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Chapter 1

General Introduction

1.1 LHC - project

1.1.1 Introduction

The Large Hadron Collider (LHC) project [1] is a superconducting accelerator for protons,
heavy ions, and electron-proton collisions to be installed at CERN. This collider will pene-
trate still further into the structure of matter and will recreate the conditions prevailing in
the Universe just 107!2 second after the ”Big Bang”. The aim is to produce, not only high
energy but a higher luminosity, or probability of collision, than existing hadron colliders. For
example, the LEP machine, which is the latest and largest of CERN’s existing accelerators,
takes the fine detail with which the structure of matter can be studied down to the level of
10~1 millimetres. The LHC will increase this magnification by a factor of ten. The design
principle of LHC is the same as that of LEP. Both machines are synchrotrons in which a
stream of particles is accelerated and held in a circular orbit by thousands of electromag-
nets. The difference is that LEP collides electrons with their anti-particles, positrons, while
both beams of particles which collide in the LHC are protons. The maximum energy of the
leptons which collide in LEP is limited to about 100 GeV by the intense flux of synchrotron
radiation which these light particles emit as they are bent into a circular path. The energy
at which this happens to protons is much higher than for electrons and they can circulate
at the highest energy that the superconducting magnets which form the guide field allow
without the braking effect of this radiation. Since the machine is to be installed in the exist-
ing LEP tunnel, the peak energy is dictated by the maximum strength of the magnetic field
which will hold the protons on their orbit. Using superconducting magnets which operate
in super-fluid helium below 2 K will allow a guide field of about 10 Tesla, i.e. proton beams
to be stored at an energy of more than 7 TeV per beam. The main performance parameters
of the LHC for proton-proton operation are listed in Table (1.1).

1.1.2 Lattice

The machine [2] is subdivided into octants, each comprising one half of an arc section (1228 m
long), two dispersion suppressor sections, (each 174 m long), and an insertion (528 m long).
A schematic layout of the LHC with the location of the experiments is shown in Fig. (1.1).
The beams cross in four points around the circumference where the physics experiments will

11



12 CHAPTER 1. GENERAL INTRODUCTION

Table 1.1: Main Parameters of the LHC for Proton-Proton Operation

Centre-of-mass collision energy | TeV 14.0
Dipole field at collision energy | T 8.36
Injection energy TeV 0.45
Luminosity em~2s71 | 14.0
Circulating current/beam A 0.54
Particles per beam 2.9 % 10"
Stored energy per beam MJ 334

be located. The two proton-proton experiments using high luminosity, ATLAS and CMS,
are located in new underground areas. Two other experiments are programmed, ALICE
which will be specialised in heavy ions physics and LHC-B devoted to B-physics.

Trammma®®”\
Cleaning

ATLAS A Toroidal LHC ApparatuS

ALICE A Large Ion Collider Experiment

CMS Compact Muon Solenoid

LHC-B Study of CP violation in B-meson
decays at the LHC

Figure 1.1: Schematic layout of the LHC

The four other straight sections, where the beams do not cross, are used for machine utilities:
acceleration, beam cleaning and beam dump systems. The layout of point 4, however, which
contains the r.f. acceleration system, is designed to allow the installation of an experiment
in the future.

1.1.3 Magnet system
1.1.3.1 Types and number of magnets

Each of the 2456 m long arcs is made up of 23 cells formed of two identical half-cells, a bend-
ing /focusing configuration shown in Fig. (1.2) composed of three 14.2 m long twin-aperture
main dipoles and a short straight section housing one 3.10 m long main quadrupole, a com-
bined sextupole/dipole corrector, an octupole or a skew quadrupole or a trim quadrupole
and a beam position monitor. Small 6-pole and 10-pole correctors are located at the ends of

TU-Graz/IGTE CERN-LHC/ICP




1.1. LHC - PROJECT 13

the main dipoles. The main dipoles and the quadrupoles, as already mentioned in the intro-
duction, are all of the twin-apertures design, while the corrector magnets are independent
for each beam.

31 242 142 142 142 242
= % = %
58 ¢ ¢ g g g 58 8§ ¢
BPM Beam Position Monitor MQ Arc Quadrupole
MB Arc Dipole MSCBH/V Arc Sextupole/Dipole corr.
MO Arc Octupole (horizontal/vertical)

Figure 1.2: Layout of the half-cell

The dispersion suppressors, situated between the regular arcs and the insertion regions
use 8 standard arc dipoles and 4 standard arc quadrupoles supplemented by small trim
quadrupoles. Close to the crossing point, special dipoles recombine the two beams into a
common channel. The final focusing triplet in the experimental insertions are built up from
single bore 5.5m long quadrupoles (32 units) of a novel design based on graded coils wound
from NbTi cable. Their aperture is of 70 mm and they will produce a field gradient of up
to 235 T'm~!. In the LHC there will be 3444 superconducting magnet units, including 1232
main dipoles and 386 main quadrupoles, to which 4928 small correctors of the main dipole
have to be added, for a total of about 8400 units of different size and importance. The LHC
magnets are thus one of the most massive applications of superconductivity: the conductor
quantity will be about 1200t of which 400 t will be NbT" alloy, the mass to be kept at 1.8
K temperature will be about 30 000 t distributed over a 27 km circumference. In addition,
there will be a number of room temperature magnets, i.e. 40 dipoles of classical construction
and 48 twin-aperture quadrupoles of special design.

1.1.3.2 Technical choices

As the circumference of the machine is given by the existing tunnel, a bending field of
about 8.4 T is required to reach the desired design energy. At present this high field can
be reached reliably and economically in such a massive application only by the use of NbT"
superconductor technology and cooling the magnets to a very low temperature (< 2K) to
increase the current carrying capacity versus the field of that type of conductor. The other
route, i.e. using Nb3Sn conductors at 4.2 K, is at present too expensive and too risky for
a large application as the LHC magnets, though very successful short single-aperture dipole
models have been built in industry and laboratories and tested at CERN [3]. Below 2.17
K, helium is in the super-fluid state, with extremely low viscosity, high heat capacity and
very high thermal conductivity. These properties allow to design a particularly simple and
efficient cooling scheme by which the magnet active parts operate at 1.9 K in a bath of
static super-fluid helium at atmospheric pressure [4]. On the other hand, the enthalpy of all
metallic parts in particular that of the superconducting cables diminishes by almost an order
of magnitude between 4.2 K and 1.9 K, with a consequently faster and higher temperature
rise for a given deposit of energy. This feature requires a particular care in limiting a sudden
heat development and in particular any conductor motion. The electro-magnetic forces on

CERN-LHC/ICP TU-Graz/IGTE




14 CHAPTER 1. GENERAL INTRODUCTION

the conductor increases with B? and so does the stored electro-magnetic energy, calling for
stronger force-retaining structures and more elaborate quench protection systems than for
previous projects. To collide two beams of equally charged particles, they must circulate in
separate magnetic channels with fields in opposite directions. Space limitations in the tunnel
as well as cost considerations dictate a two-in-one magnet design, where the two rings are
incorporated into the same cryostat.

1.1.4 Main dipoles

The main dipoles [2] are the most challenging components of the LHC technologically as
well as from the cost point of view. The design is based on:

e design field: 8.36 T;

e twin-aperture in a common force retaining structure, flux return yoke and cryostat;

beam distance: 194 mm;

NUT'i superconductor operating in super-fluid helium at 1.9 K;

two-shell coils with graded current density supported by collars and iron yoke sur-
rounded and compressed by a shrinking cylinder.

1. Beam screen 2. Cold bore 3. Cold mass at 1.9 K 4. Radiation screen,
5. Thermal shield 6. Support post 7. Vacuum vessel 8. Alignment target,
9. Aluminium collars 10. Magnetic steel inserts 11. Shrinking cylinder.

Figure 1.3: Cross-section of the dipole magnet with cryostat

The cross-section of the dipole magnet is shown in Fig. (1.3). The superconducting cables
are formed of two winding layers made with keystoned cables of 15 mm width but of different
thickness resulting from an optimised grading of the current density. The coils are held in
place and pre-compressed by aluminium alloy collars common to both apertures, to guarantee
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1.1. LHC - PROJECT 15

parallelism of the field in the two beam channels. Magnetic steel inserts in the collars,
punched from 6 mm thick steel of the yoke laminations, double the thickness of the collars,
correct the field distribution at the different field levels and at the same time firmly lock
pairs of the collars together. The yoke which is vertically split in two halves and tightly
fits and clamps the collars together is also held together by an outer welded stainless steel
shrinking cylinder. The structure is designed to prevent any tensile stress in every part of the
coils at all operating conditions. The shrinking cylinder is at the same time the outer shell
of the helium tank, while the inner wall forms the beam vacuum chamber. The assembly
between these two cylindrical walls, the “cold mass”, is kept at 1.9 K in super-fluid helium
at atmospheric pressure and cooled by two-phase low-pressure helium circulating in a heat
exchanger tube installed in an axial hole of the iron yoke. At the ends of each dipole magnet,
one small sextupole and one small decapole corrector are situated in order to compensate
the corresponding multipole errors of the main dipole. The magnet is curved with a radius
of 2700 m to match the beam paths.

1.1.5 Field quality

For defining the field quality [1] the following notation of a harmonic multipole analysis is
used, namely:

o]

By +iBy = B1 Y (b + itn)(z/ro)" " (1.1)

n=1

where

Bi=magnitude of dipole field in the y (vertical) direction;
b,=normal multipole coefficient;

a,=skew multipole coefficient;

Z=X +ly;

ro=reference radius.

The index n=1 describes the dipole field, n=2 the quadrupole one, n=3 the sextupole, and
so on. A perfect dipole magnet has just a pure B; vertical magnetic field. The errors with
respect to this ideal field have different origins: design limitations due to the finite dimensions
of the conductor and number of turns, conductor placement errors, iron saturation, coil
deformations under the electro-magnetic forces, persistent and eddy currents. The lower-
order multipoles tend to change with varying excitation. At low excitation these variations
concern the multipoles created by persistent currents in the filaments - mainly sextupole, b3,
and decapole, b5, components. When raising the current these perturbations die away. In the
upper half of the excitation, multipoles caused by iron yoke saturation will appear. These
again consist of sextupole and decapole components, but also of quadrupole, octupole, and
higher-order components induced by the two-in-one geometry. The magnetic design of the
yoke was aimed at keeping these multipoles, and especially their variation over the whole
range of excitation, to a minimum, while at the same time reaching the highest possible
dipole field to maintain an adequate load line margin.

CERN-LHC/ICP TU-Graz/IGTE




16 CHAPTER 1. GENERAL INTRODUCTION

1.2 Magnet design

From the principle electro-magnetic design of a magnet to the serial production lots of design
work has to be done. Therefore, the computer program ROXIE [5] has been developed for
the design of the superconducting magnets for the Large Hadron Collider (LHC) project.
Together with the applied concept of features, the developer’s work is simplified and design
changes can be made with just a few high level commands.

1.2.1 The ROXIE program

In this section the basic structure of the ROXIE (Routine for the optimisation of magnet X-
sections, inverse field calculation and coil end design) program [6] is being described. Feature
modelling or “Designing by features” is an extension of parametric modelling (precondition
for the use of mathematical optimisation methods) to the macroscopic level and enables to
define the complicated shapes of the superconducting magnets with only a few input data.
The Feature Based Design Module (FBDM) can be seen as the heart of the program which
links the design tools, numerical algorithms, and the interfaces to other CAD-CAM tools.
The Program structure is shown in Fig. (1.4).

Design Doe. L Material Cable
. User
Database Files Interface Database Database
4 Feature
Coil Modeler Basid 1 coitficlds |
Desi;
M odze : ' FEM Solver |
C'; i 3 . ¢ mm
Yoke Modeler and —| Optimization Algorithmus I
Decision
Making —| Conistraint Validation I
phics ‘Ansys. csv
CAM Interfice DXF. - Opera.
(HIGGS) Poisson (Excel)

Figure 1.4: Program structure of the ROXIE program

The main steps of the integrated design process are:
| e Feature-based geometry creation.
e Conceptual design using genetic algorithms .
e Calculation of ﬁeld errors caused by persistent currents.

e Optimisation of coil cross-section.

TU-Graz/IGTE CERN-LHC/ICP




1.2. MAGNET DESIGN 17

e Minimisation of iron-induced multipoles.

Calculation of quench 'propagation.

3d coil-end geometry and field optimisation.

Calculation of the iron induced effects in the coil ends.

Tolerance analysis.

Production of drawings by means of a DXF interface.

End-spacer design.

e Tracing of manufacturing errors.

An intermediate step in the integrated design process is the calculation of the iron induced
effects by means of the Finite Element method. In order to properly determine these effects
FE-formulations based on a reduced vector potential A, for both the 2d and 3d case were
investigated. The implementation of these methods in the feature based design concept of
the ROXIE program was carried out by myself.

1.2.2 Numerical field computation methods
1.2.2.1 Influence of cable parameters on field errors

The field distribution in the LHC main dipole is dominated by the coil configuration and is,
therefore extremely sensitive to conductor position errors. Furthermore, if the grading of the
current density due to the keystoning of the cable is neglected in the numerical modelling
an additional field error occurs. Fig. (1.5) shows a “perfect” coil with conductors aligned to
the inner diameter whereas the conductors of the second coil, shown in Fig.(1.6), are aligned
to the outer diameter. However, there seems to be no visible difference in the cross-sections,
nevertheless, the good field region gets rather damaged. The grading of the current density
is considered in the first case whereas it is neglected in the second one. In numbers, both
effects cause evenly half a unit of sextupole.

Therefore a computational method that allows to model the coil and calculate the excitational
field with a higher accuracy as it is possible with commercial FE packages is required.

1.2.2.2 Review of different finite element formulations

Several FE-formulations [7] to numerically solve Maxwell’s equations either for the two or for
the three dimensional magneto-static case based on different potentials have been developed.
In the two dimensional case of a single component vector potential A, the formulation reduces

to:
VXvyxA,=J (1.2)

where J is the current density. The current density J appears on the right hand side of the
differential equation. The consequence of this is that using the Finite Element method for
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Figure 1.5: Good field region 1

Figure 1.6: Good field region 2
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1.2. MAGNET DESIGN 19

the solution of this problem the relatively complicated shape of the coils has to be modelled
in the FE-mesh. This might as well increase the finite element discritization in regions where
the solution is of no interest.

The full vector form required for the three dimensional case may not be efficient for most
problems whereas the scalar form

V(v )= ul, (1.3)

is very appropriate where ¢ is the reduced scalar potential and H, is mostly chosen as
the magnetic field due to the known current density J in free space. This formulation
is satisfactory as long as the permeability p is not very high otherwise the well known
cancellation errors will appear. Fortunately, the source current density in highly permeable,
ferromagnetic parts is in most practical cases zero and is usually confined to coils made of
non-ferromagnetic materials. In this case it is possible to derive the total magnetic field in
media with high permeability as the gradient of a scalar 1, the so called total magnetic scalar
potential. In general, the field problem comprises both coils and ferromagnetic materials,
thus both the reduced and the total magnetic scalar potential are to be introduced [8]. The
differential equations for the two potentials read

Vo (ue Vo) = V- peH, inQy, (1.4)
Ve VY) = 0 in Q. (1.5)

Problems with a closed magnetic circuit surrounding coils with nonzero net current are
excluded because this violates Ampere’s law. This difficulty could be overcome by allowing
the potential 1 to be discontinuous along cutting surfaces [8]. In fact, the identification of
such cutting surfaces causes additional programming effort. Furthermore, it is well known
from the TEAM workshop problem Nr. 13 that the numerical results in the region {2, are
in general quantitatively higher compared to other FE-formulations [9].

1.2.2.3 ffr—formulation

Here the numerical solution of the magneto-static field equations by means of a reduced
vector potential is briefly described. The emphasis is put on the principal idea and the main
advantage of this method for the calculation of fields in superconducting magnets.

The method was originally proposed by K. Preis et al [10] and a detailed description can be
found in chapter 3.

The governing Maxwell equations for magneto-statics read:

vxH=J (1.6)

v-B=0 (1.7)

in region {2, coupled through the material equations B= uﬁ resp. H = vB together with
the following boundary conditions;
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Hx@i=EK only (1.8)
and
B-i#i=—b, onlg (1.9)

where K is the surface current and b,, is a fictitious magnetic charge density on the boundary
T of the region . Because of Eq. (1.7) one can set B = 7 x A. Together with Eq. (1.6) it
follows:

TxvyxA=J (1.10)

where J is the current density. In order to make the vector potential A unique it is necessary
to define its divergence and, on the boundary T, either its normal component or its tangential
component. By introducing the Coulomb gauge described in [7] and chapter 3 and merging

both differential equations the complete A-formulation with its boundary conditions reads:

UxvyxA—vv-A = J inQ (1.11)
vy xAx@i = K onTyg, (1.12)

A 0 onIlg, (1.13)

ixA = & onlg, (1.14)

vy-A = 0 on g (1.15)

As already stated above the current density in Eq. (1.11) has to be eliminated.

Therefore, the vector potential Ais split into parts as
A=A, + A, (1.16)

where A, is the reduced vector potential due to the magnetisation and A_; is the impressed
vector potential due to the source currents in free space. The relationship between the
impressed vector potential A, and the field vector H, is,

V X frs = Nﬂﬁs (117)
and by definition for conductor source regions with current density J_; the field vector ﬁs is
given by,

—

S
47T
Q

Jy % V(;) Q) (1.18)

where R =| r, —r, | is the distance from the source point r, to the field point r,. Eq. (1.18)
is known as the Biot Savart Law [11].
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The field equations in terms of a reduced vector potential A, then differ for the iron region
2; and the air region ), where the sources (coils) are located. Following the same procedure
as for the total vector potential leads to:

vxz/va:i—vuvA:i:——vxzxvxffs in §2;, (1.19)

VR SZ RV xA:a -Vl -A:a =0. in . (1.20)

Taking the curl of Eq. (1.17) gives 7 X1V X Ay = 7 X H,, which is obviously representing the
current density J,. At this stage it is sufficient to show the complete A,-formulation where
the surface current density K and the fictitious magnetic charge density b,, are assumed to
be zero:

VXUV xA:i —vuv-A:i = —Uxvvy x4, inf, (1.21)
T X UV xA:a -V -A:a = 0 in §2,, (1.22)
AV xA_,:i X 1= 0 on Iy, (1.23)

A, it = 0 on [y, (1.24)

i x A, = 0 onTg,, (1.25)

v A = 0 onTp, (1.26)

U7 XA, X7t = 0 onTy,, (1.27)

A o= 0 onTy,, (1.28)

i x A, = 0 onTp,, (1.29)

U 7 -Ar, = 0 onTp., (1.30)

and along the interface I'y; between the iron and air region
(vo7 xA:a+ AV xEs) X 1y + (v xA:i+ AV ></fs) xn; =0 on . (1.31)

Using the node-based finite elements for the 3d implementation would create numerical
convergence problems. The global set of shape functions is constructed to be continuous on
the element boundaries. Since the reluctivity v jumps on the material boundaries ['y; the
condition

(v Ap,) 1o+ (v -Ar) -7, =0 only (1.32)

is not satisfied. In the 2d case the divergence of the vector potential is identically zero and
therefore this particular problem does not appear.

The use of a rather new type of finite elements in electro-magnetic field modelling, namely
edge-elements which were first introduced by J. C. Nedelec [12] in 1980 is an alternative
to eliminate these convergence problems. These are elements whose degrees of freedom are
associated with edges, rather than with nodes. They have mostly been used to compute
3d vector electro-magnetic fields in microwave engineering. The most important property is
that they allow the normal component of the vector to be discontinuous from one element
to the next. Various tetrahedral and hexahedral elements have been developed [13],[14],[15].

CERN-LHC/ICP TU-Graz/IGTE




22 CHAPTER 1. GENERAL INTRODUCTION

1.3 Scope of the thesis
This thesis consists of the following four parts:

e In chapter 2 a brief introduction to the electrodynamic behaviour of superconducting
accelerator magnets is given. A survey of the main magnetostatic field problems aris-
ing in context with superconducting magnets is presented. The cardinal point is the
treatment of the complicated coil shapes in the FE - model shown in Fig. (1.5).

e In chapter 3 the FE-method is briefly described. The solution of the Maxwell equations
for the magnetostatic field problem by means of a total vector A potential is dealt with.
This FE-formulation has an important drawback when applying it to coil-dominated
accelerator magnets. Since the coil structure is part of the FE-mesh a detailed de-
scription of the real coil geometry is hardly possible. By introducing a reduced vector
potential A, the coil structure can be eliminated from the FE-mesh.

In chapter 4 the numerical accuracy of this method is investigated by confronting results
calculated with the most frequently used FE-software packages at CERN. Furthermore,
an estimation of the saturation induced field errors of the present design of the LHC
main dipole is given.

e The chapter 5 is dedicated to the extension of the 2D reduced vector potential for-
mulation to three dimensions. A formulation with node-based elements requires the
continuity of (v v/ /¥) - 71 on the material boundaries between iron and air. In the 2D
formulation this continuity condition is implicitly satisfied since the divergence of the
vector potential Ais identically zero. In order to overcome these convergence problems
a rather new type of finite elements, namely edge-elements are applied.

In chapter 6 the applicability of the 3D formulation to accelerator magnets is investi-
gated. Firstly, a comparison of 2D and 3D results has been presented. Secondly, the
field components and an estimate of the integrated harmonics in the magnet ends of
the LHC main dipole are given.

e In chapter 7 general conclusions are presented concerning the implementation of the re-
duced vector potential formulation to the classical ROXIE program. The improvement
to the integrated design process is stated. The applicability of this FEM-formulation
to superconducting accelerator magnets is discussed.
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Chapter 2

Superconducting Accelerator Magnets

2.1 Introduction

In circular accelerators the beam energy is proportional to the machine radius and the bend-
ing magnetic field [16]. Therefore, it is of great interest to develop dipoles with continuously
higher magnetic fields. Normal magnets with iron pole shoes are limited to dipole fields of
about 2 Tesla and quadrupole gradients of 20 Tm ™! whereas superconducting magnets reach
dipole fields up to 10 Tesla and quadrupole gradients of about 250 T'm~!. Superconducting
accelerator magnets fundamentally differ in their design compared to other superconduct-
ing magnets (e.g. large solenoids for particle detectors or toroidal coils for nuclear fusion
machines):

e Very high current densities are needed to produce the required high bending fields;
e Strong electro-magnetic forces;

e extremely precise magnetic field distribution over a small aperture;

High reliability and reproducibility.

Superconducting magnets have a number of properties which can not be found in normal
magnets. Firstly, a superconducting magnet can quench. A quench [17] is the transition from
the superconducting to the normal state and occurs if one of the three parameters: temper-
ature, magnetic field or current density exceeds a critical value. In case of a quench, the
stored energy should not destroy machine components and thus, a reliable protection system
is required. Secondly, an unpleasant feature of superconducting magnets is the presence of
the persistent eddy currents [18]. They are induced in the filaments of the superconductor
during a change of the magnetic field. Since the resistance of the superconductor vanishes
these currents persist for a long time as they decay only through flux creep. Fortunately, at
injection energy where they really disturb they can be partly compensated by the coil design.
Thirdly, superconducting accelerator magnets are generally equipped with an iron yoke. Its
purpose differs considerably from the yoke of a normal magnet. On the one hand the inner
magnetic field is increased by 10 to 40 %, depending on the proximity between coil and yoke
and on the other hand the stored magnetic energy is reduced which is very important in
case of a quench. The yoke shields as well the surroundings against the high inner field.
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24 CHAPTER 2. SUPERCONDUCTING ACCELERATOR MAGNETS

Furthermore, a cryogenic cooling system [19] is needed in order to keep the magnet system
at operation temperature which is in the case of the LHC 1.9 K.

Basically, superconducting magnets can be categorised in three different classes:

e Magnets in which the field distribution is dominated by the coil configuration, e.g. the
LHC main dipoles [1] and quadrupoles as many other superconducting magnets take
part in this class.

e Iron dominated magnets, called super-ferric, in which the iron pole shape determines
the field distribution (e.g. RHIC sextupoles [20]).

e Magnets in which both coil and yoke strongly contribute to produce the required field
[21].

2.2 Field calculations for SC-accelerator magnets

2.2.1 Multipole expansion for a single current conductor

In beam guiding magnets the field problem is essentially bidimensional apart from the magnet
ends. The current conductors in the straight section of the magnet are parallel to the
beam direction and can be considered as infinitely long since the transverse dimensions of
the magnet are much smaller than its length. Therefore, the adequate method is a two
dimensional multipole expansion. Fig. (2.1) shows a typical superconducting dipole with its
beam direction chosen to be the z axis of a cylindrical coordinate system (r,0,z).

"
proton beam

vacuum pipe

Figure 2.1: Schematic view of a SC dipole coil

Now we consider a line current in the positive z direction located at 7. The vector potential
[11] generated by this current is then given by

I. R
A(r,©) = - In () (2.1)
q

where R =| 7, — 7, | is the distance from the source point 7 to the field point 7.

TU-Graz/IGTE CERN-LHC/ICP




2.2. FIELD CALCULATIONS FOR SC-ACCELERATOR MAGNETS 25
YA
field point
a
R
- source point
I, q
- I
rq
e
6
B X
beam axis (z)
Figure 2.2: Field calculation for a line current
With the familiar power series for arbitrary complex numbers & with | £ [< 1
1 1 1
In(l—¢)=—€&— g2 _Zgd_ ... Zgn_ ... 2.9
n(l-§)=—¢- 56 -3¢ ~¢ (2:2)
and the following identities
2 _ 201 _Te ie-0)y 1 _Ta ,-i(¢-0) 9.3
R = (1= et (122 eteo0)) (23
R 1 T ) 1 r .
Y = Zln(1=2eie-9) “ln (1 — % e t(¢-9) 2.4
In (7)) = 5 (1= 7260 45 (17 e 00 (24)
Eq. (2.1) reduces to
pio I =1 (Teyn
_ Mot 2.
Ax(ra, ©) = Z::n - "cos [n (¢ —O)] (2.5)
for r, <y
In case of r, > r, we rewrite Eq. (2.3)
2 _ p2(1-"1,i6-0)y (1 _Ta ,~i(s-0) 2.6
R? = ri(1-0 ) (112 ) (26)
(2.7)
and obtain the z-component of the vector potential as follows
Ay(ry,0) = —Hol gy (T ﬁ‘—il "cos [n (¢ —O)]. (2.8)
’ 27 rq 2m £ n
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The field components derive from the well known equation

B(r,0,z)=v x A (2.9)
and we get for r, < g
o I = Ta\n—1
By = — —ayn - .
0 = g 2 eos[nio-0)] (210
/J'OI = Ta\p—1 -
B, = —)" - :
o (e (o 0)] (211)
B, = 0 (2.12)
and for r, > 1,
Be = Mol ol i(ﬁ)nﬂcos[n(qs—@)] (2.13)
© 2rre  2mry L= T, .
ol & Tqg\n+1
B, = 4 - .
e 2 (e [0 - 0)] (214)
B, = 0. (2.15)

Looking closer at the n'® - Fourier component in the multipole expansion of the single line
current in Eq. (2.5) two terms appear

A, n(re,©) = % (—71;) (%)” [ cos(ng) cos(n®) + sin(ng) sin(nd) | (2.16)
= b, cos(n®) + a, sin(nO). (2.17)

The first term is called the “normal” multipole whereas the second is understood as the
“skew” multipole. A normal multipole is transferred into a skew multipole by a rotation of

(5m)-
2.2.2 Generation of pure multipole fields

As it was shown in the previous section a single line current generates multipole fields of
any order. Now we investigate uniform current distributions on a cylinder of radius r,. A
current density of the form

Iy = Iy cos (me) (2.18)

produces a pure multipole field of order n = m. The vector potential generated by the
current distribution of Eq. (2.18) inside the cylinder is

2m

A i% ,— /cos mae) cos [n (¢ — O)] do. (2.19)
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Evaluating the integral in Eq. (2.19) with respect to

cos [n (¢ — ©)] = cos(ng) cos(n®) + sin(ne) sin(nO) (2.20)
gives
A(r,0) = “0210%(:—(1)mcos(me). (2.21)

So the magnetic field components reduce to

o do

— L m—1

Be = o, (rq) cos(mO) (2.22)
— _,U() IO L m—1 4;

B, = o, (Tq) sin(mO). (2.23)

For the special cases m=1, m=2 and m=3 the current distributions and the field patterns
in Cartesian coordinates are:

Dipole: Quadrupole: Sextupole :

Iiyy = Iy cos2¢ Igy = Iy cos 3¢
B, = _%éo_y B, = _%O,%Qxy
B, = —tab B, = —4hg B, = —tah(x? — y)

Figure 2.3: Generation of pure multipole fields by current distributions

2.2.3 Approximation of pure multipole coils

From the technological point of view a current distribution with cos ¢ dependency can only be
approximated by stacking discrete conductors. Different stacking techniques are applied to
using concentric current shells, current shells with separated blocks, and block configurations
with horizontal or vertical layers. Fig. (2.4) shows an ideal dipole configuration and some of
its practical approximations.

For the LHC main dipoles and quadrupoles a Rutherford-type cable with keystoning is used.
The coils are formed of two winding layers with five separate blocks, three blocks in the inner
layer and two of them in the outer layer as shown in Fig. (2.5) .
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I, cos ¢ concentric blocks ) \sector blocks

\»
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