from the relations (16) and (23), we

(33)

*
M‘ﬂ;-k’ g—-'i/-lq = )\71-}; ?1, k )

65/35/5
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and thus the sums A and B can be simplified further to read

H =4 IZ'!)I Mﬁ A1 / B 4};/{;} Qe[}y{ :} Re[gj h] (34)

Here the symbol - li) in the summation means that only one member of each index

pair (i,k) and (-i~k) occurs in the sums,

The formula (34) gives the desired decay correlation. From this, using
the definitions (19) and (22.a,b), together with the known rotation functions,
the joint decay distribution can be written down for any two particle production
process which is followed by the decay of both particles: through parity conserving
iinteractions. We now turn to this problem for the experimentally interesting re-

actions (2) and (3).

65/35/5
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3. JOINT DECAY DISTRIBUTION IN REACTIONS LIKE K&p —> KXI*

Consider first the matrix elements (19) for the case of vector meson
decay. Because of Eq. (20), the matrix elements are simply the spherical harmo-

.- nics for a p wave :

(35)

The matrix elements of (22.a) are thus products of these spherical harmonics.

‘For the decay of the baryon isobar into a baryon and a pseudoscalar

particle we obtain for the matrix elements (22.1v),
3 |
T — dAan 69
/»733 S{T ‘ fl / (36.&)

M, = %(é*mqé) ,

g I (36.1)
V3 : " P

My = Y $am 4 @/‘ e " ) | (36.c)
.03 - R

Ms,’i Y At *61" e !, 136.0

Here we have introduced the short-hand notation of writing 2n, 2n' instead of
n and n' for the magnetic quantum numbers referring to the isobar. ' The other
elements of Mn ot ere obtained by application of (23) and the fact that

4

ﬂ . : . .
Mn,n'((3> is Hermitian.

65/35/5
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We note especially that
M -n ‘ (36.e)

Inserting (35) and (36) into Eq. (34), we obtain the following explicit expression

for the joint decay distribution in reaction (2) :
\A/(XJ’ é‘,fk‘)‘/éﬂ’a:
=1 + A1e) + A(8)+ (g @P) R(e,, %\+3( @) +

- B(@d'@w v.)+ B(8, Cﬁ,ﬂ . Rlg 6 % C?Q o ,(.3,7)
ALB) = (1- 3ot ) (0" ?o") e (57.2)
A (@ﬁ) = (1- 3 st ) (;33 ‘_ Jp,,;,) " (57.1)
o )4 (13 mlé;) -3 wl@/) (05 - p7) C e
Blox ()=~ 3[&%9 u‘m% Pef /4—\;1/%‘7"90032520\39 :{ (57.4)

B 9/,,)(5(3)5'2'{3' [5.‘,\42 O ol - Relps 5}+wzgp aaaz.y/l Ke (fzJ--»;)] (37.9)
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B(de@ﬁJEf')-'% {//*;Kcmzeﬂ)x
XIUV‘“'\QS W f?e(? )+ ‘/—swé - 59,.](37 )
B(Q(,( 9/ f{)/) = F(// uw*:»zé}d)x

[:SM?Q (/0330/» tg.(’,{fy)-f—ém @ﬁ U?JZ\LJ?/C Re/fg ](37 g)

- B8 g, ) =

=3ﬁ{@29%m29/5[m(%+%) Re@g,, y3f)+wv(5& % JRe(63:-5%3) ]
+<5;}9; gcsz/; [ws(zga %)Ré[ fglf) + s (4 - s) Re( f“% ]
rsondisi bl -2g) Re(537, - 71 ) el R(5 5770 )
0, 506 |l gurg) Re P17 + cen Ge) Re(37%) f (o7-2)
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When appliceble, we have used the reality properties (17) and (18). We have alsc
used, besides the definitions (12) and (13) and the normalisation (14), the abbre-

viations

~1,=-1 o)

—_— e , :
?hm'szﬁ +?“W“'afhnbl (38.a)

/ ’
w W)

"' m m mm' M
o ?‘ﬁ__ ; f 313 +§K§_3‘ 911,-€_L_1 . (38.D)

The splitting of A and B into different pieces has been done in order to ex—
hibit explicitly the angles which appear in each piece. The angular functions in
(BZ.a—h), including the number 1, are orthogonal but not normalized.r'The total
number of these functions is 20, The pieces A(egg, A(6n), B(6 ,@ ) and
B(Gp ,cas) are the ones given by Gottfried and Jackson £3f X
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'17.

JOINT DECAY DISTRIBUTION IN REACTIONS LIKE ;p —> N*IT¥

'I‘he matrix eléments of the decays of the isobar and anti-isobar are given
by Egs. (36) Again we introduce the short-hand notation of writing 2n,2n!
instead of n,n' for the magnetic quantum numbers referring to the isobar, and

correspondingly for the anti-isobar; we also use the abbrevi‘atio,rié [gf. ('38_17

Mol M M ™" Mo
?_ﬁh = f3s ‘Lgtiﬁ‘— Pi1 ~ ﬁq,z ) (39:2)
— 3 1*1‘

,'g)%ﬂl = F’ﬂv\‘. M ()’hw . ‘P‘hh.’ . !..;;.f-(349’b)

From Eq. (34) we then get for the"'joint decay distribution :

Wi d,g) 167 - |
=1+ H8) +H(G,)+HIQ,0)+B(6,¢,) 4

Y BI6,,62) +Blg, o
\ f.JC\%) 8 ,@p)#’%(@dléﬁ (pde/A)/
| | PN “ 33
HO)=(1-3en’@) (¢ - ¢ )) (40.2)
7(@ ) 3 ZENC )(?33 PH} | (40.1)
Alle,,8,) = %‘(I-S@*Q Sm e) - p0) (40.¢)
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B8y, @) - e . o --_!
3 ..ﬂ\f-{wao m%b{ug )4—«««0 wf‘l@d Hz(gw 1’/

(40.4)

- Ble, @) = -
z1-9 B[SM&@AM (pP Q{(f‘sl\ - W&@ﬁmﬁqf;/b Qe(g)s *J)J/ (40.¢€)

B B q%*\) -
=B (]-3e B[Smjem%@‘o

) +  (40.9)

Ble, /s,(pp) -d’_ T (-.4&).@)
:-ru-w@MMW‘W"' o

Blags, @, ,@,,\ =

, ) 1 - . SRR A
- 3 {5in30, 1in 8, limter ) Re (67, - 737 Vremlerog) el 13 )]s

(40.h)

4_5”“@ wﬁép[mlﬂcp*cpp)@ ?3' +E$I )?ms@d (PP)QIZ ?151?/* )]‘1‘

* 2in 36,536 Lol 30,67 only SRl - 67N ] +

! - b
+ e, U Qp[mﬁ(q&ﬂp/g '2“?1,-'; «f‘?;‘_ 3.\ toridl (g ) &(ei';y ?',Zﬂ}
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The distribution is as before written as a sum of several terms to ex-
hibit explicitly the angular dependence; the angular functions in (40.a-h), the
number of which is again 20, are orthogonal but not normalized. We note that the
separate decay distribution for the isobar (or the anti-isobar) is the same as in
Eq. (37) and already given by Gottfried and Jackson 4>h

Up to réw, the results of this paragraph are applicable not only to the
specific reaction (3), but to all reactions with the same spin properties, e.ga;

p+tp —> N¥4*  and A +p S Y¥4N* We make this point, because reaction (3), in
" which both the initial and the final state contain a particle and its antiparticie

has an additional symmetry, as a consequence of charge conjugation invariance. For

the helicity amplitudes (6) this symmetry is

d }"a+>b
<)‘/)\ I ()‘) >\ >\ > ‘a’(—} ) gl T/KH/\ )‘b\> (41)

where &’ = %1 independent of the helicities. This equation follows from a
generalization of (JW.45)., Using the fact that the rotation angles of Eg. (8)

obey 1+/C = a/d’ we then obtain the following symmetry relation for the joint
density matrix elements (11)

"o nm' p E; ;7
St 7 Py A S E L2, ()

which from the Egs, (12) and (13) means

(43)
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5. PERIPHERAL MODEL

We now give a brief discussion of what can be learned on the production
mechanism from the joint decay distribution., We do this with special reference to
the peripheral model 8 , which is frequently used in the analysis of production

processes,

For reaction (2), there are in total 12 independent»production amplitudes;
not counting possible isospin. Iﬁ order to determine all 12 (oomplex) amplitudes,
one would need to measure 23 (real) parameters (disregarding a common phase of the
amplitudes). The joint decay distribution (37), together with the determination

of determines only 20 parameters., In the peripheral model, however, both in

)
the ngm factor version and in the absorption version, all the amplitudes are realg.
From the 20 real parameters, one should thus be able to check 8 (non-linear) rela-
tions between these amplitudes. Unfortunately, these relations seem to be rather
complicated. In the form factor version of the peripheral model wifh only pseu-
doscalar meson exchange, onec obtains g%1 = %’ g;)oo =1, (and thus, by virtue

of (14), -?33 = 5311 = O), while all other decay parameters of (37) vanish; the

joint decay distributicn thus provides a severe test of this simple nodel.

For reaction (3), again omitting the isospin, the total number of inde-
pendent production amplitudes is 32. If charge conjugation invariance is invoked,
this number is reduced to 24. The joint decay distribution (40), together with
= determines in this case 20, with cherge conjugation 13, real parameters, giving
only an incomplete determination of the amplitudes, even if these were real.  The
prediction of the form factor version of the peripheral model with pure pseudoscalar
meson exchange is ?11 == 4+, (and thus, by virtue of (14), ,?33 = ?33 = 0),
while all the other decay parameters of (40) vanish. - The joint decay distribution

thus provides a severe test of this simple model,

For a genéral test of the peripherél model it would of course be much
casier if one could see directly if the imaginary parts of the productign ampli-
tudes vanish or not., Unfortunatcly, the imaginary part of the deﬁsity métriceé do
not appear in the joint decay distributions (37) ond (40). This is due to parity

conscrvation in the decays, Eq. (23).
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On the other hand, if cue of the unstable puarticlcs decsys through &
parity violating interaction, the imaginary parts of the density matrix elements
do occur in the decay distribution, =nd could thus be measured exper?mentallyb

1

Take for instance reaction (1),. In the notation of Byers ard Yang ', the peri-

‘pheral model requires

F,=0 (44)

1 ! .
mm s ; . s o
Another case where Im?ﬁ , enters in the decay distribution is when

one (or both) of the incident particles are poiarized. This would be the case in

‘reactions with polarized targets, or in photoproduction with polarized photons.

, In a way, thc phasc determination constitutcs the most general (necessary
but not sufficient) test of the peripheral model, since it makes no assumptions
.on the spin, coupling constants, mass, etc.,, of the exchanged mesons. It would be
of ggeat value to perform this test, becausc one knows that the production ampli-
tudes cannot be strictly real, their real and imaginary parts being connected by
the unitarity condition. This iliustrates the fact that the usual peripheral model
is not unitary. On the other hand, in the K-matrix model of vperipheral inter-
.actionsjl», which does lead to a unitary S matrix, the production amplitudes,
~ and consequently the clements of the density matrix in the final state, are no
"Vlahger purely real.
o - Concluding then the analysis of the joint decey distribution in double
~resonance production gives, presently, the maximal émount of information on the
production mechanism. In order to get complete information on these reactiong,

it will be necessary to underteke polarization measurements.
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