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Composite Model and Partially Conserved Currents in Weak Interactions
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It is shown that the idea of partially conserved currents has a natural basis in the composite model. Within
this framework, the Goldberger-Treiman relation for the pion lifetime is discussed without recourse to dis-

persion theory.

HE universal V-4 theory of weak interactions!
couples four types of “strong” charged currents
with each other and with the charged lepton currents.
The four ‘“strong” charged currents are? the vector
strangeness-conserving current J(, the axial vector
strangeness-conserving current J ), the vector strange-
ness-nonconserving current G0, and the axial vector
strangeness-nonconserving current G, In order to
circumvent the difficulties of computing the strong
interaction “renormalization’ effects on these four cur-
rents, it has been hypothesized that these currents are
conserved or at least “partially conserved.”

The idea that J) is conserved originated® with the
observation that the coupling constants for muon decay
and the beta decay of O* (Fermi transition) are nearly
equal. The assumption that

9.J.M=0 1)
guarantees that the strong-interaction renormalization
effect is unity for J¢) so that equal unrenormalized
coupling constants may be chosen for the vector parts
of the four-fermion interactions governing muon and
beta decay. It is a simple matter to construct a J)
satisfying Eq. (1) in any theory for which isospin
invariance holds.

The equation analogous to (1) for J) cannot be
true since, among other things, it prohibits the leptonic
decay of the pion.* On the other hand, the success of
the Goldberger-Treiman (G-T) relation® connecting
the pion-decay lifetime to the axial vector coupling
constant of beta decay has led to the idea of a “partially
conserved current.” According to this idea, one postu-
lates the relation®

ouJ, A =am, (2)
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where = is the pion field operator and @ is a constant.
By further assuming that the pion vertex operator is
“gentle” (i.e., highly nonsingular), the G-T relation
can easily be derived. The drawback is that within the
conventional framework where all mesons and baryons
are treated as independent fields, Eq. (2) can only be
derived on the basis of special and rather implausible
models.® This is particularly true when one takes
account of strange particles where, as Gell-Mann has
pointed out,” it is necessary to introduce a new scalar
field K’ with unit strangeness (assuming that the K
meson is pseudoscalar) in order to satisfy Eq. (2).

As regards the strangeness-nonconserving currents
G and G, it has been proved under rather general
conditions® that it is impossible to write down equa-
tions of the type (1) for these currents. However, it is
still attractive to consider the possibility of “partially
conserved” currents, namely to write down equations

of the type (2):
9,G. V) =bK’, 3)

0,G, =K. @)

But again as in the case of Eq. (2), Egs. (3) and (4)
place severe restrictions on the structure of the strong
interactions if the mesons and baryons are regarded as
independent fields. Bernstein’s very special example®
of an interaction satisfying Eq. (3) emphasizes the
validity of this last remark.

We wish to point out that Eqs. (2)-(4) become much
less restrictive if we adopt a composite model for the
elementary particles. We use the Sakata model for
the remainder of our discussion, since in many respects
it is the simplest," but other composite models would do
equally well. In the Sakata model, the pion and K
mesons are no longer elementary but are bound states
of the A hyperon and nucleons. On this interpretation,
Egs. (2)-(4) can be regarded as definitions of the
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K’, and K operators (this statement will be justified
below) so that the “partial conservation” of the
currents J, GM, and G actually follows from the
Sakata model. Indeed, it has already been pointed out
by Okun'? that in the Sakata model the “absolute
conservation” of the current J™ [ie., Eq. (1)] is a
direct consequence of the isospin invariance of the
four-baryon interactions.

Let us now prove the above statement for “partially
conserved currents” within the framework of a com-
posite model.

Several authors®® have proved that we can assign
local field operators even to composite particles. For
our purposes, Haag’s'® procedure is the most convenient
one and we recall his result here. Haag proves that,
under certain rather general assumptions, any ‘“‘almost
local” field B(x) can represent the pion field operator, if
B(x) satisfies the following conditions:

(0| B(x)[0)=0,
(| B(x)|0)s=0.
The incoming pion field operator 7@ (x) can always
be defined in the usual fashion, irrespective of whether

the pion is a composite particle or not. Haag then
proves that

®)

By(f) ——=am (1), (whent— —o) (6)
eakly

where

05()
0=i [ =td3x((2(x) axx — f(x)

90 (x) )

Xo

with f(x) the wave function of any one pion state and
« a normalization factor, defined by

(m| B(x) |0)=afm |7 (x)]0). ™)

Now, the quantity 9,J, obviously satisfies the con-
dition of Eq. (5): the first condition because of parity
conservation, the second because otherwise the pion
would not decay into leptons.* Thus, it is convenient
to regard (1/a)d,J,“ as the local pion field operator
7 by virtue of Haag’s theorem. Equation (2) then
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follows immediately where a is simply the renormaliza-
tion constant « in Eq. (7), if we identify 9./, with
B(x). Of course, the derivation of the G-T relation
still requires the assumption that the newly defined
pion operator is “gentle.” Bernstein ef al.'* have shown
that the G-T relation can be explained without the
use of Eq. (2) if one attributes the “gentle” properties
to a dispersion theoretic representation of the diver-
gence of J,“ [i.e., the left-hand side of Eq. (2)]. Our
preference is to retain Eq. (2) as a natural consequence
of a composite model and to explain the G-T relation
by a hypothesis about the gentle behavior of the pion
vertex operator without having recourse to dispersion
theory. ‘

In a similar fashion, Eq. (4) holds since the left-hand
side may be regarded as a definition of the K-meson
field. As for Eq. (3), the Haag theorem cannot be
applied directly since K, if it exists at all,'s is unstable
against strong decay into K and =. However, we may
still regard Eq. (3) as the definition of K’ field if it
exists. The considerations of Bernstein and Weinberg!®
concerning the effect of the existence of K’ on the decay
of K,3 and K are similar to those of Bernstein ef al.**
with regard to the decay of the pion. From our view-
point, the results of Bernstein and Weinberg!'® can be
derived more directly from Eq. (3) and the “gentle”
assumption concerning the K’ vertex operator (an
assumption which, incidentally, is more difficult to
justify than for the pion operator).
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Note added in proof. It has just come to our attention
that the use of Eq. (2) as the definition of the pion field
in the composite particle model has been suggested by
Okun'”.
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