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Trom the anelviic properties of the pion-nucleon scattering
amplitude postulated by Mandelstam, we derive a fixed
momentum transfer dispersion relationin the energy variable
which should be valid at low energies. This formulation
allows us to evaluate the effect of a two-pion ecattering
resonance on pion-nucleon scattering. By a suitable choice
of the pion-pion resonance parameters we are able to fit
both the experimental pion-nucleon phase shifts and the

nucleon elsctromz2gnetic form factors.
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1. Introduction

Experimental evidence has recently appeared which would seem
to point ‘to the existence of a strong pionQﬁion interaction. Evidence
for such an interaction has been found, for example, in the analysié
of single pion production data in 77 -p collisions by Bonsignori and

2) ‘

. In addition, Frazer and Fulco's work on

3),4)

Selleril) and by Derado
the electromagnetic structure of the nucleoun has shown that the
experimental data on the isotopic vector parts of the nucleon form
factors may be satisfactorily fitted if one assumes a 7v =71 scattering

resonance in the J=1, T=1 state.

In this paper, we shzll investigate, by means of the Cini-Fubini
approximate version of the Mandelstam representation 5), the éffeét'of
such a resonance on low-elergy pion-nucleon scattering. The use of this
representation has the effect of adding to the Chew, Goldberger, Low

6)

involving an integral over the absorptive parts of the TT + 71 —> N+N

and Nambu fixed momentum-transfer dispersion relations ’ an extra turn
amplitudes. The addition of this term allows in a natural way for the
introduction of a7 -7 resonance whose width and position may be
estimated from available experimental data on the nucleon form factors
and the s-wave 7T -N scattering phase shifts., Although, only the effect
of a resonance in the J=1, T=1 state is considered, the formalism would

allow other states as well to be taken into account.

Section II is devoted to the kinematics and symmetry properties
of the amplitudes under consideration. In Section III, the Mandelstam
representation which the scattering amplitude is assumed to satisfy is
written down, From there we pass directly to the Cini-Fubini one
dimensional form from which the integral equations for the T +N->T +N
and T +T1 —» N+N amplitudes may be derived. The latwer is identical with
that derived recently by Frazer and Fulco. The expressions derived for
the J=1, T=1 7 +7¢ —> N+ amplitudes involve divergent integrals however,
which arise from the incorrect treatment of the high momentum transfer

behaviour inherent in the effective range approach of the theory.
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Our procedure at this point is to express these amplitudes in terms(of
four arbitrary parameters, three of which may be estimated from the
expeiimental data on the nucleon electromagnetic form factors.

Thié will be done in Séction.'4 and the'expressionS'for the T +T - N+N
amplitudes which now involve only one arbitrary parameter will be inserted
into the equations for the S, P and D partial waves 71 -N amplitudes to be

derived in Section V,

A rough determinatioﬁ of the final additional parameter,
namely the width of the ﬂ;—TT resonahce is given in Section VI, by
fitting the experimeﬁtal s-wave phase shifts. A more thbrough comparison
of the theory with experimental angular‘distributibn data is at present

under way.
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24 Kinematics and symmetry properties.

a) Kinematics

We define first the kinematical variables for the scattering
process 77 + - T +N (channel I) denoting the four-momenta of the pions

by a4 and 4, and the four-momenta »f the nucleons by P, and P, (Fig.l).

Ly, A

Fig, 1

*)

In the centre-of-momentum system take

2 2
s =~ (q,4p))" = (Ep+ wq)
2 2
t=- (q1+q2> = -2q° (1-cos @) (2.1)
- 2 2 2,
= - = P -
s (a,+p,) (Ep q) 29" (14cos @)

where Ep is the nucleon energy
bah.is the meson energy
q2 is the square of the magnitude of the meson momentum

is the scattering angle between pion and nucleon where the

initial momenta are 4 and py-

The use of our dispersion relations forces us also to consider
the reaction T +T - N+N (Channel II). For this channel denote the angle

between incoming pion and final nucleon by ¢.

.Y
) We use the metric such that a.b = a.b - aObO
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4.

Then
s = —pg-q_2+2pq cos ¢
2 2 2
t = 4(q™+ !2) = 4(p"+n") o o (2.2)
- 2 .2 .
s =-p-q -2pq cos

_where p2 is tne square of the nucleon three—momentum.

In (2.1), (2.2) there are of course onlv two independent

variables since we have the usual relation

s + 's'“+ t =2 (M2+ F,z) (2.3)

b) Symmetry properties of the T matrix

(i) If the T metrix is defined by

N 4 . ¢4
bfiw l—(27() 18 (pl+ql+p2+q2) — Emw = Tfi
Vil2 172
6)

then it has been shown that if T is to be invariant under Lorentz

transformations it must be of the form

J R (ay7a,) 3 (2.4)

A and B being scalar functions of q2 and cos ©.

(ii) By also requiring that the meson-nucleon interaction should

be charge independent we have that

*g/“( A(+)+ + [tﬁ, Ta ) A(

B{su G(Q,Q(B + 5 [L(s Lq] B\

A
p (2.5)

where & ,(& are the isotopic spin indices of the mesons 1 and 2



Then for channel I we find

KON CION

01 [Aé)_ N

(2.6)

1
the indices (—), (%? referring to states of total isotopic spin x é .
2 pic Spif 3» 5

In channel II, however, the two allowed isotopic spins are

0,1 and we have

2,00
o Ve | (2.7)

(iii) The third property of T that we use is that it should

satisfy crossing symmetry, i.e.

A(i)(s,g,t> =+ A(i)(E)s,t)

(2.8)
B(i>(s,§,t)

T B(i)(é,s,{;)_

c) Partial-wave decompositions

. We give here the way in which the amplitudes in channel T

and channel II are decomposed into partial waves.

For channel I we follow the procedure of Ref.6) and define

f(;t) _ Eim {A<i>+(W—M)B(i) &

1 20 47
(2.9)

I

2) o B *A(i)+(VJ+M)B(i)1
2 W i‘ 47 J

W being the total energy for channel I.
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-a aa - -
G‘

- Il -

-dq ' 2
= ,fz‘ 1) ‘ (2.10)

The decomposition of fgi) and féi) into states of definite

angular momentum is given by

(+) o (i‘.) 0 (_t)
== ¥ ! - B
] 5:, f’z+ }} 1 (cos 6) 2:' {e_ ?h—l (cos 8)
4 =0 L =2
(2.11) Py
() _ < (D @)y o
£ = % (i:é_ - £y, ) Pz(cos e)
4=l
where fé+ is the scattering amplitude in a state of parity -(-1)
total anguler momentum j = lib. Thus
idg+ .
£ =2 ;1n&¢ (2.12)
£t q
It is useful to have a closed expression for f£+ in terms of
£, and f,. This is given by B
' L
- L C
g, =1 fl (£,2 (c059) + 1,8, 1 (cos0))dcos © (2.13)

For channel IT on the other hand it is convenient to decompose

A(—) and B( ) into states of definite angular momentum and definite

helicity as done by Frazer énd Fulco7). Recalling from (2.2) that in

this chaunnel t is the total energy and ﬁ the scattering angle we write

(54 (3) &mé )Jm

J

)
A(+ (t,cos6)

b(\)!;{

c§s¢ P! (cosg)

VJZJ+1-5
L ,_f(i)J(t)' P (cosﬁ)?] (2.14)

28t cost) —om T I £970) 21 (cof)
T a3y
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7.

For the amplitudes ff—t)J(t), J refers to the total angular
momentum of the state and the Eﬁbsoripts refer to definite helicities of
the nucleon anti-nucleon pair; + meaning both particles have the same

helicities, - meaning they have opposite helicities.

The inverse of Eq.(2.14) is given by

L2 W@ . (») ()]
Ei)Jit) T 8n | T %@J oo (20e1) (30)° (3+1)B;,) +JBJ-1S
Dw (2.15)
()7 {3(3:+1)" o\
£t = SLH ggill) (plq)J-l{BJ-l -8 i
w?ere 1
%Ag't)(t); Bgi)(t)] = ( ax P (x) I 2, B(i)] (2.16)
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3. Mandelstam representation and basic assumptions. -

We shall make hefe”an approximation to the Mandelstam
representation which we hope will give the essential structure of the
(£) g p&)

invariznt amplitudes A in the region of low energy and

low momentum transfer,

.5)

The approximation technique was introduced by Cini and Fubini
and is based on an analysis of the perturbation graphs for the amplitudes.
Consider the analytic properties of the invariant amplitudes as given by the

8)

Mandelstam representation

(09)
e =2 [ ;ds'u“)(s',t);i_-y._l.:} : (5.1

and let us consider explicitly A ¥/, Then

T 5 s'=8
(mepe )

This representation automatlcallv satisfies crossing symmetry.
For s and t in the physical.region of channel I O((+)(st) = Im a%(et)
and from unitarity thls can be expressed as the sum of a contribution
from intermediate states involving pion-nucleon scattering and an

inelastic contribution where additional mesons are produced in the

-intermediate state. We therefore write

o) (ar,1) o (er,1) + ) (a0 1)

\
where 0<<+/,

inel

(s',t) = O for s <:(m¥2fA)2

The Mandelstam conjecture also states that C<K+)(s',t) is of
the following form

S 0 4 M(s')
' ' + vt 1 : ( ) o4t 1
(g 1) 21% f ol J)ﬁt’t ) dt +% J v.ffs-s-t t') dt
L(s') -0
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9.

Fourth orde¥ perturbation theory9) indicates that both

+ + . . . .
0( o1 ando( inel satisfy this representation with

M(s') < - 4 npe

L(s') = 4%2 for <><(+>
(+)

el

inel

L(s') = 16r;..2 for

We will take this to be so.

Let us write Eq.(3.1) as
(+) b (+)
1 + 1 1
AN (s,t) ZT? j 2 ds' X 1 (s',t) { s " 57_—35 +
(m+rt)

(3.2)

In the first integral of (3.2) fhe nearest cut in the t | variable
begins at t = 16‘A2. For this reason 'we shall assume the validity of keeping
for this integral only the first few terms of a power series expansion in t.
For the second integral in (3.2), howevsr, the nearest cut in t begins
at 4*&2 whereas the cuts in s and & now begin at the inelastic threshold
(m+2l.k )2. Accordingly, we shall expand this integral in power series in g
and s (pres’erv‘ing crossing symme‘try), keeping again only the first few
terms. Thus the second integral of (3.2) is of the form

™ 00 M(s")

. -— 1 \
1 (. at' aP(s1,6,5) ! ds' att Vine1(8't!) ( 11
), R q (tr-t) lst=s  s'-B8

4r, (m+2!.u)2 -0

(3.3)

where a(+)(t' ,8,8) =

=
e
Q.
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The second term in (3.3) should have only a weak dependence
on all three variables since the cuts are all distaht. We shail replace

terms of this form by real constants.

In this manner we obtain a representation of A(+) .

@ (+) - (+)
(+) 1 (+), ., 1 1) ds' 1 a T/(t1,s,8) at'+C
A i (S,t) :T? T Qg)( e{ (S 9t){—“‘ + .-—E’}. +T; j — +UA

[ [ LIS
g'-s s > t'-t

(mep) A (3.5a)

(+)(

a sum of & real polynomial of low degree in s and an identical polynomial

wherecx(+)(s',t) is a real polynomial of low degree in t and a t',s,s) is

()

it mpust be'odd under interchange of s and 5, so that the arbitrary

has a similar representation except that from crossing symmetry

constant must be zero in_thié case. Thus

00} ' (_) ' -
Doy -3 [ o0l oy o1,

n 5 .
(it Ma (3.5b)
_ Representations>of identical form (satisfying the symmétry
’ ; i -
properties of Fq.(2.8) hold for P&)and é )except that to these must be

added the single nucleon pole term, i.e.

B(i) i ( 21 ¥ 21_3 + terms similar to (3.5)

=8
m - m -8

Since the weight functions 0((+), etc. are real we can make

the association

Tui(s,0) = &) (s,1) (3.6)

at least for s and t in the physical reglon of channel I.

8345
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11,

From (2.9) and (2.11) ImA(+)(é£) in fhis fegion is‘expéndable as a sum

over partial wave pion nucleon scattering amplitudeé.‘We will take this

sum to be saturated by the P3/2 3/2 resonance which we take from experiment,
From (3.6) this gives that o * (s,t) ig a first order polynomial in 1,

the behaviour of which as a function of s is given by the I%/z 3/2

_...partial wave amplitude. As. t is not necessarily a‘physical momentum

transfer corresponding to the energy s' in the regién of integration of
(3.5) an analytic continuation in t of Im A(s',t) from the physical
region of its arguments is implied.
It is clear that the first terms in Eq. (3.5a end:b) and in
are identical with the representation

(+)
) 6)

used by Chew, Low, Goldberger and Nambu * since both in their work and

the corresponding equations for B

in the present one the integrals are saturated with the (3,3) resonance,
The difference lies in the addition,here, of a strongly t-dependent term

representing the contribution of inelastic pion-nucleon scattering.

_ The weight function a.(+)(t,s,§) is equal to Im A(+)(t,s,§)
in the region t)>4tl2 fdf emall values of & and s, .t)>4lk2 cgrresponds
to the energy region of pion-pion scattering although for t<4 m-,
t is below the threshold for NN production. What must be fed in here is
the imaginary parf of the Ti+Ti—~ N + N production amplitude aqalytically

continued to the relevant values of s,s and t.

The integral equations for this production amplitude can be
derived directly from our representation (3.5) by means.of analyticity
arguments similar to those of Frazer and Fulco7 . We shall use the

amplitudes f(f) J(4) as defined in (2.14).

(2) s 52

(2.16) and (3.5). For A}i)(t) for example, one finds a right-hand cut

starting at t=+4(.x2 and extending to t=+®o0.due to the second term in (3.5)

The analytié properties of A may be deduced from

and a left-hand cut from -co - to O arising from the vanishing of the

Jéi)»except that

denominators in the first. term.. The same is true of B
e A

the left-hand cut will extend from -co to a=4tL?(l— ——5) because of the

presence of the pole terms. From Eq.(2.15) this leadémto the following

dispersion relations for fi;, identical with those of Frazer and Fulco :



12,

oo
& 1 oeJ(4)at Im £(4') at’
£9(t) = % = 1 L (3.7)
+ 70T t'-t-ig T 5 t'=t-if )
where Im fiiﬁ(t) on the left hand cut is given in terms of the pion
nucleon P3/—'5 resonance parameters and the single nucleon pole term as
s

given by Fq.(5.7)and (5.8) of ret. 7).

10)

It can be seen from a theorem by Fubini, Nambu and Wataghin
that below the threshold for inelastic processes the phase of the
production amplitudes f (i)J

® .

are equal to the phase shift of the two
coiliding particles, i.g. the M 7T scattering i)hase shift. As there is
at present no experimental data .on pion-pion sca'ttering we shali make the
currently favoured a§§gmpt_ipn of a resonance in the J=1, T=1 state.
Returning to Eq‘_.'(3‘.5), we can then replace a(i)(t' ,8,85)

by its expansion in terms of Im f+-t J( t') using Eq.(2.16). Keeping only
the J=1 T=1 terms in the sums and noting that A''/ and B\’ are unaffected
by a T=1 pion-piorn resonance, we get the following representations for the

four invariant amplitudes

00
A<+>=117r f b’;g) (s',t)% -s—,—i—s--+ ;1:5} ds' + Cj(;)
(m+ p)
®
(-)_1 0004(—) 11 - 1 oof(t')‘
A =1-T-_ J 291 (s"t)bds.'{s'—s—gt—é}*k (S_S)T—T 52 Tt ‘dt' (3.8)
(m—s—)A,) S 4

s'-s s'-8

2
8315 -
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13.

where

]

o ()1 (=i
f(t') ALl (—‘5-, In £ (t) - Im f+(t))

g(t') = 13__:; Im f-(“)l(t')

In the absence of a solution to the Chew-Mandelstam- T - T

11)

the requirements of unitarity, correct low energy behaviour and the

scattering equations we shall adopt a resonance form that satisfies

‘ 2
existence of a cut from t=4l,L to . Such a form is

p _ eig““' sin%\nﬂ ¥ | (3.9)
a r -1Uq

(J=r=1)

If this were a correct solution to the Chew-Mandelstam equations, K would
be a function of t. For f & to be a resonance, however, Xwould have

to be a slowly varying function of 1, at least in the resonance region;

*)

we shall take it to be a real counstant.

A ' ()Y
One can now directly write down an expression for fé ) (t) that

satisfies the analyticity requirements of (3.9) and has the desired phase

12)

in the region 4 tﬁ {t ¢ t‘(,‘?. A solution, equivalent to that of Ommnés™ 7,
having all the required properti?s)is
a :
Im £ (t')
Ay - £ (%) j = at (3.10)

* £ g (8) (6 -t-1g)

*)

Taking Xto be a constant introduces a spurious pole in fq ¢ (t).
However, for a sharp resonance this pole will have a small residue

and be distant from the region of interest.
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14,

into which we must now substitute the expressions given by Eq.(5.7) and
(5.8) of Ref.7) for Im f+(t') . If we attempt, however, to evaluate these
integrals keeping only the contributions from the nucleon pole term and

the (3,3) resonance we find that the integrals do not converge, essentially
due to the fact that we are using a power series expansion in t' for fi(t')
over a region where the expansion no longer converges, Frazer and Fulco

have attempted to estimate the integrals appearing in (3.10) by introducing
a cut-off. Our procedure is to replace them by constants representing

their value at tztr, this approximation being based on the assumption that
the structure of fi(t) in the region of interest 4rA%it < o0 is dominated

by a strongly peaked 1r7-7 resonance.
Let us write therefore

N+
£, = (3.11)

Tt —tei Yoo

In the following section we shall show how one may estimate

these constsnts by comparison with nucleon electromagnetic structure data.
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4. __The electromagnetic structure of the nucleon

(3,4)

It has been pointed out by Frazer and Fulco that both

the magnitude of the isotopic vector part of the anomalous magnetic moment
of the nucleon and the radii of the charge and magnetic moment distributiens
can he adequately explained if the pion-pion interaction is assumed to

have a resonance in the J=1, T=1 state. Earlier attempts by dispersion

relation techniques to explain these properties, neglecting the pion-pion

interaction, were unable to account for them all simultaneously.

1
We' shall use the notation of Federbush, Goldberger and Treiman 3).
They consider the nucleon current density operator J'H’taken between single
nucleon states. From Lorentz and gauge invariance this can be expressed in

terms of two scalar functions

) | _ I \)
¢ JrL (\p Opo\ji u(b')_{‘ Fl<t>ixﬂ P (1)1 Ty <p'_p)Ju(p)

where u(p) and u(p') are the Dirac spinors for the initial and final nucleons

and t=-(p—p‘)2.

The functions Fl and F2 may be subdivided into isotopic scalar

and vector parts

S v
Fo= Bl o+ TSR (4.1)
S -
= {
F,= B+ TR, (4.2)

We consider here only the isotopic vector parts FX and FZ as these are the

casiest to handle by dispersion relation techniques. For t=0 they satisfy

the relations

F\l[(O) = 3 : | (4.3)
FZ(O\) :’UP';UN o gzg | (4.4)

/4N and}AP are the anomalous magnetic moments of the neutron and proton
respectively (experimentally g, the gyromagnetic ratio = 1.83) e is the

electron cherge. The functions FX(t) and Fv<t) are taken to satisfy the

2
dispersion relations ¢
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5]
<
—~
ot
—r
Il

et
oy N

I F (t') atr
j 2 ey (4.5)
j _ ,

In F (t') at!
t(w4) | (4.6)

Il
+

®
.t

2 2n N
. 57

|

Subtractions have been performed in order to ensure better convergence of

the integrals. The reader is referred to the paper by Federbush, Goldberger

13)

of the two pion contributions to Im Fz(t')~and Im Fg(t') in terms of the

and Treiman for a discussion of these equations and for an evaluation

pion electromagnetic form factors and the 4 +T - N+N production amplitudes.

They obtain expressions for this contribution which can be

14) 4)

written in terms of the T +7 —> N+l Jacob and Wick amplitudes as

*
oF () _

In 7 (+) - —— () | (4.7)
anere () = 25 ¢ 2 e <Dty
2p N2
{ 2
i m (-)1 ( )1
D)= 2 o2 o) 4 (t)}
1 2 %h o2 "

Fﬂ'(t) is the pion electromagnetic form factor. By arguments similar to

those used in the-deérivation of the integral representations for the

nucleon electromagnetic form factors it can be shown that F (t) satisfies

the integral representationB)
© a4t InF (+)

Fo(t) = 1+ ﬂi jz ) (4.8)

e
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10)

Also, by the Fubini, Nembu, Wataghin theorem FT‘(t) has the same
phase as the M~ scattering amplitude in the J=1, T=1 state below the
inelastic threshold t=l6[-k2. The problem of the construction of Fp (t)

(i)l(

is analogous to that of f+ t) except that the former has no left

hand cut. A solution arri;éd at in the same manner, equivalent to the

12)

Omnés solution™ *, is
tr+K
Po(t) = ————— (4.9)
[}
%¢4Kf

Using this expression and Eq.(4.7) we obtain

t +
e 3 T 1 / nm
. , ImF(t):——q ——-(-—-—;\N—N) (4.10)
2F (tr—t)2+-x2q6 2p2 > - +
t + 2
v £ 3 r m E
Im F.(t) = - = g -—— N +N (4.11)
1 2E ('t —t)2+§2 6 _p2 ( m\}‘2| - +

If we now make the assumption that the resonance is narrow, we can replace

¥
2+ E2q6

and obtain by substitution into (4.5) and (4.6)

by ng (t_-t)

o v 3 at -
Fl(t) =3 (1- e (4.12)
T
v bt
(t) = 88 (1. 2%
(1) = & (1 — ) (4.13)
T
' The two constants a and b are
. C1 tr+-K
Erg' tr
b T 2 “X
=2 3

T

1l

o)

h’
C =—m- ( r N +N)
8345 Vo2 N e -

»

ﬁla

p_ and Er are p and E evaluated at tztr.
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The form factors Fg(t) and Fv(t) have been investigated expe-

2 15)

rimentally by high energy electron scattering from protons and deuterons 77,

It appears from this experimental data that it is counsistent to assume that

2 Wy _2m Wy _ 1 Py _ 1 Ny _1.P e e 2
z F.(t) = v F2(t) —/u Fg(t) _,“N Fz(t) =5 Fl(t) for O>t> 25\~L

where Fg(t) is the magnetic moment form factor of the proton.

\Y

Taking this to be so0, the equality ofé F 20 v

l(t) and o F2(t)
gives the relation

C
2 (4.14) ®

In order to fit the form of Fg(t),‘we note that our form factors
(4.12) and (4.13) have the same form as those predicted by the Clementel
16)

and Villi model for the proton charge and magnetic moment distributions.

This model is known to give a good fit to the experimental data with values

of the parameters a=b=1.2l7>
6 =220 b (4.15)
and C 1.2E -
Lo . E (4.16)
T 3 2 *
ER °
O -y
T
corresponding to an r.m.s. charge radius of the proton and radius of
the proton and neutron magnetic moment distributions of .8)(10'-13 cm.

8345
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19.

5.  Projection of partial wave amplitudes.

In order to compare the theoretical and experimental phase
shifts wé reed to evaluate expressioﬁé'for the §;+“defined in Eq.(2.12).
This is dome by using the relation (2.13) into which we must substitute
the expressions for fl and f2 from (2.9) and use the approximate A's
and B's evaluated in Section .3. In what follows we shall restrict

ourselves tc the calculation of S P and D waves only. Applying these
' 1 1

operations to'a) the pole terms and b) the integrals involving and

s'-8 s'-8

and keeping crly the contribution from the (23) etate in the

absorptive parts of f, and f2, we obtai% in the static 1imit,expressions

1
identical to -hose written down by Chew, Goldberger, Low and Nambu6).

These are reproduced here.

(£ (1= % B}
g =(3f8 =2 =—2>\++{\..;2[) %}\ (5.1)

)
f,,(T~2)
where
> 0
+_g _4nm do' (2w ¢ \
>\ T —-——‘2 k+ Im 33(03)
1T 4
(5.2)
p) <
- 4 m i
A\ ’:%ﬁ'ﬁﬁ 7 Ity (0
1~ ¢
: 0 ,
e 8 e Ba [ aw In £55(w01)
1n- "3 5 ¢ T “ q'2 R
1
f13 - f31 =7t (5.3)
[00]
T G S - 1
33 3 W T bl q'2 * 33 (.0'-‘«0
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With the assumption of a narrow P3/2'3/2 resonance_these

expressions hecome
22

8 fq 1
P o=-2 La (5.4)
11 3w 1+ fﬁ
1
f o2 ~ = f
13 fBl 4 11

where ) r is the centre of mass pion energy corresponding to the resonant

(3,3) state. For D-waves
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We must now evaluate the contribution to fs of the terms
in fl and f?, representing the effect of the Ti -7 interaction. These
terms are given by (2.9), (3.8) and (3.11), and under the assumption

of a narrow M T resonance, are given in the static limit by

(niw) 1
| | £, (1=3)
(me)y_| 1 2—2122'(22 .
\_fl }_ f(nn}(T:_S_) _(-l} W ot -t 5 q cos® 02- 5@01
1 2

S

(5.6)

@ f(ﬂﬁ)=(2}m -2 3 q2(02+(ii-1)

2 -1)W t t 2
r

Here the superscript () denotes the contribution from the terms of (3.13)
‘with denominator ttt. The factor{_i) comes from having kept the contribution

of the (T=1) pion-pion scattering state only.

From Eq.(2.13);

1 A
fs =5 j (fl+f2 cos 8) d cos 8
-1
. we find that the terms in 0, do not contribute in the static limit and
we get
P (] 3 w2 F_zq‘.g | (5.7)
s T3 w(-l T Y170\ % :
. r r . .
where
2 1 o(
P (2q ) dc ¢
T ) T N
“\ e J 18 (1s)
-1 T
c = cos®
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This result is quite general in the sense that for all higher

values of,é the terms in C? do not contribute inbthe static limit to
the non—Spih flip amplitude. Indeed, the non-spin flip amplitude for

scattering in an,Q state is

[(Q+D:ﬂ +Q@_} P

I+ )

and one may easily verify, using (2,13), that

1
2g+l

(_@+1) ff+ +ff€_ = 5 j‘ de (f1+f2c) 11

-1

from which the result follows immediately. The spin flip amplitude

(ﬁﬁ— - ?p+.) ﬁé ei¢.‘

(5.8)

(5.9)

(5.10)

on the other hand, depends, in the static limit, on the linear combination

C

1
' = ——
Co=Cot 5

as can be seen from the relation
g 1
2¢+1 2 !
- = -C
Q- T ) ) B 5

-1
and Eq.(5 6).

We recall that by the discussion of the preceding section,

C. and C. are related to the vector part of the charge distribution

1 2 ,
radius and anomalous magnetic moment, respectively. Cé corresponds -

therefore to the total magnetic moment ¢

e
o3 + o
/ anom. 2m

(5.11)

(5.12)
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It is interesting to note that, insofar as the terms depending on the
resonance are concerned, the non-spin-flip amplitude is related in the
static limit only to the charge distribution radius of the nucleon

whereas the spin flip amplitude is connected only to its total magnetic

momen.
Evaluating (2.13) for P and D waves we find that the terms to
be added onto the CGLN expressiomsfor f_ , f_ , £ , f are
P P D D
1 3 3 5
)
3 m 2) 17 ,
£, =-3 W(-l © 9o +qC (F-F,)
1 T
f(“RIBI_I_ljZ\_l_{wCF qgct(F F)—
P, "2 Wi-1)%t 1172 2 Vo2
3 ' r
(5.13)
(nn) 3 my o2y 1 2 .
g - — A ! -
b, i \-—1>tr W 0y (5, + 3070 (F)=Fy)

n(ﬁﬁz Fmo; 2y 1 ) 2
o E- i {_1>€; W, (3F,-F ) - 297} (F -F,)

We must still evaluate the effect on fS of the extra constants
+
IR
tation to the one-dimensional Cini-Fubini form. (The effect on the f

C intreoduced in Section 2 when passing from the Mandelstam represen-

Py
anplitude is only a non-static correction and constants have no 2
effect on the other amplitudes). One easily verifies that these constants

simply add to fs a term of the form

o {_i) f%u) (5.14)

This correction is of exactly the same form as the CGLN contribution (5.3).

As for the P3/2 3/? equation, our additional term is small in the
region of the resonance itself and hence the resonance sclution given in

Ref.6) will he modified simply by the addition of a small real part.
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6. Comparison with experiment and conclusions

We héve posfulated a simple possible model for the effect of
the pion-pion intéraction on the pion—nucleoﬁ scattering amplitude.
Even so, a direct comparison of the phase-shift predictions of this
model with experiment is not very fruitful because of the large uncer-

tainties involved in the phase-shift analysis of the experimental data.

The best established low encrgy results apart from the
existence of the P3/2 3/2 resonance are the values of the S-wave
scattering lengths. Those quantities, however, are implicitly very dependent
on the core contribution to the scattering amplitude, a fact which is
reflected in our having taken the high energy contributions to our dispersive
integrals as grbitrary constants., These arbitrary constants give contributions
to the S-wave scattering amplitude of the same form as the Chew, Goldberger,
Low and Nambu terms, namely the expression (5.14). These terms by themselves
give an adequate description of the scattering lengths. However, at higher
energies the experimental data casnnot be adeqqately explained by the simple
dependence given in (5.14). Using our model uﬁ to an energy of about
q:1,5f¢ enables us to fit all the S-wave data and gives us a value of the
"width"‘ﬂ of our resonance. Fitting the data with tr=22.4’¢2 gives
Cl= - .58+.15 which corresponds %o a positive (‘as it must if our postulate
of a resonance is correct and a value of l.7t&?<\Y113.0QA?. One should note
that r]is not the conventional width of the resonance but thot with our
resonanée form (3.11) the energy difference between the points where the

r‘\

resonance reaches half its maximum value is given by T
T
With this value of tr and the mean value of Cl= -.58 the P and

D wave threshold behaviour as calculated from (5.13) is shown in the table.
In the determination of tr from the isovector parts of the nucleon form
factors,if one allows for the rather large uncertainties in FT and Fg then
tr may very well be.IStl? instead of 22.4t12. The values of the P and D

waves at threshold corresponding to tf:lS{L are therefore given too.
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We also give the contribution from the Chew et al. terms as calculated
from (5.4) and (5.5) and compare the total with the experimental results
(taken from the 1958 Annual International Conference on High Energy
Physics at CERN)

TABLE OF THRESHOID VALUES FOR P and D WAVES

Nn-n contribution Chew Total Exp.
1CW _‘___

Term | t =22.4 | t =15 term t.=22.4 | t =15, -
Y R |

Fitl o w046 | 049 | -.14 -.0% | -.091 -« +.038+.038
s

e .
Yeg fpp| =016 | =013 | -035 | -.051 | -.048  }.039.022
%

I Jqr| =023 | =025 | -.055 ~.058 | -.060 |.044+.005
Ya /.0 Loos .007 .213 221 .220 | .2%44.019
m/q ‘ -

P B i

f,fz g*| -0013| .0020 | -.0019 | -.0006 | +.0001 -

3/

Yoz fg¥ | =007 | -.0010 .0013 -.0006"| -:000% -

T —

5,;;; /%u =.0005 | -.0007 | .0029 +.0024 | +.0022 -

Pz, /CL» L0003 | .0004 | -.0065 | =-.0062 | -.0061 | -
A H

While the theoretical numbers quoted in the table are not in
exact agreement with the experimental numhers one must remember that the
contribution from the T7-77 interaction may be varied by varying Cl within
its limits as given by fitting the S-waves, so that agreement with the

experimental data is possible.

One feature which is not clearly brought out by just inspecting
the threshold hehaviour of the partial waves is the relative size of the
7T4Tcontribution and of the Chew term. It might appear from the table
that in general the T-Ncontribution is the smaller one. However, one
finds in fact that the energy variation of the7V-W contribution is stronger
than that of the Chew term and therefore at higher energies the T\ term
becomes comparable or larger than the Chew term and determines to a large

extent the variation of the phase shifts with energy.
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For example, for the D wave with ng and T:% at threshold the
contribution from the M-11 term and the Chew term are almost equal and
of opposite signs. However, with increasing energy the (positive) f-T term
increases much more rapidly than the (wegative) Chew term so that this
phase shift hecomes positive, increasing quite rapidly with energy.

This is just the behaviour that one would like to have since we know that

this state passes through a resonance around 600 MeV,

Of course more extensive calculations must still be done and
a direct comparison of theoretical and experimental phase shifts is
probably not the best way to put the theory to a severe test. For in
analysing an experimental cross-section into partial waves one usually
arrives at phase shifts with large uncertainties on them and whose value
may depend on the assumed values of other partial waves e.g. the D waves.,
On the other hand, the theory presented here gives simultaneously definite
values for S, P and D waves. A better procedure for comparing theory and
experiment is therefore to compare directly the differential cross-sections
on which the experimental errors are rather small. Such a programme is at

present in progress.

In conclusion we would like to remark that it is amusing that
one can probably reach an approximation to low energy pion-nucleon
scattering identical to the one presented here by considering a model in
which both the (3,3) resonance and the T1-1, J=1, T=1 resonance are
replaced by isobars having the corresponding masses, spins and isospins,
0f course the formulation presented here is much more general since it
allows for the insertion of experimental data on Ti-T scattering in all

spin and isospin states when such information becomes available.
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