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1 Introduction

Calculations of the heavy ion elastic scattering at intermediate energies is
very sensitive to parameters of an interaction potential. The goal of this
paper is to get an analytical expression for the elastic scattering armplitude
within the high energy approximation (HEA) [1], [2], [3] which gives a pos-
sibility to search for a mechanism of the process depending on the potential
included and the dynamical parameters as well. One of the problems of the
HEA is that it needs calculating quickly oscillating integrals. Usually, one
can avoid these difficulties by extending this sort of integrals into a com-
plex plane. In addition, there exists one more problem since the eikonal
phases of an integrand are unknown in an analytic form for a Woods —
Saxon potential typical of nuclear physics. To resolve it, in many papers
approximate expressions have been suggested instead of a Woods - Saxon
potential (see, e.g., refs. [4], [5]) which allow calculations of the eikonal
phases in an analytic form. Also, the phases were approximated in explicit
forms from the beginnings. For example, the Glauber high energy approach
was successfully applied in [6] to the pA - elastic scattering with the eikonal
phase calculated by using the residue at only one pole of the Fermi function



nearest to the real axis in the first quadrant of a complex plane of impact
parameters. In all these cases, approximations are madc on the real axis,
but one should remember that after transition to the complex plane the
behavior of original and approximate functions may be very different.

In Sec.2, we extend the approximate expression for a phase integral fromn
[6] to the fourth quadrant and we also study its applicability in the casce
of heavy ion scattering. In particular, the saddle point trajectories on the
complex plane are compared when the approximate (frowm [6]) and the exact
(from [7]) expressions are used for the nuclear cikonal phases for & Woods

Saxon potential. Sec.3 summarizes the results of our calculations for
scattering in the cases of nuclear refraction, optical model scattering and
nuclear diffraction.

2 Scattering amplitude and saddle points

We consider the elastic nucleus-nucleus scattering at energies I > [V and
AR > 1 and use the amplitude obtained in [8] for large scattering angles
6> |VI|/E, 8 > (1/kR) which covers a wide region of § where experimental
data usnally exist:
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Inserting a Woods Saxon potential
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In {6], the last integral was approximated by a onc residue in the first
quadrant of the complex p- planc. We have generalized this approach and
obtained the following expression [9]:
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where 14 = R +ina are the first poles of the Fermi function in the I and
IV quadrants, respectively. The explicit formula for ( 2. 7) was obtained in

[71:
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where /\E.i) = 4/(r$)? - p?, 'rj = R+tima(2p — 1) with p=1,2.3... For

real p we have )\;—) = —/\g,ﬂ .

It is clear that for large g the integrals (2. 5) oscillate very quickly. We
evaluate them by using the saddle point method (SPM). The saddle points
are solutions of the equation:

9(ay(r,7) = Hig +yI'(r) = 0, (2.10)

where the signs ” +” and ” ~ ™ correspond to the so-called near- and farside
amplitudes, respectively. The standard SPM expression for integrals of the
type of (2. 5) is given by

JB(r) = —r fu(r,) o) /—27r/gz'i)(rs), (2.11)
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where ry = p{*) depends on the transfer momentum g,and s is the number
of solution to ( 2. 10). We assume that the main contribution to { 2.

5) comes from the saddle points around the poles v = R +ima. It is

clear that at large ¢, saddle points ) are displayed close to the poles
rpt =R+ ira(2p — 1), where p=1,23...

When solving eq.( 2. 10) numerically, a very effective continuous analog
of the Newton method [10] was used. Also it was investigated that for
practical cases one can use ouly 13 terms in the sum ( 2. 9) for the cikonal
phase I (2. 7). If one takes the approximation



( 2. 8) for I, he roots of equation ( 2. 10) for saddle points. In fact,
substituting ( 2. 8) into ( 2. 6) and ( 2. 10) one obtains
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At large momentum transfer the saddle point will be near the poles r¥;
therefore, the solutions of ( 2. 13) may be represented as

6
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Then, one can rewrite ( 2. 13) in the form:
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Here, n=0, 1, 2 are the numbers of roots of ( 2. 19), and they are sclected
to satisfy the condition I'm A > 0. In the I quadrant, one gets

1 2
sin A" = sin[%(?n +1)+ g+ gﬁﬁﬂ] >0, (2.22)
and for solutions in I'V, one has
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Now, since [6)] < |rt] we find:
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and then
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[t has been shown in [9] that for the nucleus-nucleus collisions when I? —
By + Iy > ma we have the following approximate values:

2rn+ 7 for  [Wol > |V,

g =" (2.28)
F@un+ 1)+ 5 for Wy < |Vl
trn for W} > |V,

A= (2.29)
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Thus, using eqs. (12.28), (12, 29) and bearing in mind that 0 < ﬁ § z
and z‘rr < JEC < 27r one can select the root number 1 among the values

n=(0, 1, 2.

3 Results and conclusion

First, we have studied applicability of the approach [6] in the case of the
heavy ion scattering when the approximate expression (.2. 8) is used for
the ecikonal phase with a Woods  Saxou potential. An attractive feature
of this approach is that in both the cases of scattering at small and large
angles 6 one can obtain an explicit formula for the amplitudes by using the
SPM of calculations. Below, as an example we consider elastic scattering
of two nuclei with atomic numbers 17 and 90 by the complex Woods
Saxon potential with the geometrical parameters R=7.05 fm and a=0.5 fu..
The parameters Vy and Wy vary. The kinetic energy in the can. svstem is
E=1435 MeV.

In Fig.1. we show the results of calculations for the complex trajectories
of saddle points.
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Figure 12 The behawmor of the saddle points on the compler v plane with diffevent paranicfeors
of the nuclear potential. Scallering angle interval is from 5° up Lo 25°. Solid lines are cract
numerical solutions, stars correspond to approximale caleulations, the civeled black spols
present the poles. (a) Vo= -50 McV, Wy=0; (b) Vo= -50 McV, Wy= -25 McV: (¢) Vi~ -1
MeV, Wy= 50 MeV.

Trajectories in Fig.1{a) correspond to the refractive scattering when the
absorption parameter Wy=0. The two big black spots represent the poles
r¥ = R £ ira nearest to the real axis for a Woods  Saxon potential in
the integrand function. One can sce that in this case the solutions (stars)
of the approximate saddle point equation ( 2. 19) coincide with nuerical
calculations of the exact equation (2. 10) (solid lines). Then. it is scen that
in the T quadrant there exist two trajectories (n = 0,2), while in the TV
quadrant there is only one root . = 1. When absorption is included (W, #
(). a distinet behavior 1s seen of nunerical and approximate solutions. For
strong absorption (Fig.1(c¢)) only one root exists in the I quadrant and one
root is 1u the IVth one. This property is a consequence of (2. 26), ( 2. 27)
becanse of 4, =0. .

It 15 obvious that in the scattering amplitude proportional to (2. 11)
the exponential term exl)[g(rgi))] plays a dominant role. Since g(rgi)) =
iiqri“ + ",[(rsf)'). the behavior of the eikonal integral I on the complex
plane significantly influences the absolute value and the angular dependence
ol cross sections. Thus, the approximations for eikonal phases made for real



r can have no meaning when these phases are considered on the complex
r- planc. As an example, Fig. 2 exhibits the calculations for Im I and
Re I with the help of exact ( 2. 7) and approximate ( 2. 8) expressions
shown by the solid and dashed lines, respectively. The stars are when only
13 terms in the sum ( 2. 9) arc taken into account. It is scen that, in
practice, in calculating onc may use several terms only. And the main
result is that an approximate formula ( 2. 8) behaves on the complex plane
in a very different way (dashed lines) as compared with the exact one (2.7)
(solid lines). Thus, one should be very careful when expanding approximate
models of the eikonal integrals into the complex r- plane.
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Figure 2: The behavior of eikonal integral | dependending on the imaginary part of the impact
parameler p when its real part is equal to R=7.05 fm.

To sce how well the approximate amplitudes work, we compare them
with the corresponding exact numerical calculations. Fig.3 shows the cross
sections obtained by the SPM (dashed lines) compared with the full nu-
merical calculations (solid lines) for various parameters of a Woods - Saxon
nucleus-nucleus potential.

The exact numerical calculations by (2. 5) have used the exact eikonal
phase ( 2. 9). The dashed lines are the SPM calculations with the help
of ( 2. 11) where also the exact phase ( 2. 9) was used. The stars are
calculations with the approximate phase I (2. 8). Itisscen that evaluations
made by using 7 are different from others. Their absolute values are in
stroug dependence on the parameters of the real part of a potential. All



calculations by the SPM, which use the exact phase ( 2. 9), are in good
coincidence with the results of numerical integration up to the angles where
the slope of curves of cross sections changes. In this region, one has to
claborate other methods which include contributions from the saddle point
trajectories passing near cach of the poles r;‘ = Rtima2p - 1), p =

1.2.3...
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Figure 3: Eikonal cross sections in (fm?[st) versus the scallering angles. (a) Vo= -50 MV,

Wo=0; (b) Vo= -50 McV, Wo= -25 MeV: (c) Vo= -1 McV, Wo= -50 McV.
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Yy6os H0.B. u mp. E7-97-271
H3yyeHHe KBa3HKIIaCCHYECKOTO paccesiHus B T0JIe MOTEeHLHANA
Bynca—CakcoHa B BBICOKORHEPrETHYECKOM NPHOMIKEHHH

B pamkax MeToj1a BRICOKOSHEPTETHUECKOTO NPUOIHXEHHS HCCIENYETCS aMILIH-
TyAa YNpYroro sigpo-sAE€pHOrO paccesHus B Nojie suepHoro noteHuuana Bynca—Cak-
coHa. CpaBHMBAIOTCS MHCJICHHbIE PAacUeThl 3HKOHAIOB M AMIVIMTYH «GaHxHerc»
H «IATbHEr0» PacCESHUA C MOZIENIbHBIMA BHIPAXEHHAMH 3HKOHANIOB H COOTBETCTRY-
IOHIMMH  aMIUIMTYJaMH, [IOyYEeHHBIMH METONOM IepeBata. CaenmaHbl BbIBOAbI
06 o6nacTax NPUMEHUMOCTH MOIE/IeH B IPENENBHBIX CY4astX CHIBHONO MOMIOLEHHS
¥ peppakuKH, a TaKxe NPH TPaIHLHOHHOM BHIGOpE MapaMeTpOB B3aMMONEHCTBHS.
TlokasaHo, 4TO BO MHOTHX Clly4asx MOZE/IbHbIE 3KOHAIBI HCIIONB3YIOTCH BHE 06/1acTH
HX JOIMYCTHMOID IIPHMEHEHHS.

PaGora seimontena B JlaGoparopuu reopetnueckoit dusuxu um.H.H.Boromo6o-
Ba OUAH.

Ipenpuut OGLeHHEHHOro HHCTHTYTA ANEPHBIX MCCIeToBanMit. yGna, 1997

Chubov Yu.V. et al. E7-97-271
A Study of Semi-Classical Scattering in a Woods—Saxon Potential
within the High-Energy Approximation

The elastic scattering amplitudes of heavy ions presented in the form of the high-
energy approximation are studied using a Woods—Saxon potential. Numerical
calculations for eikonals and for the «near-» and «far-side» amplitudes are compared
with those obtained by the saddle point method. Conclusions are made
on applicability of models when parameters of potentials are selected in accordance
with the cases of strong absorption, refraction and the optical scattering. It is shown
that in many cases the models are utilized beyond the scope of their suitability.

The investigation has been performed at the Bogoliubov Laboratory
of Theoretical Physics, JINR.
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