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ABSTRACT

The Salam-Ward hypothesis concerning the 43-1:% gelection
rule in weak interactions is examined from the viewpoint of the
composite model of elementary particles. In this theory, the non-
leptonic weak decays have a different origin than the leptonic
decays and are attributed to a small perturbation on the strong

interactions.
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1)

One is on the horns of a dilemma ’ in attempting to explain the well-

2)

hand, if one accepts a current-current, interaction as the origin of both the

established Al=% selection ruie in non~leptonic weak decays. On the one
non-leptonic and leptonic weak decays, one is led tb introduce neutral baryon
currents (with 5. or without 4) intermediate bosons) without the analogous
neutral leptbn.currents. On the other hand, if one wishes to maintain the
symmetry between the baryon and lepton currehts (vhich is attractive from
several points of view 5)), one must seek the explanation of the A I=%
selection rule in the special status of the non-leptonic weak decays compared
to the leptonic decays 6). This second approach has been adopted by Salan and

7)

special hypothesis concerning the strong interactions, mmely they assume that

Ward who deduce the zﬁlﬁ%ﬁ selection rule in weak interactions from a
the K-meson field operator K possesses a very small non-vanishing vocuum
expectation value in the Yukawa-type strong interaction, say ANK¥ The
purpose of this note is to dindicate in what fashion a composite model of

8)

provides a natural basis for the hypothesis of Salam and Ward.

-
elementary particles (of the type proposed by Sakata or the present authors )))

The strong interaction Hamiltonian containing both‘v/A* gndMﬁN‘ (nucleon)

may be written :
H = %g,\~(/\%/\><MAN) N

where denotes the usual five covariant expressions (S,V,T,A,P), forned

Q)\
from the Dirac of -matrices. Note that :

T A=)+ @) @

where p and n represent the proton and neutron respectively. Then, the part

containing the neutron can be trensformed by means of ‘the Fierz identity as

follows



751

2.

s
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2 g, (Ao N, )
(3)

% £, (A m)ELA)

Now, in the usual theory, the vacuum expectation value <:YT @l%/\t>o must be
zero, because of strangeness conservation. However, we suppose for the moment

that somehow :

o = LEQAD, #0 for N=5 or P (4)
For )\ =V, A or T, Cy = 0 follows from Lorentz covariance. Then, Eq.(3)
would contain an interaction of the form

(£ e )(An) + (fpcp)( /—\3’51&) (5)

Thus, if Eq.(4) happened to be true, with small constants Cs and cp
(or fs and fp), then the desired A I=F selection rule in weak interactions
would follow from the stronz interaction Eq.(B). Note that if fs.fp.cs.cp£ o,
then Eg.(5) would automatically lead to parity non-conservation. This is some-

7)

the existence of a scalar particle K' with unit strnageness in addition to the

what more natural than the original proposal of Salam and Ward ', who postulate
pseudoscalar K-meson, in order to explain parity violation in non-leptonic weak

decays.

We must try to give an argument justifying Eq.(4). To do this, let us
consider the theory of Nambu and Jona-Lasinio 10 . We recall their argument
for deriving a finite mass for the fermion, starting with a chirality-invariant
Lagrangian. In the usual perturbational treatment, the vacuum expectation
value (:;F(x)nk(x)j>o must be zero in a chirality-invariant theory. However,

Nambu and Jona-Lasinio postulate from the beginning that

o =M (x) A, 4o (6)



N

and, in a self-consistent fashion, they determine the value of the non-zero c.
We now apply the same type of argument to Eq.(4), and in the same way, we may
obtain a non-zero value for Ce The desired 43-I=% weak interaction Eq.(B)

would then follow.

Let us illustrate our point of view in greater detail. For definiteness,

we have recourse to the Tamm-Dancoff procedure previously used by Diirr et al ")

5)

The equation of motion for the neutron is then :

Furthermore, for simplicity, we assume £ =0.

and by the present authors P

(T2 = A “ Q

and we define the Green's function K(X—y) by

K(ey) = L (alx) Al)), > (8)

Using Eq.(7), we obtain :

(v 52+ Ko=) = —f (Mm@ A AL,

where we have assumed :

[n(x), /T(y)]_i_:O fof X0=yo ‘ (10)
. N

As a first-order approximation of the Tamm-—Dancoff method ! , We may replace :

(A 1 0) A AL, >,

A

e o |

2= LA GO Ay 10)4 7, LA AL (11)
_ <(7\'&(7() /\lMP()).D(j < ( My (%) —/_\;(7)%70

751



The second term of the r h.s. of-Eq.(H) can be incorporated into the mn of

Eq.(9), i.e., it only yields a mass renormalization and hence we omit this term.

Thus, BEq.(11) becomes :

AL M) AW AL
= = (T K@) Spar (=)

(12)

N e
where, of course, sé M x-y) =<(A(X)A(y))+>o is the /A propagator.

Inserting Eq.(12) into Zq.(9). we obtain :

(Ve m) Tlxy) = 2, (2 K(0) 5 (amy)

Integrating this equation under the assumption that K(x-y) does not contain

any free field part, we find :

Kx-y) = fs(’IrI{(o)) J atx' G(n)(x-x') sg,A)(x'-y) (13)
(n) |

where G is the Green's function satisfying the equation :
a (1’1) [ — '
(')’—a?+mn)G (x=x') = § (x=x')

Equating =x=y din Eq.(13) and taking the trace, we get

o = £ cg /(dd'x' T, [G(n)(x-x') Sé,/\)(x'-x)] (14)

S

where we have put
in accordance with Bq.(14).
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Writing out Eq.(12), we have ¢

= Cs-f;- "4"4 fd“?’ e 7% =) 19

where the integral is divergent and actually, we should introduce a cut—-off

factor. BEq.(15) gives és=0 in general, unless

— 4.4t (44
P G ot P 7’+‘m\ (mip— 1) te)

The quantity Cg is then completely arbitrary, which is obviously ridiculous.

The above implies that our approximation Eq.(H) is insufficient and we
must go on to the next approximation. This is exactly similar to the situation
which Diirr et al 11),5) encountered. The approximatic;n Eq.(ﬂ) corresponds to
the fact that we are calculating the bubble ‘diagram,i vFig. 1. We must calculate

higher order diagrams, see Fig. 2.

MA A A
A A
7N { o
e \ L n “
\\‘(-a" . ‘'Y A \fl
g™ n R
AN s
A A o

In Fig. 1 and 2 the broken line represents the new proPagator K(x-y) given

by Eq. (8) and the solid line represents the usual propagator 'Sé.,A) or SFn
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In principle these contributions can be calculated by means of the method of
Diirr et al 11), but we do not give the explicit results because they are not
particularly interesting. The important point is that Eq.(13) will then be
transformed into a more complicated expression and that, roughly speaking, we

shall have an equation of the form :

c =a c +a, cZ +a, cz ... (17)
instead of Eq.(15), where 2, is given by the r.h.s. of Eq.(16) in the lowest
order in fs. Note that in general ther¢ is no guarantee that cq will be
extremely small. A sufficient condition would be 1 = a, i.e. Eq.(14) should
be satisfied to a good approximation. This means that a small non-zero c,

can arise when there is a suitable restriction in the coupling constant fs

in comnection with the non-perturbative solution of the non-linear equation with

which one starts. There is no a priori reason why this possibility should not

occur but it must also be admitted that a demonstration has not been given.

In this conﬁection, we should remark that the idea of deriving a weak
interaction as a small correction to a strong interaction is neither new, nor
difficult. In a simple model, Van Hove 12) has shown how such a programme can

be carried out.

Finally, it should be emphasized that the proposed explanation for the
A I=} selection rule in non-leptonic weak decays does not work for the leptonic
decays, since there are no strong interactions involving leptons. Within this
framework, the origin of the leptonic weak interactions must be entirely different
from that of the non-leptonic weak interactions and the universal V-A weak
interaction should then apply only to the leptonic interactions. This diffe-
rentiation between the non-leptonic and leptonic weak interactions has one
attractive feature : the parity violation of the leptonic interaction can be
ascribed to the two component character of the neutrino. Furthermore, this
distinction is in line with the idea of the present authors 5) that the
occurrence of f?—decay may be attributed to the break-down of the orthogonality
of the baryon and lepton Hilbert spaces resulting from the switchinghon‘of the
electromagnetic interaction since the same argument cannot be used for the

non-leptonic weak interactions.
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