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1, Introduction.

The number of particles (7{, K, N, A\ ,;Z',EE: ) which participate in the
strong interactions is certainly much larger than the number of invariance
principles which characterize these interactions. If we leave aside for the
moment the discrete transformations P, C, T (which are associated with the
improper Lorentz group), we find that the strong interactions are invariant
under two independent gauge transformations (baryon and strangeness) and the

isospin rotation groups; this follows from the well-known fact that the charge
number is related to the baryon'and strangeness numbers and the third component

of the isospin through the Gell-Mann - Nishijima equation :

+ S+B (1)

Hence, insofar as the internal degrees of freedom are concerned, all the strongly
interacting particles can be represented by three fields: +two fields comprising

an isospinor and one field with unit baryon number (if the isospinor is K) or
unit strangeness (if the isospinor is N or ,=\ ) While Sakata's ") choice of
the baryon triplet (A, n, p) as the three fundamental fields is evidently not

unique, it has several advantages as we shall see below.

Although a three-field theory such as Sakata's satisfies all the group-

2)

particles which do not interact strongly at all, namely the leptons. At first

theoretic requirements of the strong interactions, there still remain the
sight, the number of additional fundamental fields required to describe the
leptons is also three in number: in order to take account of the charge and
lepton gauge transformations as well as the "strange" difference between the muon
and the electron; it is natural to choose the observed lepton triplet 5Pf;e_,l/)

as the three fundamental lepton fields. If we infrdduce formally an isospin space

and strangeness gauge transformation for the leptons, the analogue of the Gell-Mann

Nishijima equation becomes :

Q=1 + — (1a)
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where‘//“:‘ is an § = -1 isoscalar and (e ,V) is an S =0 isospinor, The
correspondence between Sakata's baryon triplet (A, n, p) and the lepton triplet
S/A y€. ,z/) is now apparent; indeed, Egs. (1) and-(1a) can be consolidated into

the s1ngie,relat10n'3)’4) :

Q=1

S+B-L ‘ . :
5+ =5 (1b)

Furthermore, the implications of the symmetry principle /\4&—3/“:, n &—» e_,

p &> ) (hereinafter called the BL symmetry principle) for the weak inter—
3)

actions have been discussed in detail It is also possible to extend the BL

symmetry principle to electromagnetic interactions (e.g. the absence of a fast

/\=> nt+y decay implies the similar absence of a fast /": - e + Y decay).

The Nagoya gfoup 5)
baryons and leptons on the ba51s of the BL symmetra principle. They assume
that the four fundamental fields are the lepton trlplet ﬁ/ﬁk,e , ) plns a

has attempted to construct a four-field theory for

p031t1vely charged boson B which is supposed to be "strongly" coupled to the

‘leptons. 'Bach member of the baryon trlplet (A, n, p) is hypothesized to be a

composite of B' and the corresponding lepton, i.e. (A, n, p) = S/Vk,e , V).
Unfortunately, the‘Nagoya model cannot prevent a process like n(=B+ef)+§(=&T'i3
- e-QQ} f;om being a.'"strong" reaction without postulating an additional
selection rule. This is not surprising since this type of theory implicitly
assumes.the identity of the isospin space and the strangeness gauge transformation
for the baryon and lepfon.triplets for all interactionms.

It would thus appear that, within the framework of the standard perturba-

“tion %heoretiontreatment of interacting fields, a minimum of six fields is

reqﬁired to eXbiain the group properties of the strongly interacting particles

‘and leptons déépite the BL Synmetry principle. The possibility of devoloping

a theory of elementary particles with fewer than six fields is therefore intimately

. connected with the invalidity of the perturbation expansion and the breakdown of

the "adiabatic theorem" resulting from the infinite number of degrees of freedom

in quantum field theory. These points are briefly discussed in Section 2 as the
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6)

Section 3, we summarize and compare the essential ideas and difficulties of

and Nambu 7>. In

rational fof theories of the type proposed by Heisenberg
Heisenberg's one-field theory and Nambu's "superconductivity" theory of elementary
particles; the emphasis is on the significance of the invariance principles
employed by the respective authors and not on the detailed quantitative predictions
of baryon'ahd meson masses. In Section 4, we outline our own suggestions for a
possible two—field theory of clementary particles; while we take over some

concepts from both the Heisenberg and Nambu theories, we ground our theory firmly

‘in the BL symmetry between the baryon and lepton triplets. Some of the problems

faced by our theory are also spelled out.

2. Non-perturbative solutions in guantum field theory.

In quantum field theory it is customary to decompose the total Hamiltonian
into two parts; the free part Ho and the interaction part H1 :

H=H+H : (2)

The diagonalization of Ho is straightforward and yields -the continuous energy

spectrum. However, the same is not true for H, where in general diagonalization
is impossible except for a few rather trivial examples. Nevertheless, one expects

a sort of correspondence between HO and H which is eXpressed by the so-called
"adiabatic theorem". This theorem asserts that, except for possible bound states,
the eigenfunctions of H can be obtained from those of Ho by adiabatically
switching on the interaction. In other words, new types of states other than

those corréSﬁonding to states of Ho should not arise except for possible'bound

states. The adiabatic theorem obviously holds within the framework of perturbation

theory.
6)

elementary particles depend for their success upon the existence of non-perturba-

The Heisenberg and Nambu 7) programmes for constructing a theory of

tive solutions of the field equations and the breakdown of the adiabatic theorem.
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It is therefore of great importancc that Haag has proved 8)'(Haag‘s theorem)

that the adiabatic theorem need not hold ‘in guantum field theory. Haag's theorem
essentially states that the Hilbert space constructed from the eigenfunctions of
H (so that H is a proper operator in this space) is completely inequivalent to
those of Ho’ or, more precisely, that the domain of H is completely disjoint
from that of H0 in some wider space (oxcept, of course, for a null element).
This fact, related as it is to the unbounded character of the interaction

Hamiltonian H1, is sufficient to invalidate the perturbatlon expansion and the

adlabatlc theorem, If H, were a completely continuous transformation _[1.6. if

1
any element fn of the Hilbert space satisfied the condition fn - f weakly

(f is also an element of the Hilbert space) then H1fn - H1f stronglyz, then
the 1limit point (roughly speaking, continuous) spectrum of H would have to
agree with that of Ho (Weyl's theorem 9)). If this were the case, then it
would be impossible to construct theories of the Fermi - Yang or Sakata type%')
since the continuous spectrum of the pion is lower than that of the nucleon.
Thus the possibility of composite models probably depends upon the unbounded

character of H1 and the Haag theorem.

The above situation is connected with the appearance of the inequivalent

10)

degrees of freedom. Suppose that we have N anti-commuting operators a1,“.,aN

representations of the commutation rings when we have an infinite number of

and its adJOlnts satisfying the follow1ng commutation relations :

e ) v
{ai-'aj}fgij ;gai'aj}fo {al ;& 0

(L3 =1,..0)

(3)

When N is finite, there is only one essentially independent irreducible
representation of this anticommutatihg ring It is the usual'representation,
whose bases are the direct product E‘ X® Ef2 ® ... D §N’ where éi
takes on only two possible values in conformity with the Pauli principle.

However, when N Dbecomes infinite, a new 31tuat10n arises and we can have an

1nf1n1te number of representations; i.e. we can have an 1nf1n1te number of
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11).

xamplesg)there is a one to one correspondence between the total Hamiltonian H

Hilbert spaces, which are orthogonal to each other In some simple soluble
and one of these inequivalent representations; more precisely, H is a proper
operator in a subspaee of only one of these Hilbert spaces. However, there is in
princiﬁle no reason Why H may not be a proper operator in several such Hilbert
spaces which are orthogonal to each other. It is this possibility which permits
one to entertain the hope that one field may be employed to describe several
particles and, indeed, this is the foundation stone of our own theory Z;ee
Section 47; The important point is that we must find the Hilbert space, or spaces,
in which H is a proper operator (strictly speaking, only in a subspace of these
Hilbert spaces, since H is an unbounded operator). Unfortunately, this is
practically impossible to accomplish at the present time since we cannot solve
the problem exactly (even if there were no difficulty with the divergences).

The best that we can hope to achieve is to find in a self-consistent fashion an

approximate Hilbert space or spaces.

We shall illustrate the above remarks by sketching a modified version of

7)

Nambu's procedure. Suppose, we start with the following lagrangian :
— 2
lia = - /V'(’Yrg%f) /%/
£ =9 (F0(¥Y) (4)

where AF is an ordinary Dirac four-component spinor. Bg. (4) is different from
Nambu's, since it does not include the pseudoscalar term. Now let us suppose that
the correct Hilbert space afin of this theory is built up from the following
asymptotic field 9%; with the mass m :

(v +m) @ =0 (5)

In this way, we have an infinite number of Hilbert spaces 9{21 corresponding to
different masses m., The problem is to find the correct (or approximately correct)
Hilbert space corresponding to mass m. In the first approximation in the
coupling constant g,cZT can be replaced by (e neglect the pairing of /yb and

——

4 belonging to other combinations, e.g. o 95\§E'5P )
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L = 29 <FHS, (FF) e

where <:AF:A+{>L' denotes the vacuum expectation value with respect to the

© Hilbert space aT?m."Hence, we can determine the mass m in a self-consistent

fashion and in first approximation, by the formula

mo= — 2.3 <:?ﬁ:/%’>; L f': T

Purthermore, in the low mass approximation, we have :

T

<FHY>, =~ 2, Ty S_lo,m) @

where 22 is a renormalization constant and consequently :

=281 S O

Eq. (9) is the equation given by Nambu, wehre g' is the renormalized coupling

constant.

We now note that two asymptotic fields 9pim can be associated with

12).

by following Touschek's "ansatz" Our equation of motion is

TR =g LEYA T ] = (10)
Let us pﬁt>:

o=

M= SLFHYT¥(FD) ()

Then the equation of motion is :

5 ! o _ )
7’3{5[4' — 4 =0 (10a)



_Nowvsuppose that A// ' and A// 5 g0 aéymptotically to F1 and ;02 respecti-
vely and that moreover

then we have :

2
Yg%-%’ﬁ

(12)

where 5”1 and ?o 5 are assumed to satisfy the free field equations

(D'MlJ % 20/

(O-m) & '“""0 (13)

ﬁ\fe must modify this equation, when there exists a finite bare mass n 3  however,

_ — 4 0
the final formula is similar to Eq. (15)/. If we operate with )’%C on Eq. (12),
we get @

)
Ty - E=0

(14)
Then, if we define :
?’)r( = 902" »m /
| (15)
ﬁy\ = 2 -+ Sp, .
we obtain
3
(’X'g;g + M) ?M =0
2 (16)
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Thus, we may 1nterprete ‘fa and fp‘ as the asymptotic fields corresponding to

the two solutlons m and -m’ (except for a tr1v1al numerlcal factor) Further—
: 7)

more, we can show that the two Hilbert spaces aqﬁm. apd é%(im are orthogonal

and that all matrix elements‘ofv%j%;m with respect to_gﬂﬁﬁn must be zero. We

can check this in the same apprOXimation in which we derived the mass m, since :

- % /
(?@m)ﬁﬂi” (fﬁw (Q;n) ) (F, T ) D)

v ' _ o
2025 T S T (Bl 4 2am) =0 7

by virtue of Eq. (9). In the above gE(¥ m) and . E?{(? m).. are any arbitrary
vectors belonging to a<9$m' Thus, our interpretation owaqs. (10) and (15) are

. consistent. Of course, these are not rigorous statements but illustrate the type

of non—pgrturbative self-consistent result which is possible.

We have interpretated the two Nambu solutions Im as corresponding to two

independent fields whose asymptotic fields are given by }Z;m and 5%;m' However,

this interpretation has several difficulties. One difficulty is that we cannot do

the same for the m=0 solution of Eq. (9). For m=0, the corresponding asymptotic
field ;bo is given by 7/ - Q% by the same reasoning; however, we already

have

=L thrmt) - Lty s T (% )

which cannot be reconciled with A}/-4> ¢ To avoid this diiemma we may suppose
that a single Af' may give rise to more than one asymptotic field. Then, the
consequence is essentially the same as doubling the Hilbert space and extending
the mcaning of /yJ to the larger space. We assume fhis-%o be the case in the
future, whenever a similar situation arlses The second difficulty is that

instead of the Lagrangian (4) we may take :

I =g LOFD(FY — (Fpb) (¥ ] (19)
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which is the one adopted by Nambu 7). If we proceed in the same way as before,

the second term ?&}4}/ does not yield any contribution to Eq. (9) since
“l;,(?)’;— \">‘,= © . Hence the conclusions should be the same as in the previous
case. However, in contrast to (4), the Lagrangian (18) possesses the property of

chirality invariance, namely it is invariant under the transformation

M e (AT Y (19)

Then, as was noted by Nambu, this transformation is not a proper operator in a

given Hilbert space % " When we define gﬂ(bu by
m

. %
(rs2 +m-sxpaidry ) P =0 | (20)

we can construct the Hilbert space &( élb() from ?’}id). Then, the chirality
transformation (19) brings Xm into de so that now we have an infinite
number of spaces a'( rfno( instead of only two, % 0 and a’( ' The question now
arises as to whether we should interpret this result as implying an infinite mass
degeneracy or whether we should regard the total Hamiltonian as being a proper
operator in only a small number of orthogonal Hilbert spaces, say 3@ , Xm

and possibly &( - We prefer the latter interpretation since the argument which
led to the asymptotic fields ?pim’ cannot be extended to the present-.case.
Thus, we take the view that also for Eg. (18) only two independent fields f?:'nn
exist and that the chirality transformation (19) is not defined in our space
(since it can be shown that an operator U satisfying the relation U—1¢ T

‘=ei %/‘f/ does not exist in our space).

3, Comparison of the Heisenberg and Nambu theories

.Both the Heisenberg and Nambu theories derive their significance from the
possible existence of non~perturbative solutions of the postualted non-linear
field equation. In each case, the author deduces a finite "baryon" mass from the

self-interaction of a massless field Within the framework of perturbation
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field equatlon which is a non-analytic function of the coupling constant

10'

theory, the possibility of a finite mass would be excluded  Nambu argues from
the physical fact of superconductivity for the existence of a solution of his.
3) but
Heisenberg's theory is equally dependent on the existence of suqh solutlons.xb

Indeed, from the point of view of the baryon mass claculation, the Heisenberg

6)

equation H

YR T3 nna Annt =0 (21)

differs in a non-essential way from Nambu's equation :

2t —2{%wFY + AV

(22)
__..nrq/{’t—f %)’(“PYS-LF)YL"()‘O ”

Heisenberg's method of approximation for dealing with Eq. (21) differs in certain
details from Nambu's approximation for his Eq. (22) but the resulting cquation

for the mass has the same strﬁéture :
2 p2 '
=mf(” L") (23)

where /e is a length characteristic of the approximation (in Heisenberg's case
J?='J§— whereas in Nambu's case ¢ = cutoff length - see below). Eq. (23)
possesses a solution m=0 -~ which is eXpected within the usual perturbation-

14)

theoretic framework and which is discarded by both Heisenberg and Nambu -

and a solution mf0 defined by :

£” %) = 1 (24)

If either Egs. (21) or (22) were solved by means of perturbation theory, solution

'(24) would not be found.
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1.

It is of some interest to compare the approximation methods of Heisenberg

and Nambu in order to assess more fully the role of /e 'in Eq. (24) This

comparison becomes- more. perspicuous if we employ a common notation; following
Heisenberg, we define the wave function :
Kx) = <ol ¥ (0 | P> (25)

where |p)> is a state with momentum P <O| . is the vacuum state, and we

assume that somehow a Hilbert space can be defined. Then, Egs. (21) and (22) can
be written in the form :

% R’ () == 3 Z & s X (% 7(>J7,\’) A e

where (9—_,, 2’-/ [Eq. (21)/ and O}-’__ 1, i 3/5 [Ea. (22)7 and :

LA Y51 2,) = <ol (RGO 4ly) )y 14> (21)

with Furthermore, we define

%(1 x |:() a sultable llmlt of 74(7 j'z)
the 7 -functions by :

’Z_(’I) = Z("X) =g | M @) ‘/FI> (28)
T912) = :z(vc Yl2) — Fy- 2) 7(:{)
T -+ ,:(7(~;_) ?/31) , <Xc.
(29)
where i _ L
FO=Y) = < o] (&) Flady o> )
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12,

It follows that the “C -functions are the comnected parts of the “X(X, Y |Z )

in the usual Feynman diagram technique,

Heisenberg and, in essence, Nambu now have recourse to the Tamm - Dancoff

approximation but at a different stage and with a different hypothesis concerning

' the propagator function F(x-y). Nambu simply sets T(X, X[x)=0 so that :

K Tg| Ay ) = f;,(o)?d(x)-ﬁ}_(a) () - Bn

Thus, one obtains :

3 '
Vs TOO ==23 (T Flo)) = () (3

77 SIS
If one now writes THA)= € 19..’((6) and [~(c) ~ Z, SF(O,M), Eq. (32)

becomes 3
(A7) T (o) :-—zg/TN §F(0) m) S () (33)

Setting (,t)'/’? ) Z(c) -_-_._M‘z@) Eq. (33) yields Eq. (9). In the Heisenberg
case, by assumption, the interaction term is taken as a "Wick product" and thus
one must set F(0) = 0: therefore if one stops with ’Z(’J() /y} #)= O one

only obtains the wm=0 solution. Henée, Heisenberg goes to the next Tamm -
Dancoff approximation, i.e. he sets (X, 2, ’>{3} 7’;; A= 0 - In effect, Nambu
computes the mass on the basis of the bubble diagram (Fig. 1a), whereas Heisenberg

uses the more complicated diagram (Fig. 1b).

In addition, Heisenberg and Nambu choose different forms of the Green's

function (30). Nembu approximates F(x-y) by :

Py ez, 2, (%

L 1y pP-m
Z (2) 2z,

pn C AN eAp-GpE=g)) (30)
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where C(p2, /\2) is a convergence factor ( /\ is the cutoff momentum) which
must be inserted in order to produce a finite answer. This choice of propagator
violates chirality invariance because of its dependence on m. The finite mass
which follows from Eq. (9) then turns out to be proportional to /\ , i.c.

,e = /(1 in Eq. (23). Heisenberg attempts to maintain a chirality invariant
propagator and convergence at the same time. This is achieved by writing down

an expression for the propagator which implies an indefinite metric, namely :
. 3 ’-— ¢ _J_
F(v( 9)/\ foc P (1 arp)[ rrTs 7,2) ]Wfa (x—-y)] (342)

In this unorthodox fashion, Heisenberg can produce a finite mass which is
expressed in terms .of the fundamental length of the theory, i.e. ,@ = J—g-

Eq. (23). These different choic_es of F reflect the different assumptions

which are made by Heisenberg and by Nambu concerning the underlying Hilbert space.

There are some more fundamental differences between the HeiSenberg and
Nambu theories which are related to the interpretation of the field operator "% .
To make the point more clearly, consider the 2-component Weyl field 525

2
()P =0 (35)

It is well-known that there is a one to one formal correspondence between the

Weyl field 525 and the Majorana field /‘f defined by :

4= .o-fqﬁ) (56)

This follows from the fact that if we use the reprecsentation for the Dirac

matrices in which 2/5 is diagonal, then :

'

,b,%,,{,:o) C ;lF:A}/ (37)

153
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14.

i.e.. /qf is»gtMajorana field. This one to one correspondence befween ¢ and

/Y/ illustrates the importance of the physical interpretation of the field
operator since a Weyl field does not admit the space-reflection operator whereas,
fér a Méjorana field, particle and antiparticle are the same while space-reflection
is an allowed operation. In this connection, it is convénient to distinguish
between variational variables and canonical variables 15). Variational variables
are the ones used in the variational principle for the Lagrangian with the

proviso that one may adopt any arbitrary combinations as the variational variables.
Thus, in the above simple example, ¢ or /%’ can be a variational variable, ‘but
if we wish to interpret @ as a real Weyl field, then ¢ is canonical but not
/f’. On the other hand, if we wish to interpret /y’ as a real Majorana field,

then /yL is canonical but not @. The choice of canonical variable is not

‘ 1
trivial; e.g. it has been shown in one simple soluble theory 6 that one special

choice of the canonical variable requires an indefinite metric and gives rise to

divergences whereas another choice does not.

Let us now return to Heéisenberg's equation s
2 o _ .
T I ¥t =c o)

Heisenberg uses the chirality transformation s
. \
A= exp () - W (59)

as the generator for the fermion number N wherecas Nambu uses the usual gauge

transformation :

4’-—9 MF(«"oL)zo/‘f B o (»40)

as the generator for N. In the“HeiSenbérg theory, the transformation (40) is a

generator for the third component I, of the isotopic spin rotation. Indeed,

3

(40) is a special case of the more general so-called "Pauli - Glirsey" trans-
17)

formation
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15.

> 4B

(41)
2 2
J "+ 141 =1
which is isomorphic to the isospin rotation group.
Diirr 18) has shown that the transformations (39) and (41) can be written

quite simply if we employ the 2-component spinors ¢1 and ¢2 (instead of the
four-component /y’ ) defined as follows :

b=
b=2 i+ O F (42)

Then, Eq. (38) reduces to Lgee Appendig :

TZ¢=1t3g9 ¢*9 ¢ (43)

with (P: ( %’). In the new notation, the chirality transformation (39) is

converted into the usual fermion gauge transformation :
P, wxpii) b2 (44)
and the Pauli - Glirsey transformation (41) reduces to the usuai isospin rotation :
4’, -—> ok P + I ¢,

¢, -—->~—-(ff}’, + oL, )

Finally, the prbpagator (34a) takes on the simple form :

2

Lol {em) 4’7((7))4_!07 = -(;_F)q_fd(f,f? (c-p) f?é'&-?’; + (—77%2] (452)

x 2xp (TP E-Y)]
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The same decomposition defined by (42) does not lead to any simplification
of propagator, etc. in Nambu's theory because.of the differenﬁ_choice of canonical
variable. That is to say, Nambu takes the four—componént bDifac" field /y’ as
the canonical variable whereas Heisenberg takes the two 2-component "Weyl" fields
¢1 and ¢2 as the canonical variables. This is the reason why in the Heisenberg
theory the usual parity operation is no longer valid whereas in the Nambu theory,
parity is still defined. The distinction between variational and canonical
variables also explains another important point of difference between the
Heisenberg and Nambu theories. On the basis of chirality invariance, Nambu

derives a conservation law for the axial vector current and thereby proves the
existence of a zero mass pseudoscalar boson (identified as the pion) using some
reasonable dispersion theoretic arguments. However, the same deduction does not

hold in Heisenberg's theory 19)

since the chirality transformation is utilised
to define the fermion number; in fact, the pions in Heisenberg's theory are of
non-vanishing mass. This is not surprising, since the choice of the canonical

variables is entirely different in the two theories.

The different choice of canonical variables - as well as of the fundamental
non-linear equation - in the He1senberg and Nambu theories flows from a different
motivation in each case. Heisenberg WlSheS to construct a theory of elementary
particles based on one massless four-component field operator satisfying a non-
linear equation whose invariance properties will automatically éive rise to the
known additive quantum numbers, isospins and multiplicative gquantum numbers of

~all the elementary particles. (We shall not comment on his hope to derive the
properties and relative utrengths dfvthe strong, electromagnetic and weak inter-
actions as well as the masses and properties of the partlcles) He has shown
how to derive the fermion (addltlve quantum) number from chlrallty invariance
and the isospin from "Pauli ~ Glirsey" invariance. However, the discrimination
between the baryon and lepton numbers requires the introduction of the ill-defined
"scale" transformation and the strangeness number necessitates the postulation of
a vacuun with infinite isospin 20 . Heisenberg must introduce an additional
hypothesis (he introduces the ’£'€>'f/( transformation) in order to cope with
the multiplicative quantum numbers P and C. It is safe to say that Heisenberg's

goal of a one-field theory is extremely ambitious and will be extraordinarily

difficult to carry out.

153
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Nambu seems to be more modest in his objectives. He appears to be willing
to introduce the baryon gauge transformation, isospin rotation and strangeness
gauge transformation ad hod (by working with three Dirac fields) and he makes no
attempt at the present time to deal with the leptons. His chief interest is in
pushing the analogy between the chirality invariance of his non-linear field
equation, the finite maSé solution and the zero-mass pseudoscalar boson on the
one hand and (ordinary) gauge invariance, the energy gaﬁ and the collective
oscillations in superconductivity on the other. Nambu has suggested introducing
a non-zero bare mass (mo£ O) into his equation in order to obtain a finite mass
for the pion (but as we shall see, we propose to introduce m, # 0 for a complete-

ly different purpose).

4, Two-field theory.

We believe that the BL symmetry principle stated in the introduction
suggests a two-field theory which, while utilising several key concepts of the
Heisenberg and Nambu theories, may possess certain advantages over both. There

are also serious problems which will be mentioned at the end.

Let us first consider the isodoublets (n,p) and (ej)/); the iSosinglets
/\ and " will be treated later. It is reasonable to assume that the mass
differences between (n,p) and (e ,V) are due to electromagnetic effects and
heﬁce,‘if the electromagnetic interaction is neglected, that the nucleons possess
equal mass M and the light leptons zero-mass. Suppose we start with the

Heisenberg Lagréﬁgian :

L= Lov—i- }_,
Lo=—% I Fvg av“r + Tif* ~—3-A”7T4H”’ o
(46)
Li= g (R ) (Frept)

153
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18.

We note that the four-fermion interaction :

(vay—@Tap (Fat—ta'y) )
isjinvaxiantvunder both the chirality transformation (39) and Pauli - Glirsey

transformation (41) if ,Z;ée Appendig7 :

Q=A or T for Pauli - Glirsey transformation
if |

Q=A or V for chirality transformation

Thus only Q = axial vector satisfies the invariance under both transformations,
which is, of course, the basis of Heisenberg's claim that his non-linear equation
is unique (as long as one limits oneself to the simplest type of non-linear
spinor equation). It should be emphasized that zero bare mass (mo=0) is

essential for the validity of both chirality and Pauli -vGﬁrsey invariance.

We now adopt Heisenberg's viewpoint, i.e. we think of the two 2-component
Weyl fields ¢1 and ¢2 defined by (42) as the canonical variables. Then as
has been noted, the field @ describes an isospinor. Then, as in the Heisenberg
theory, we identify the non-perturbative finite mass solution with the nucleon
(n,p). Purthermore, to define the parity, we propose to combine the m = N
solutions into a four—compoﬁent Dirac particle with mass M (this bears only
a formal resemblence to the ,f—e> -;f transformation). In contrast to the
Heisenberg theory, we do not discard thé m =0 solution but instead identify
the associated isospiﬁor with the light lepton (e_,L)). It follows that the
light lepton must be described by a two-component spinor. While this appears
satisfactory for the neutrino, it is certainly not true for the non-neutral
member of the light lepton doublet, namely the electron. To explain this
deficiency, we hypothesize that the other two components of the four—component
Dirac spinor actually describing the electron, are generated by the electro-
magnetic interaction; i.e., we may expect that the non-perturbative finite mass
solution for the electron (due to the chirality-invariant electromagnetic inter—

2)

sense as the baryon case above. In this context the electromagnetic field could

action) also involves a doubling 1 of the number of components in the same

be considered as a separate fundamental field.
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The next step is to assume the existence of an equation like (23) and to
argue, with Nambu, that the m =0 and m # 0 solutions refer to inequivalent
representétions of the anti-commuting ring and that therefore the light lepton
and nucléon Hilbert spaces are orthogonal to each other. Comnsequently, the field
operator ¢ or (¢ ,¢2) possesses no non-zero transition matrix elements from
one Hilbert space to the other. Thus we can double the space and extend the
meaning of the field operator ¢ to the product space of the light lepton and

nucleon Hilbert spaces instead of the direct sum of the spaces.

The orthogonality of the two spaces implics that nucleons never transform
into the light leptons, i.e. a kind of the super-selection rule operates, as has
been already pointed out by Nambu. We also note that in‘this approximation,
there is no f?—decay interaction since n+p -> e+l is forbidden. It is even
tempting to attribute the weak beta decay to a breakdown of the orthogonality of
the lepton and baryon Hilbert spaces resulting from the non-zero mass of the
electron (by breakdown is meant that the field operators possess non-vanishing
matrix elements between the two spaces). Such an explanation would have the
virtue that it would at the same time provide a natural basis for the apparent
dominance of the charged currents over the neutral currents in weak interactions.
The two members of the current contributing to the weak interaction differ in
charge because they must differ in mass in order to break the orthogonality of
the Hilbert spaces. The electromagnetic interaction is the mechanism whereby
the weak interactions become possible. From this viewpoint intermediate charged

bosons are unnecessary.

Thus, in the proposed picture, we can readily explain the isospinor
character of (n,p) and (e_,)/) and also we have a super-selection rule which
distinguishes between the baryon and lepton numbers. There is, however, a
fundamental difficulty : there is no guarantee that the four-lepton interaction
is appreciably weaker than the four-baryon interaction. The tremendous difference
in observed strengths between the four-lepton and four-baryon interactions must
be ascribed, from our viewpoint, to the striking different character of the

¥
m=0 and m=2XN solutionse')Since the non~-perturbative finite mass solution
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is a reflection of the non-analytic dependence on the coupling constant, we argue
that the effective coupling is an extremely sensitive function of the physical
fermion mass and is respongible for the relative strengths of the four-baryon and
four-lepton interactions; for example, we may conjecture that in analogy with
superconductivity the effective coupling constant is of the form g e —1/m € or
mf(m2,g). (In superconductivity the energy gap E is related to the phonon-
electron coupling constant g by means of E = e-(W/gz) where W is the density
of states per unit energy at the Fermi surface). We had hoped to demonstrote the
possibility of this bchaviour using the Thirring "one-dimonsional four-fermion
model 22); unfortunately, the coupling constant in this model must be dimension-
less and the possibility of a non-perturbative finite mass solution is necessarily
excluded. A crucial test of our type of theory will be to exhibit the possibility

of a non-analytic dependence of the effective strength of the coupling on the

‘mass of the four-fermions participating in the interaction.

We now turn to thél//A_ and ,/\ The muon possesses a huge mass (on the

scale of the electron mass) and it is extremely unlikely that this mass has an

23)

electromagnetic origin . We postulate that the "strange" mass of the muon is

. due to the existence of a bare mass m #0 1in the lagrangian from the begimning

and we add a second field Afr with mo % O to the lagrangian, namely :

‘ﬁfmo“—"‘“ (F4— ?"f’/) (48)

We now suppose that there is a non-linear interaction between the ’EL and AP
fields and that the///LL and A masses arise from a displacement of the m =0

solutions for alone 4).

However, in order not to affect: the appearance of
the m =0 solution /see Eq. (23)/ to describe the light leptons, it is sufficient
for the total Lagrangian for the two fields /ﬁP and /ybf to be invariant under

the restricted chirality transformation s

bt Ao A

(49)
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In a sense, the (finite) mo plays the role of a strangeness quantum number.
This is to be compared with Nambu's proposal of a finite m to enable him to
obtain a finite pion mass. From our viewpoint, we interpret the chirality
transformation in the same way as Heisenberg and this problem does not arise.
Moreover, if Nambu's m = O solution is identified with the light lepton, the
introduction of a finite bare mass sufficient to explain the pion mass would be

expected to lead to an excessive light lepton mass, unless one is lucky.

Because of the finite bare mass, the df;o part of the Lagrangian is nov
invariant under the Pauli - Glrsey transformation so that the four-component Af'
is maintained as the canonical variable and remains, as experiment requires, an
isoscalar; i.e. the isospin transformation for 4Pf is AF’-—? /YJ, in contrast
to BEq. (41). This is to be compared to the four-component /Y/ which is intecrpre-
ted as two canonical two-component Weyl spinors ¢1 and ¢2. In this fashion,
two four-component spinors A+ and ‘Af', the first with zero bare mass and the
second with finite bare mass, may reproduce simultaneously the baryon triplet
Cﬂ ,n,p) and the lepton triplet g/ﬁc,e_,l/). The BL symmetry principle has

led in a natural way to a two-field theory of the elementary particles.

We recognize that our two-field theory is more of a programwme than a thcory.
It is less ambitious than Heisenberg's one-field theory in that the strangeness
is introduced from the start by means of a second field with m #0. It differs
from Heisenberg in exploiting the inequivalent representations to differentiate
between the baryons and the leptons rather to employ the "scale transformation"
with its attendant difficulties. It shares Heisenberg's dilemma that separate
P and C invariance of the strong four-baryon interaction can only be achieved

25)

by means of an additional assumption (unless Thirring's programme of deriving
separate P and C invariance from the CP invariance of this type of theory
is successful). The two-field theory is more ambitious that Nambu's theory
because the isospin, strangeness and lepton quantum numbers are supposed to
follow from the group-theoretic properties of only two fields. It differs from
Nambu in seeking the analogy with superconductivity not through the chirality

invariance, but rather through the sensitive dependence of the four-fermion

interaction upon the physical fermion mass. The common’difficulty of all of
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these theories is that serious calculations are almost impossible. One may only
hope that the judicious choice of model calculations may lend support to the
qualitative features of one of these theories and suggest certain types of

experiments which may be particularly incisive.

We are indebted to Professors V. Glaser, W Heisenberg, L. Van Hove and
Y. Yamaguchi for valuable conversations and Professor Y. Nembu for helpful

correspondence. We also wish to thank CERN for its hospitality.
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APPENDIX

v

The Group Properties of n Four-Component Spinors

For the purposes of reference, it is useful to record in this Appendix an

8) . 24)

. oo . ,
extension of the work of Dirr and: Thirring on the group of various types
of four-fermion interactions among n four-component spinors. Let us consider
n four-component spinors /\//i (i=1 g o s ,n), and assume invariance under the

unitary group U’n among them. We take zero bare mass so that the Lagrangian

is ¢ . .
gy 2 T2¥ —
L, ==z C”“/’}’};’W" = T4 +4r —%(— ~;7Tlf]
) (a1)
£ *—"2(‘*@% taTF) (Fa 't yaT¥)
where /"/’ (4,‘/1 "f’ is a 4n-component spinor, Q denotes appropriate

2/=-ma’crlces, and
—_ N —
At = \f' o @ /Lf/fr,\
7=
Eq. (A1) is invariant under the unitary group U’n.:
X X
/Ll/q, — i A 9/\.}43 )\%)' ai(] a}g;\ - 54\'4 (A2)

We shall show that for a special choice of Q, Eg. (41) is invarient under a

much larger group.

We decompose /‘/’i into two 2-component spinors ¢i and 'jéi by means
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$ = "(‘ﬂ}) e, K= EL(‘H‘TS_) A,
Then defining : |
b=(d,—34n),  H=(H - H)
Eq. (41) becomes :
Lo=—glFrae - crwx“c" 27T ]

4—"—:,’—'(5[7?,574 -~ +7<7T31‘—3—7‘ 7% ]

‘and

Hat-taTH - Pag- c%oTcP—W(C@ Jx
«ﬂcac)x«x(ca)cPeran ¢(oTc) %
+ T(SQT)E

Note, furthermore, that :
T =& , VX=X

We now specialize Q. (f) Q= V; /4 , then :

YL car, =—cR
so that .
f,tc@(«i’ X 7 4@9}4"*1“;@ =0
Thus ¢ ‘

Fay-NHdTF= dap-d g +7 celck

— xcad'x

(44)

(46)

(a7)

(48)



GY)Q::g)T) F s then :

@ V= @&
so that
$0d=-F7-a%P=—FaP=0
Similarly s
ZAX =0
so that :
FoV—4aTF =—xca®+Pad x )
—dgcx +zZeTd
On this basis of Egs. (A8) and (A9), we have
(i) a=24 |
Aab—4d¢ = FoaP+7@rx—9a' ¢ (410)
| — xe
(i1) a=V |
Fap-4elF = a9 —Tax —¢eTF )
+ X @v 2

(iii) Q=8 or P

A’F@(_{,_,(_‘/@TFF:__’ZCQCF‘(PC@ X+ 55@5-'54— (112)
+zadcd
(iv) @ =T
Fa4—y@F= gaclz —Fac @
| ~%cad +dcax
Thus for Q =4, of , is invariant under the 2n-dimensional unitary group I)‘Zn;

this is clear if we define :
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P = (i) o (a14)

For Q=1V, of 1 is invariant under separate n-dimensional groups D—n among
the QC and among the ¢, i.e, it is invariant under 'D:)t @Uﬂ . For

Q=93 or P, let us introduce new variables :

P=dForn 2L Za-z) (15)

then :

Fo4—4aTF=-d'ca sz

/cox

— —_ — (a16)
+¢/ ca ¢/ +x7 cor’

Therefore, f 1 is invariant under the 2n-dimensional orthogonal group R2n'
Finally, for Q =T, if we define :

d’; AT
B _ [ e
P = L I= SN
. - N (a17)
@, <,

i
AN
P /
En
then cf 1 - 1s invariant under :

?>TUZ were  'IU=T1 (a9

This means that ;C 1 is invariant under the 2n-dimensional symplectic group
Sp(2n). Note that J‘Oo is invariant under U-2n°
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We may summarize the results :

kT,
Q=1 ; Um@U\/m
T Ren= U NG
eT ; [72.71/\5},(2_7\)

The Heisenberg case corresponds to n=1 and Q=A and hence [fk1917

(419)

the result is invariant under IZé . Also for n=1 and Q=T, we have the
two-dimensional unitary symplectic group which is equivalent to the two-dimension-
al unitary unimodular group; this is why Q=T (together with Q=A) leads to
invariance under the Pauli - Glirsey transformation but not to invariance under

the chirality (gauge) transformation. In the case of n=2, our choice, we have
various possibilities depending upon the interaction. For the study of the
"symmetrical" Sakata model, n=3 and it appears that we have too many invariant
quantities if we adopt a pure Q (i.e. not a mixture of various types of
interactions). This would then be a problem with the "symmetrical" Sakata

2), 25)

model



Nambu theory

-,

Heisenberg theory

(b)

Fig, 1

Diagrams used to obtain finite mass solutions
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