W/Qﬁ(lw _Lhee -3%-¥

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/LHCC 97-8
LCB/RD45
February 3, 1997

CERN LIBRARIES, GENEVA

RCARDMD A

SC00000796

OBJECT DATABASE FEATURES
AND HEP DATA MANAGEMENT

D

The RD45 collaboration
CERN, Geneva, Switzerland

We present an overview of a number of Object Database
(ODBMS) features, such as replication, schema evolution and
object versioning, their implementation in Objectivity/DB and
other commercial databases and an analysis of how these
features could be used to solve data management problems
typical of the HEP environment. We also describe a number. of .
prototypes that have been built to demonstrate the usablhty of
these features in the HEP domain. This document has been
produced in response to the second milestone set by the LCRB
for the second year of the RD45 collaboration, namely:

“Investigate and report on ways that Objectivity/DB features for
replication, schema evolution and object versions can be used to
solve data management problems typical of the HEP
environment.”

TABLE OF CONTENTS

1. Executive SUMIMATY ..cccvcrncssancensssssensesssessasernscssassacssssan vese 1
2. Introduction...... SRR |
3. Object Database Features and Standards censsesssnnenesssasase 2
4. Schema Evolution............ 3
4.1 Schema Evolution in ObJecuv1ty/DB ... 4
4.2 Schema EVOIULION DN D5 «.uuveeurieiiiiiieiiteieeeeeeeeeessereeseesessssssesseressssssssssssssssssssssesessensss 6
4.3 Schema Evolution and HEP Data Management...............ooocvevveerieriieereeeeesseenneeeennenns 7
4.4 Schema Evolution in Existing HEP EXperimentsccccooveeueevvmneineinrenreeneeseennene 7
4.5 Schema EvOolution in L3 ..o esest e s aee e ns 8
4.6 Schema Evolution in AdAmO.........ccocevveereeciecrieieceeee et aceb et eesreeeeeseeeeseasseens 10
4.6.1 Generic ADAMO FAlIes.......oooiiiioiiciiircecceteeecereece ettt e sa s e e 10
4.6.2 Reading Old GAFScocmiieirierecirrrtereeeestee et sebs st ebe s e ssan e eenee 11

4.7 Testing Schema EVOIUtION..........c.coiviirinirinieirenirie et 12
4.7.1 Operations which do not affect existing applications...............cccevereererrrevenreennen. 12
4.7.2 Operations which affect existing appliCations............ccoeveevveeeirevieererseeeseeereeeeeeans 12
4.7.3 Simulating @ NEW MEMDET..........ccceuevierirmnrreineitnieenee e ereeree e sresrone 13
4.7.4 Complex OPETations.......c.cucccevtrteircterinnerrtesteestesseeseeesaserensesasesseseeseessessnssessens 16

4.8 CONCIUSIONSoevruriirutiiirieeenteeseriestenteseestesessseesaessresesseestesessrtessssesssesstseneennresseesenns 16

S. ODbject Versioning........ccccecerserssncensarcensarcssssassnsancasesassassassassansssessosassssssssass 17

5.1 Object Versioning in Objectivity/DB.........cccocieieereirineneeeteereeeere st esacse e 18
5.1.1 Version GenealOgYc.ccccueiirerrerireeierreereeteeseeesienseeseesseessessssesssessseeseessseneesone 18
5.1.2 Genealogy ODBJECL.......corciiieiiiireeriecereeeree ettt s e st e st et eene 19
5.1.3 Versioning Behaviour for Associations.........cccvecuereeineseeieeseeereeereeeeseereeneenens 21
5.1.4 Others Versioning FEaturesccccoveeerireeeereiereecee e eere s ceseesse e seessseeesne 22

5.2 Object Versioning in Ocvcceueeuirrieeniieerninintetertestesnsessessssssesaessaassessessessessssseane 23

5.3 Possible Uses of Object Versioning in HEP.............cc.cccoviiieeiiiecciieceeceeeeeeeen 24

5.4 A Calibration Database Using Object Versioning........c..ccccevecueeeecveesvecrenneesneseesvennenn. 24

5.5 Object Versioning and Event Data.........c..coceieieeenienieciieeerecrece e evceneeresaenenne 24

5.6 Object Versioning and Persistent Event Selections..........cccveceeveeveeecveereeeeneevensennn. 25
5.6.1 “Alone” PrediCates.......cooveeeerieiriirnienieienieienteniessectse e sssessessasessessesnesnessensenne 27
5.6.2 OIPIEdiCatescoeiimiiiiiiiicciiece ettt st ras e s e e s et e s s asnaennen 27

5.7 CONCIUSIONS ...covvimiiiiiiiriiierctnitcetree et e rtesats st s easessnessaessesseassnsseesessaessnsseesssensrensenans 28

6. Replication29

6.1 Replication in Other ODBMS Productscoccecevertinerenrectesiieieseeereseesssessessennens 30

6.2 “Tape RePUCAONcicviriiieieiriecieteetee ettt e ste s ts st ae e e sae s esesnesanessessenens 30

6.3 Use of Replication in the HEP EnVirOnmentc.cueveereeereeeeevevsesreeressssesessons. 31

6.4 Replication and Performancecoccvurmereeeueeererceeeneesne oo eeeceneeses s ee e 31
6.5 Replication and REHability.........c..ccccovueruereunieeereeeeneeeeieeeeece e eseeteeeses e e, 31
6.6 Distribution of Data by RepliCAtiONc..eeueeeieieeieeereeeeeeeeseesesee e, 31
6.7 Collection of Data by RepLCAtiON..........ceuereueeereieeceetiieereeeeeeeeee et eeesesee e 32
6.8 CONCIUSIONSooneiiiiietee ettt ettt e et se s s e seens 33
7. Summary and Conclusions........ e 34
8. Appendices cesnee 35
9. Schema Evolution in Objectivity/DB e 35
9.1.1 Relational Schema EVOIUtiON..........c.ceieeeueiueeitiieeeeeeceeeee e eee s 35
9.1.2 Data CONVETSION.......cccuemeeeriereereriirieeesesessessecse st sesseseaeeesesseeesesesesesesesssessssas 36
9.1.3 A Relational EXAMPIEcoeveueuruereiiiieeee e eteeeesceeseeseese e e ese e 36
9.1.4 The Problemscovueieienieiiieieieseietereree sttt seeseeeeseensesens e se e 38

9.2 Schema Evolution with Objectivity/DB............c.ceiuiimiieereeerreeeeeresreesesesessssssesesns 39
9.2.1 ConVErsion MOGEScocerererrurreriinreeeseseesesetessecseacsesesesessssssssesessseseseseseesns 40
9.2.2 Other Schema Evolution ISSUESccoceevireuimieieiecteneeeeereeseeeeeeeeeseseseesese s 42
9.2.3 Schema Evolution SCENArios..........eoeeeeeevreereueeeesereseeeesereeeseeeeeeesesesesessssensesns 43
9.2.4 CONCIUSION ...ttt et es ettt e e et e e s es e s e e e e e nens 46

10. User Data Replication in Objectivity/DB " |
10.1 Synchronous REPHCALION.........cccovreerrrerereueeeietererereeete e seeeee s 47
10.2 Asynchronous REPHCAtIONccceuiuerierueuieee ettt ee e se s s eeeereesesas 48
10.3 Conflict Avoidance, Detection, and Resolution...........eeeeveeeeeeeeeeeoeeeeoeeeoeeeoen 49
10.4 Summary of Traditional Replication SOIUtiONS.ceueeieeveeeeeeereeeeereresesrsrenonns 50
10.5 Objectivity/DB Data Replication OPtON............ceuerereueeveuieceeteeneeereeseeeseseessesssens 50
10.6 BUSINESS SCENATIOSccccvmeerrueniereitsteeteisrete s es sttt e seseeeensatessessessesesenans 56
LO.7 WED SEIVET ...ttt ettt ettt ettt e e e esses et e eae s e e s 59
10.8 CONCIUSION ...ttt ettt se et sttt se sttt s m et es s sene e saseseann 62
11. Versant Fault Tolerant (FT) Server.. — cesssennssensee 03
11.1 Continuous Normal OPErationcccoceueeereemreeeerirerenieeecireeseeeeseeeeseeessesssessiassenns 63
11.2 Redundancy is Application TTanSparentcccveeeeeeevereveeeeerereseesereeeseesesssensssans 63
11.3 "MASTER-SLAVE" OPEIationc..cccecemurremrereeerereeeeseeesesseeeeeseecesseneeessesssessnsans 63
11.4 Geographic DistribUtion.........c.cceietrrinrinnrerieeeee et seseeeesesseseseseens 64
12. Glossary. 65

13. Referencesccceeeeeneane . ceveeens R i,

Object Database Features and HEP DATA Management

1. Executive Summary

At the request of the LCRB, we have investigated and report below on a number of object
database features (replication, object versioning and schema evolution), their
implementation in existing ODBMS products and their applicability to HEP. Despite the
fact that none of these features are currently covered by the ODMG standard for ODBMSs
and the fact that only one ODBMS (Objectivity/DB) supports all three capabilities, it is our
conclusion that all of these features provide significant advantages in the area of HEP data
management, and can even be considered mandatory.

We continue to work with the ODMG to extend the standard in these areas.

2. Introduction

As shown in the table below, the LHC experiments will take vast volumes of data -
approximately 1PB per experiment per year. This will result in extremely demanding data
management requirements - far exceeding those of existing experiments.

Time interval ATLAS/CMS ALICE
1MB/event, 100Hz 40MB/event, 40Hz
1 second 100 MB 1.6 GB
1 minute 6 GB 100 GB
1 hour 360 GB 6 TB
1 day 8.6 TB 140 TB
1 week 60 TB 1PB
1 month 260 TB
1 year (100 days) 1PB
TOTAL LHC (15 yrs) 75 PB

LHC Data Volumes and Rates

In response to the 2™ milestone set for the RD45 project by the LCRB at the 1996 review,
we have investigated a number of features of ODBMS products; the theory, how these
features are implemented in existing products and how these features might be used to
solve problems typical of HEP data management. We also describe prototypes that have
been built to investigate the various scenarios described.

This document should be read in conjunction with the March 1997 RD45 status report to
the LCB [2], together with the supporting documents produced for the work relating to

Object Database Features and HEP DATA Management

milestones 1 [5] and 3 [6]. In particular, performance related aspects of the database
features described in this report are covered in [6]. Finally, this document assumes a
working knowledge of object-oriented methods and object data management, as described
in [10].

3. Object Database Features and Standards

None of the features described in this report are covered by the current version, V1.2, of the
ODMG-93 standard for Object Database Management Systems (ODBMS). It is possible
that they will be added to a post-V2.0 revision of the standard, version 2.0 being scheduled
for completion during 1997. However, even if they are included in future revisions, it is
unlikely that they will be implemented in a standard way in commercial products before the
next revision of the ODMG standard, which one might expect during 1999 at the earliest.
Although in some cases, such as with the recently-announced Java binding, vendors have
responded very quickly to the evolving standard, we believe that it would be unwise to
assume a standards-conforming implementation of the features described in this report
before 2001, if at all.

In consequence, any implementation of these features is necessarily vendor-specific. We
have, therefore, chosen to compare at least two implementations, typically that
implemented in Objectivity/DB, the product being used for all of the prototyping in RD45,
and another ODBMS'.

! At the time of writing, Objectivity/DB is the only ODBMS that supports all three features.

Schema Evolution

4. Schema Evolution®

To store objects (e.g. instances of C++ classes) in an ODBMS, the class definition, or
schema, must be made available to the database. In the ODMG standard, schema are
defined using the Object Definition Language (ODL), which is based upon the Interface
Definition Language (IDL) of the Object Management Group (OMG), which in turn is
based upon C++ syntax. Thus, ODL has a strong C++ flavour and ODL files are closely
related to C++ header files.

Schema evolution operations include changes to classes, class contents and relationships
between classes, such as associations, references and inheritance. In an Object Database
environment, changes are made to the schema by modifying the corresponding ODL files
and then processing these files using the appropriate database tool, which then generates
the C++ header files which need to be included in database applications that wish to access
or create instances of such classes. Schema evolution is extremely flexible and supports the
following operations:

delete a data member

add a data member with system default or user defined default values
rename a member

change the type of a data member

reorder data members

add/change/delete method definitions
change the size of array data members
add/delete/replace a base class
add/delete/change associations or references
change the cardinality of references

etc.

In addition to changes to the database schema, the affected objects, i.e. the persistent
instantiations of the schema, may be converted in a number of ways, e.g.

e immediate - all affected objects within a federation are changed using a special upgrade
application, :

o deferred - affected objects are changed only when accessed. This has the advantage that
only those objects that are used are changed, but does mean that access times can be
unpredictable during the conversion period,

e on-demand - affected objects in specific containers, databases, or within the entire
federation are updated upon user request.

2 See also: Appendix: Schema Evolution in Objectivity/DB on page 35.

Object Database Features and HEP DATA Management

It is clear that the data models of the various LHC collaborations will evolve with time.
Support for such evolution by the database provides a very powerful and convenient
mechanism for coping with such change.

4.1 Schema Evolution in Objectivity/DB

Objectivity/DB provides a powerful interface to change the federated database schema. The
set of schema evolution operations supported includes changes to classes, class cuatents, as
well as relationships between classes, namely associations, object references and
inheritance. The objects of the changed classes, called affected objects, are also converted
to reflect the effect of these changes.

Users specify schema evolution operations simply by changing their DDL files. The
modified DDL files include the new definitions of the evolved classes. In certain cases, e. g.
when a default value is to be assigned to a new data member, additional information may
be given in the form of #pragmas. The modified DDL files should then be processed by the
DDL preprocessor, which updates the federated database schema and generates a new set
of header files.

Schema evolution operations affect existing objects, the internal class representation in the
federated database schema, and existing applications. As a result of schema evolution
operations, the following changes may take place:

1) existing objects may have to be converted to conform with their schema,
2) existing class representations may have to be modified,
3) existing applications may have to be rebuilt using a new set of generated files.

In order to address the possible side effects of schema evolution operations, Objectivity/DB
categorizes schema evolution operations into two types with respect to their effect on
persistent objects and on existing applications, namely persistent changes and non-
persistent changes. Persistent changes create a new representation of the modified class,
while in the case of a non-persistent change, no new class representation is created for the
affected classes. Persistent changes require modification of the affected objects, while non-
persistent changes affect only the generated code from the DDL preprocessor and the
corresponding schema that are stored in the federated database. Non-persistent changes
allow existing applications to continue running on the affected federated database, while
persistent changes prevent existing applications from accessing the federated database.
Persistent changes require that existing applications are rebuilt - applications should be
recompiled and relinked with the newly generated files. Without rebuilding, applications
that use only classes that have not evolved can continue to access the federated database.

Instead of rebuilding all applications which use affected objects, conversion can be
performed “on the fly” each time that an affected object is accessed, without storing the
changes in the federated database. In this case overall performance can slow down, but as
long as new applications access affected objects in read-mode only, the affected objects
still remain accessible to existing applications.

Schema Evolution

The great majority of schema evolution operations are persistent. Only a few, like renaming
a class or a data member, changing the access of a member, or adding a non-inline
association are non-persistent. The last option allows for extra data members to be logically
added to existing classes without affecting existing applications. New data members are
stored in an additional class, and are accessed transparently using accessor functions,
which traverse the association from old to new class. An example of such a scenario is
given in section 4.7 on page 12.

Some schema evolution operations (such as renaming a class or a data member) are
performed through the use of special #pragmas. The provision of additional information,
such as the specification of the default value of a new data member, are also performed
using #pragmas.

The majority of schema evolution operations are supported using a single pass of the DDL
preprocessor. However, certain operations, such as adding a class as a non-leaf class or
deleting a non-leaf class, require an additional pass.

The conversion of objects of persistently changed classes can be performed using either
data conversion or function conversion. Data conversion does not require the user to
write any program to convert the affected objects. Function conversion enables the user to
provide a function for each persistent-capable class that has been changed. This function is
called automatically in the process of converting an affected object. Using such a function,
the user is able to access the data members of existing objects both before and after data
conversion. If a transaction is read-only, the converted objects are not stored in the
federated database.

A function conversion is mandatory in only two cases: when adding a class to, or removing
a class from the middle of the inheritance hierarchy. In addition, function conversion can
be useful for initializing new values of data members from the values of existing data
members. It can also be used to change the value of existing data members’.

In order to convert the affected objects, Objectivity/DB supports immediate (eager),
deferred (lazy), and on-demand methods. Respectively, three different interfaces can be
used: upgrade application, single-object-at-a-time, and on-demand. The first interface,
using an upgrade application, supports complex schema evolution operations (such as
deleting a non-leaf class or replacing a base class). The second interface converts an
affected object only when it is accessed; during one approach only a single object can be
converted - if there are multiple objects that require conversion, the upgrade application
interface must be used.

Objectivity/DB also provides administration tools for downloading schema into files and
for the loading of schema from files. Schema dump/load permits changes to production
databases without the need for distribution of header files.

3 In a future release, the default constructor will be called for new data members.

Object Database Features and HEP DATA Management A

4.2 Schema Evolution in O,

As is the case with Objectivity/DB, O, also defines two types of schema evolution
operations: persistent and non-persistent changes (called respectively updates which affect
objects, and updates with no effect on objects). After changing a schema, all modifications
must be confirmed. When an application accesses an object, O, checks its structure and
automatically performs an update if required. The values contained in the object are kept,
whenever possible, in the new object representation. Object conversion is carried out by the
system, but users can supplement an implicit conversion with their own conversion
procedure. O, provides automatic conversion of the following types: atomic (primitive),
object references, collections and tuple types (structures).

Changing between primitive types, such as int, float etc., is implemented through the use of
functions: sprintf(), atoi(), atof() and some additional tricks, which allows O, to provide
conversion from integer, real, boolean, char, bytes and string to another primitive types,
often with a partial lost of data. This is in contrast to Objectivity/DB, which only permits
meaningful conversions - in other cases, no attempt is made to retain the value of the old
data member.

When changing a reference, if the new class is a super class of the old class, the reference
is unchanged; in any other case it becomes nil. The collections managed by O, are list, bag
(multi-set) and set (unique set). When the new collection and the old one are equal or a
standard conversion can be applied, data from the old collection is used to initialize the
new one. When no conversion is detected the resulting collection is empty. When a tuple is
converted into another tuple, each tuple field is converted successively, and a field is
converted recursively. A tuple cannot be directly changed into a collection, and vice versa.
If you need to provide such a conversion you need to delete the source class and replace it
with the new one with the same name.

Issues such as changing the order of data members, changing the access of a member, or
more sophisticated features like adding/deleting a class as a non-leaf class and so on, are
not covered in the current O, documentation.

O, provides two methods: deferred and immediate conversion, both performed in a
standard way.

Function conversion can be performed instead of the standard O, conversion if needed. To
perform function conversion, one should update the classes without deleting attributes and
add new attributes with different names; then write and run a program to access all
modified objects and initialize the new attributes with the required values. Finally, the old
attributes can be deleted and if necessary renamed. Function conversion acts as immediate
conversion, preventing other applications from accessing database whilst the conversion is
being performed.

The schema manager stores information about the evolution of a class structure in a class
history. When an application is being designed, schema definitions typically evolve, but it

Schema Evolution

may not be desirable to retain the complete history of all updates. As mentioned above, all
schema modifications must be confirmed and a special command is provided for this
purpose. A class can only be updated explicitly using this command. By not confirming a
schema change, it is possible to return to the previous definition without any modifications
to the database. To perform this behaviour, O, defines two different types of database:
database in controlled mode and in test mode.

Controlled mode means that object updates are always possible and carried out by the
system. For the system to carry out the updates, all the classes definitions must be
confirmed. Test mode means that the database can be used even if its class definitions are
not confirmed. However, in test mode, non-confirmed evolution is not supported.
Controlled mode can be converted to test mode, but not vice versa. When a database is
created, its default status is controlled. However, if a schema change is not confirmed, the
system implicitly creates a database in test mode. To change back to controlled mode, it is
necessary to delete the entire database, confirm the schema changes and recreate the
database.

According to the O, documentation, an upgrade to existing schema should not be
performed directly on the target system. A new version of a schema should be prepared
first on the source system, and then installed on a target site. Two special tools are
provided to perform this operation: o2schema_load and o02schema_dump (in
Objectivity/DB this functionality will be provided in a future release). These tools use
dump files to store and retrieve schema information. They can also be used for storing and
recovering the contents of a database.

4.3 Schema Evolution and HEP Data Management

In order to investigate the usefulness of scheme evolution in solving data management
problems typical of the HEP environment, we have performed the following investigations:

e a comparison of the functionality provided in Objectivity/DB with the requirements
from ALEPH and L3,

¢ the practicalities of the various types of data migration offered (lazy, immediate)
e the impact of schema evolution and object instance migration on user applications.

4.4 Schema Evolution in Existing HEP Experiments

Data management packages, such as those traditionally used in HEP, offer little or no
support for schema evolution. Typical cases of schema evolution include:

e change of bank contents, e.g. extend a bank/table;
e change of data structure, e.g. add a new bank/table and/or reference link.

Normally, it is left to the application to handle the changed schema, e.g. by checking a
version number in the data structure itself, and invoking conditional code. This is not only

Object Database Features and HEP DATA Management

unsafe - code that does not correctly handle data generated according to different schema
can give wrong results or, preferably, crash, but also requires applications to carry
“baggage” corresponding to all versions of the schema that are developed over the lifetime
of an experiment. \

In practice, it is not uncommon for old data to be reprocessed, so as to be converted to new
schema, or for spare fields to be reserved for new information.

4.5 Schema Evolution in L3

The L3 experiment changed its storage strategy in 1995. Prior to this date, the whole data
structure, called DRE, was saved. From 1995 on, only a compressed version of this data
structure, called DSU, was stored persistently. The DRE structure is recreated in memory
from the DSU structure using an ad-hoc routine on input. In ODBMS terms, this is the
approximate equivalent of an activator.

Schema evolution is handled by special routines in the production software - general cases
are handled by the system software and special cases are handled by specific routines for
each bank.

In general when an event is read a new "fanout" is created and then individual banks are
checked against the present schema (hard coded in a common block) before being shunted
to the new fanout. If the "schema" is different, a conversion routine is called.

Typical code is shown below:

*

* %*% Check the EVNT bank fanout first
*
CALL ZSHUNT (IXSTOR, LBEVNT, LBAAAA, 2, 1)
LBEVNT = 0
CALL UTEFAN (LBEVNT)
LREFRB(1) = LBAAAA
LREFRB(2) = LBEVNT
CALL RECMPR (LREFRB, 1, NRECRB, CRECRB, IDRERB, IOKFRB)
NWDS = MIN (IQ(LBEVNT-5), IQILBAAAA-5)) - 1
CALL UCOPY (IQ(LBAAAA+1), IQLBEVNT+1), NWDS)
DO 10 IL = 0, NPEVNT
IF (LQ(LBAAAA-IL).GT.0)
+ CALLZSHUNT (IXSTOR, LQ(LBAAAA-IL), LBEVNT, -IL, 1)
10 CONTINUE
CALL RESHUN (LREFRB, NRECRB, CRECRB, IDRERB, 0)
CALL MZDROP (IXSTOR, LBAAAA, 'L’)
LBAAAA =0

where:

*

ek ek ok ok ok *kokk
*

* SUBR. RECMPR (LREF, IFLG, NCBK*, CHBK*, IDESC¥*, IOK*)

*

* Compares two fanout banks (xREC or EVNT) and checks the list of

* constituents and their properties

Schema Evolution

* *

Arguments :

LREF Reference links of the two fanout banks

IFLG O for xREC; 1 for EVNT

NCBK Number of constituent banks [xOBJ(xREC) for xREC(EVNT)]

CHBK Names of the constituent banks

IDESC Description of the two sets of constituents (KL/NS/NF/
NW/NC). If the constituent does not exist in one case,
corresponding KL would be -1

IOK If agrrement between the 2 fanouts (first element refers
to overall agreement; second element refers to PP’s)

Called by RECHCK

* %K X X O X X X ® ¥ ¥ X ¥

koK *k ek Ak KK ok ok

User conversion routines are supposed to detect that a bank is different because the number of words or links is different
using code like this:

*

* *** Loop over all banks in the old fanout and shunt appropriately
*

LBTREC = LQ(LBEVNT-KLTREC)
LBZZ277 =0
IF (LBAAAA.GT.0.AND.LBTREC.GT.0) THEN
DO 10IBK = 1, NCBK
CHC =CHBK(IBK)

* They must exist in old and new setups
IF (IDESC(1,1,IBK).GT.0.AND.IDESC(2,1,IBK).GT.0) THEN
* They should have same NS/NW/NF

IF (IDESC(1,2,IBK).EQ.IDESC(2,2,IBK)) .AND.
1 (IDESC(1,3,IBK).EQ.IDESC(2,3,IBK)) .AND.
2 (IDESC(1,4,IBK).EQ.IDESC(2,4,IBK)) .AND.
3 (IDESC(1,5,IBK).EQ.IDESC(2,5,1BK))) THEN
* Shunt it if they have same NS/NW/NF
LBNK =LQ(LBAAAA-IDESC(1,1,IBK))
IF (LBNK.GT.0) THEN
CALL ZSHUNT (IXSTOR, LBNK, LBTREC, -IDESC(2,1,IBK), 1)
ENDIF
ELSE

after the ELSE some ugly code usually follows.

For example this is a code due to V 1. to add more words and links to a MUon TracK due to the addition of forward
chambers:

NWT =IQ(LBMUTK-1)
ipush =0
Nsold = IQ(LBMUTK-2)
ipush = NSMUTK-NSold
nlold = IQ(LBMUTK-3)
iver = 200
if (Nsold.eq.3) then ! version < 190
iver = 180
elseif (Nsold.eq.4) then ! version 19n
iver = 190
elseif NSMUTK .ne.Nsold) then ! unknown to us
print *, ’in MUTK number of structural link is not correct!’
endif

NIW =IPOIN + NWZ + NWF + NWR + NWB + NWM - LBMUTK - NWT
CALL MZPUSH(IMDVRA,LBMUTK,ipush,NIW,’ *)
if (ipush.ne.0) then ! Ihope J.Z. does not kill me

* start to move reference links

Object Database Features and HEP DATA Management

do il=nlold,nsold+1,-1
LQLBMUTK-il-ipush) = LQ(LBMUTK-il)
enddo
* change the number of structural links
IQ(LBMUTK-2) = IQ(LBMUTK-2) + ipush
* and shunt all the banks around
if (iver.eq.180) then
nsl =2
elseif (iver.eq.190) then
nsl=3
else
print *,” MUBFIX: unknown version’,iver
endif
do il=nsold,nsl,-1
lg(Ibmutk-il-ipush) = 0
if (Iq(Ibmutk-il).ne.0) then
call ZSHUNT(IMD VRA, lq(tbmutk-il),Ibmutk,-il-ipush, 1)
endif
enddo
endif
* e p-seg
IPOIN = LBMUTK + IQ(LBMUTK+1)
if (ipush.ne.0.and IQ(IPOIN).gt.100) then !v <200
iloc = ipoin
do ic = LIQ(IPOIN)/100
iq(iloc+1) = ig(iloc+1) + ipush ! refernce link position
iloc = iloc + MOD(IQ(IPOIN),100)
enddo
endif

... and so on so forth for the rest of the bank

4.6 Schema Evolution in Adamo

The following text is extracted from the following sections of the Adamo reference
manual:

e http://www.cern.ch:80/Adamo/guide/Section-9-2.html
¢ http://www.cern.ch:80/Adamo/guide/Section-10-6.html

More information can also be found in:

® http://www.cern.ch:80/Adamo/refmanual/Chapter-4-8.html
* http://www.cern.ch:80/Adamo/refmanual/Section-4-8-3.html

4.6.1 Generic ADAMO Files

In ADAMO, all data manipulation and navigation operations take place in memory. GAF
routines allow the user to store all the tables and dataflows present in memory at a given
moment, with any or all of the associated indices and selectors if required.

4.6.1.1 The GAF Record

A GAF contains records, the contents of which must be either a table or a dataflow. Thus,
several tables may be stored on the same record as long as the tables belong to the same
dataflow.

10

Schemd Evolution

As suggested by Figure 9.2, the set of tables stored in a record are loaded into memory
when the appropriate routine is called. As an example, if GAFs are being used to record
high energy physics events then all the tables describing an event are stored in a record.
Every version of the event is stored in a separate record. Access to a particular version of
an event is through a GAF reading routine which drops the previous contents of the tables
and replaces it by the data in the record or the desired version.

4.6.1.2 Storage of the Data Model

Records store not only data but also the corresponding data model. This feature allows
GAF routines to deal with the versions of the continuously evolving data model; tables,
attributes and relationships may be added, deleted or modified during the life time of an
experiment. When such changes occur, the data stored within old GAFs are no longer
conformant with the new data definition. Such data definition mismatches are
automatically resolved by the selection and fetching of the conformant parts of the old data.
This is explained in [Section 10.6] the following section.

4.6.2 Reading Old GAFs

When debugged and tested, the new release of the application is ready for production. But
what about backward compatibility with old data? In most data management systems, this
problem is handled by converting old data files to conform to the new data definition. An
alternative solution to this may be to keep in production all successive versions of the
application. Both solutions are unsatisfactory because they imply further programming and
bookkeeping work. The Generic ADAMO File system offers “on the fly” conversion of old
data.

4.6.2.1 Storage of the Data Definition

The ADAMO programmer needs to do absolutely nothing to be able to read old GAFs.
GAF records store the data definition along with the data. Since the data definition of an
application is also stored in memory, GAF routines are able to compare the data definition
of an application in memory with those on a GAF record and then to simply read from a
GAF only the data that conform to the application data definition.

4.6.2.2 Tap Warning Message

This is the case with the modified eventrec application; the old GAF (rawgaf.ie) can still be
read without the need of making any changes. When reading the GAF, the TAP generates
the following message:

TAP Warning - projection generated for: Track

to tell that there has been a rearrangement of the data within the new structure of the table
Track.

4.6.2.3 The New Track Table

The new table is shown in Figure 10.6. The column P has been renamed Momentum and
two new columns appear corresponding to the new attribute and the new relationship:
Length and ProducedAt.

11

Object Database Features and HEP DATA Management

4.7 Testing Schema Evolution

For detailed understanding of all schema evolution aspects, we have built a small prototype
for testing schema operations, consequences of schema changes, its influence on the
performance and many others. We decided to use very easy model of schema consisting
just of a few classes, with several associations of different types between them. The model,
we decided to start with contained some “mistakes”, not used fields or inaccurate types.
During next steps, we tried to change our schema in order to fix all inconveniences, putting
most effort on understanding what are the consequences of operations being performed.
We wanted to make clear, which operations really need rebuilding all existing applications,
and for which operations this can be avoided. As it is not necessary, we did not put much
effort on the interface part of the prototype: the communication with a user is as easy as
possible: just in text mode. Below, we present a complete list of all schema evolution
operations available in the version 4.0.1 of Objectivity/DB system, distinguishing clearly
conversion from non-conversion operations.

4.7.1 Operations which do not affect existing applications
The following operations have no affect on existing application:

1) Adding a non-inline association,

2) Renaming a data member / an association,

3) Changing the access control of a data member / of an association, e.g. public, protected,
private,

4) Changing the behaviour of associations, as described be10w4,

5) Changing the order (position) of a non-inline association,

As is clear from this list, the schema changes which do not affect existing applications are
relatively minor.

4.7.2 Operations which affect existing applications
The following operations require that existing applications are rebuilt:

1) Adding:

— data member

— object reference

— inline association

— the first virtual member function
2) Deleting:

— data member

— association

— object reference

* In the Objectivity/DB, behaviour specifiers are used to specify how the association to the old object will be handled during following
operations:

— lock -> lock(propagate)

— delete -> delete(propagate)

— copy -> copy(copy), copy(move), copy(delete)

— versioning -> version(copy), version(move), version(delete)

12

Schema Evolution

3) Changing the order (position) of:
— data member
— inline / non-inline association
— object reference

4) Removing the last virtual member function

5) Change the size of a fixed-length array data member

6) Changing an object reference from short to long and vice versa

7) Changing the representation (inline - non-inline) of an association
8) Changing an inline association from short to long or vice versa

9) Changing an array size for an array of object references

10) Changing a primitive data member type:

Convert from... Convert to ...
may not preserve the value preserves the value
int8 int16, int32, float32, float64 | uint8
int16 int32, float32, float64 int8, int16*
int32 float64 float32, int8, int16, int32 *
float32 float64 int8, int16, int32
float64 int8, int16, int32, float64

* - Values not preserved only if converting from signed to unsigned and vice versa

Although some schema changes will always require that existing applications are rebuilt, it
is clearly important to carefully investigate ways that this can be avoided. Of the above
items, perhaps the most significant is the addition of new data members. As the addition of
a non-inline association is a non-conversion operation, that is, does not require that existing
applications are rebuilt, additional data members can be “added” by adding a non-inline
association and storing the additional data in a new class. This is discussed in more detail
below.

4.7.3 Simulating a New Member

Below, we consider a concrete example where a new data member is “added” by using a
non-inline association to a new class.

Suppose, that a new member “int nrOfStudents” should be added to a persistent class
Teacher, for storing the number of all students taught by that teacher. Assuming that only a
small fraction of applications will need to access this new field, we want to perform this
operation without interfering all existing applications, even if the use of an association to a
new class implies a small performance penalty.

13

Object Database Features and HEP DATA Management

To make such a change, we first need to create a new persistent class, e.g.
TeacherSupplement:

class TeacherSupplement : public 0oObj
public :
int nrOfStudents ; // a member

TeacherSupplement() { nrOfStudents = 0; }; // the constructor
};

and add to the class “Teacher’:

1) anon-inline association to a class TeacherSupplement:
ooRef(TeacherSupplement) supplementClass ;

2) methods:

inline int getNrOfStudents() { return ooThis()->supplementClass->nrOfStudents ; } ;
inline void incrNrOfStudents() { ooThis()->supplementClass->nrOfStudents ++ ; } ;

We must now rebuild the schema stored in our federated database passing to the DDL
preprocessor our ddl file(s) containing a definition of both classes: Teacher and
TeacherSupplement. The preprocessor should be run with the -evolve flag, as we are
adding a new association to a Teacher class.

Now we can “attach” our “new, external member”, for example:

Teacher::Teacher(/* parameters */)

{

00This()->supplementClass = new(0oThis().containedin()) TeacherSupplement ;

// other constructor’s methods

The consequences of executing this constructor areas follows:

For every object of class Teacher:

® an object of a class TeacherSupplement is created automatically:
- with a member nrOfStudents = 0 (set in the constructor of TeacherSupplement class)
- in the same container, where the parent object is located,

® an association supplementClass is set to point to the newly created object of the
TeacherSupplement class.

Existing instances of the class Teacher must now be changed. This is performed using a
conversion function. To understand how this function works, the definition of several
classes must be given, as shown below:

class Teacher : public 000bj {
public:
Teacher(/* parameters ¥/) ;
inline ooRef{Student) myStudents{] <-> teachers{[] ;
inline ooRef(TeacherManager) tManager <-> allTeachers[] ;
// other fields and methods ...
// simulation of a new member:

14

Schema Evolution

inline int getNrOfStudents() { return ooThis()->supplementClass->nrOfStudents ; } ;
inline void incrNrOfStudents() { ooThis()->supplementClass->nrOfStudents ++ ; };

ooRef{TeacherSupplement) supplementClass ;
} ;

class Student : public 00Obj {
public:
inline ooRef(Teacher) teachers{] <-> myStudents[] ; N
// other fields and methods ... T
}s

class TeacherManager : public 0oObj {
public:
void initAfterAddindNewMember() ;
inline ooRef(Teacher) allTeachers[] <-> tManager ;
// other fields and methods ...

}’.

Now we can define the function:
void TeacherManager: :initAfterAddindNewMember()

{
ooltr(Teacher) teachl ;
o0This()->allTeachers(teachl) ; // set iterator for traversing through all teachers
while (teachLnext()) // traverse through all teachers
{
teachl->supplementClass = new(ooThis().containedIn()) TeacherSupplement ;
ooltr(Student) studl ;
teachl->myStudents(studl, vocNoOpen) ; // set iterator for traversing through all students
while(studl.next()) // count students, set new member
teachl->incrNrOfStudents() ;
}
}

The function initAfterAddindNewMember should be run only once, before using the new
member.

Now we can rebuild applications which want to use the “new” member. The details of
accessing the “new” member via the association are hidden in the functions
getNrOfStudents() and incrNrOfStudents().

The procedure presented above is fully transparent to other applications, they can continue
accessing federated database without any limitations but, clearly, they do not know about
the existence of the “new” member.

The side-effect, and probably the main shortcomings of such procedure are:

a) one additional object must be created for every object of “affected” class,
b) accessing this object through a non-inline association will influence the performance.

15

Object Database Features and HEP DATA Management S

4.7.4 Complex Operations

Complex class content changes can be performed by combining multiple basic operations.
Complex operations include:

1) Adding a data member and copy its value from another member,

2) Changing the type of a data member to either a base class or derived class,
3) Changing the class of origin of a data member,

4) Changing the dimensions of a array data member,

5) Changing a fixed-size array to a variable-size one,

6) Changing the type of a non-primitive data member,

7) Changing an object reference to an association,

8) Changing the cardinality of an association,

9) Changing the domain class of an association.

4.8 Conclusions

Schema evolution is clearly an important facility for large and/or long-lived projects.
Further investigations, using a large federation, need to be made of the different conversion
possibilities and of the use of additional classes to simulate the addition of new data
members in existing classes.

The schema evolution capabilities offered by ODBMSs greatly exceed those of existing
packages. However, it is clear that guidelines need to be established so that this capability
is used in an efficient and manageable fashion.

16

Object Versioning

5. Object Versioning

Object versioning is a capability that permits an application to create separate versions of
individual objects, or in some cases also versions of collections of objects. The requirement
for support for object versioning in ODBMS products originally arose from applications
such as CAD or CASE, where access to various states of an object during the course of its
evolution are a fundamental part of the application.

Object versioning may be used for a number of different purposes, including:

1) to keep track of the history of an object,
2) to enable concurrent access to the same object,
3) to deal with the problem of changing type definitions.

Object history

Calibration objects may be considered to be an example of the first case. These are
typically time-varying objects, although in some cases are accessed via a logically
equivalent key, such as run and event number. The use of object versioning allows the
complete history of the different calibrations to be maintained, including branches.
Implementations of object versioning typically provides support for a default version. In
the case of calibration objects, however, a default version has no obvious meaning.

Concurrent access

There are times when different users need to work concurrently with their own set of data
stored in the same object, or need to update the same object independently. Examples
include the testing of new algorithms, such as track fitting, on production data. Even
though one may wish the new objects to be persistent, they are in some sense private, and
should not be visible to the rest of the collaboration until such time as the new algorithm is
officially approved and becomes part of the production software. Equally, there may be
several people testing alternative algorithms in parallel. Object versioning provides a clean
solution - it enables concurrent access to different versions with no locks or collision.
Every user can maintain their own versions, including branches (which can later be merged
if required), and sharing of versions between different users is also possible. One may also
define a default version, which can be redefined at any time. However, the creation of
versions clearly requires write permission to the database and thus cannot be safely granted
to the entire collaboration.

Changing type definitions

Examples of the third case are currently restricted to the field of schema evolution - no
known ODBMS mixes schema evolution with object versioning. Such a behaviour could
be applied in some applications probably with a greater success than schema evolution

17

Object Database Features and HEP DATA Management

alone. The possibility of using different schema for different versions of the same object is
much more powerful than changing the schema of a base object.

The ODBMS may provide a mechanism or a policy for version management. Existing
products do not support built-in policies in their products, preferring to provide a complete
mechanism for building policies instead. Having that mechanism, users can easily provide
the appropriate policy. Both Objectivity/DB and O, provide a mechanism, leaving the
management problem to be solved by the user. A very easy example of a policy, that could
be provided by vendors, would be keeping track of the object creator. This could be
implemented to allow individual users to see only object versions that they themselves had
created, without even begin aware of the existence of other versions. This could diminish
the problem of access control and inadvertent data loss or corruption due to conflicting
updates by different users. Naturally this can be supported in the user code using the above
mentioned mechanism - about 10 lines and that is all!

Both Objectivity/DB and O, implement a new version of an object by making a copy of the
parent object (versioning-by-copy). A second approach exists and is called versioning-by-
difference (or delta versioning); this approach is not popular among modern ODBMS
products in era of large and cheap data storage systems. This unpopular approach stores
only differences between versions instead of entire objects. It requires a lot of additional
time for reconstructing a version, saving a little disk space instead. This approach could be
applied successfully for large objects, where differences between successive versions are
small.

The ODBMS may provide a protection of versions from unauthorized or inadvertent
access. This feature is not currently available either in Objectivity/DB or in O,. O, provides
two different polices for accessing objects: writable and read-only, which can be regarded
as a security feature.

5.1 Object Versioning in Objectivity/DB

5.1.1 Version Genealogy

The complete set of versions of an object in Objectivity/DB’s terminology is called a
version genealogy. Creation a new version of an object simply means adding a new object
to the genealogy. Depending on the VersioningMode atiribute associated with every object,
an object can be versioned in linear mode, branch mode, or versioning can be simply
disabled. The VersioningMode flag can be changed at any time, hence switching between
modes is very easy. The most basic functionality required for versions is creation and
deletion of versions. A user can create a new version of an object explicitly, or a new
version can be created implicitly whenever the object is modified. Within a version
genealogy one version can be singled out; then it is called a default version. Working with
a default version is extremely fast and flexible: dedicated associations enable convenient
locating the version, and special tools help to maintain it easily. A default version is not
created automatically - it has to be set explicitly by the user. Yet another nice feature of

18

Object Versioning

Objectivity/DB’s versioning is possibility of merging versions; recollect an example from
the preceding subsection called “Concurrent access” to consider importance of that
feature.

The figure below shows an example of a version genealogy with a default version marked,
cases where both linear and branch versioning are applied, and where two versions are
merged.

) - default version

Example of a “Version Genealogy”

While creating of a new version of an object, Objectivity/DB performs a bit-wise copy of
the existing object, possibly adding some associations. Whenever a new version of an
object is created, all associations concerning this object remain untouched. Whether the
semantics of creating a new version should be the same as that of a copy constructor or an
object assignment depends on the application. For this reason, an empty virtual function
ooNewVerslnit() is called automatically just after the new version creation; the function
does nothing but return a success status. Overloading this function in a user’s application’s
persistent class gives him a broad influence on the initialization of a new version. Using the
function, user can specify the exact semantics that fits the version copy requirements.

5.1.2 Genealogy Object

The versioning features of Objectivity/DB are implemented through the use of system
defined association links and member functions that are automatically defined by the DDL
preprocessor. Every version keeps track to his parent and child versions (prevVers and
nextVers links); if needed, the order parent-child can be inverted. For further simplification
of maintaining any number of versions, Objectivity/DB uses a genealogy object, which is
an additional object created automatically when a default version is set. The genealogy
object is an instance of a class 00GeneObj or of a user-defined subclass of 0oGeneObj.
Every version genealogy can have associated one genealogy object. The genealogy object
serves as a multiplexer, allowing objects to associate to the genealogy as a whole (allVers
link); it can be customized to hold information that pertains to the genealogy as a whole; it
is also used to support a default version of an object. Within a genealogy, the default

19

Object Database Features and HEP DATA Management

version may only be accessed from the default version itself and from those versions
created after the initial default version was designated. The figure below shows a position
of genealogy object inside a sample version genealogy. The genealogy object is “attached”
to the version genealogy through associations: one per version. Standard associations
between genealogy object or versioned objects and any other objects which are not in the
genealogy and may be in different database or even off-line are also supported.

Standard Association
Genealogy Association
Default Version Association

Default Version
Genealogy Object
Object in Genealogy

Object not in Genealogy

The “Genealogy Object” in Objectivity/DB

The Objectivity/DB-defined association links to support versioning are confined to the
classes 000Obj and ooGeneObj. The following paired bi-directional association links are
available:

a) association between all versions® and the genealogy objc:ct6 (000bj::geneObj and
00GeneObj::allVers[])

b) association between default version® and the genealogy object
(000bj::defaultToGeneObj and ooGeneObj::defaultVers)

c) association between parent and child versions’ (000bj::nextVers and 00Obj::prevVers)

d) like c), if a version branch is being merged (0oObj::derivatives[] and
000bj::derivedFrom[])

3 Instance(s) of 00Obj class or a user-defined class(s) derived from 00Obj.
§ Instance of 00GeneOb;j class or a user-defined class derived from 00GeneObj.

20

Object Versioning

geneObj allVers []

nextVers []

derivatives []
00GeneObj

prevVers

derivedFrom []

defaultToGeneObj defaultVers

These associations may be modeled as shown in the figure above. The figure below shows
an example of how these association links might be used within a simple version
genealogy. Every version within the genealogy accesses genealogy object via geneObj
association, From the other side: genealogy object has the access to every version via
allVers association. An additional link between genealogy object and default version
exists: genealogy object locates default version using defaultVers, beeing located itself by
default version through defaultToGeneObj link.

Version V1 and V3 are being merged. The V4 version is actually created from V1 version,
and derivatives / derivedFrom links generally indicate that a version branch is being
merged.

derivatives{ |

Default Version

@ Genealogy Objact

5.1.3 Versioning Behaviour for Associations

When declaring in a DDL file an association between objects, at the same time the user can
also define versioning behaviour for the association, choosing between three alternatives:

— copy

— move

— delete.

The figure below explains fully how this works in practice.

21

Object Database Features and HEP DATA Management

Copy Versioned
O object
Associated
object
Move —_— Association
Delete

Delete behaviour is the default - this will be applied unless otherwise specified. As the next
line shows, defining the behaviour is extremely easy:

ooRef(myClass) assocOne[] <-> assocTwo : version(move) ;
and needs only two additional words. This example set the behaviour of association
assocOne to “move”.

5.1.4 Others Versioning Features

Objectivity/DB provides complete set of tools for creating, deleting and efficient locating
of versions. To create a new version, one should:

enable versioning

close a “parent” object

open an object in update mode

optionally set a new version as a default one
optionally disable versioning

“DhWN -

All needed associations are set by the system - the user does not need define them. This
approach is very simple, but does not give the full power of Objectivity/DB’s versioning.
To use the genealogy object to its full potential, the user must create it manually and use
the association interface to versioning. A customized genealogy object class can be defined
simply by creating a subclass of 0oGeneQObj.

Also the precise use of the association links is fully up to the application developer. By
directly manipulating and managing these associations user can:

e create customized versioning semantics

® use customized genealogy object classes.

In addition to standard tools for locating versions, system names or scope names can be
used whenever it simplifies the identification of versions. System name uniquely identifies
an assigned object within entire federation. A scope name is a name that uniquely identifies
an object within the name scope of itself or other objects. A name scope is an individual

22

Object Versioning

object’s set of scope names; therefore, there are as many name scopes as there are
individual objects.

Objectivity/DB supports only versioning of basic objects (objects of class 0oObj or user-
defined classes derived from 000bj); versioning of "nested" or composite objects is
unsupported. In order to create and work with versions of collection of objects, one can
provide the appropriate code in his class which derives from 0oGeneObj.

5.2 Object Versioning in O,

The following information was obtained from a pre-release of the O, versioning manual - it
was not available in the released product at the time of writing.

For versioning purposes O, defines a configuration of objects, which is a collection of
derivatives from 02_Version class - class used for maintaining versions. Any kind of object
can be put into configuration, including objects which are collections any versionable
object can be referenced to or from non versioned objects. The only restriction is, that
collection involved in versioning can not be indexed. In general it means that O, allows to
create and manipulate versions of groups of objects, regardless if the group consist of the
same class of objects or not. When you create a new version of an object, which consists of
other objects (lets call them subobjects), all subobjects will appear in a new version
automatically.

Root version

Version v2

Version merging
vi.2and v2.1

Unlike Objectivity/DB, first version called root version is automatically sets as a default
version. O, provides a lot of pre-defined functions, which simplify the development of
applications using versions; the same can be achieved in Objectivity/DB by writing
additional users routines. Of particular note is that each version can be easily labeled.
Comparing to Objectivity/DB, there are some additional function for locating versions, (for
example locating root version, retrieving by label). O, optimizes the size of a version by
not copying the values of the objects in a configuration when a new version is derived. The

23

Object Database Features and HEP DATA Management

copy is postponed to the time of updating a new version. O, provides also a function for
finding difference between two versions.

5.3 Possible Uses of Object Versioning in HEP

There are a number of areas in HEP where one might consider the use of object versioning:

* to handle calibration objects, where multiple versions are expected to exist, typically
accessed by time stamp,

® to manage different versions of event data objects, e.g. track objects, perhaps
corresponding to reprocessing with improved algorithms and/or calibrations/alignment
etc.,

¢ to handle different versions of persistent event selections.

To investigate the usefulness of Object Versioning in HEP, we have designed and/or
developed prototypes corresponding to each of these cases, which are described in more
detail below.

5.4 A Calibration Database Using Object Versioning

A possible application for object versioning in HEP is that of a calibration (or constants)
database - a set of parameters for various elements of the detector are stored in a database,
typically retrieved by time instant or run and event number (e.g. give me the pedestals for
the electromagnetic calorimeter valid at instant #). Typically, many different calibrations for
a given subdetector will exist, and there may even be more than one set of calibrations
valid for a given time instant.

Such a scenario seems to map well to object versioning, particularly as implemented in
Objectivity/DB, which offers both linear and branch versioning, as described above.

Unfortunately, versioning does not offer any clear advantages in terms of access to a
specific calibration - there is no obvious meaning to be attached to a default version of a
calibration, nor do next and previous provide useful functionality for this application.

Finally, object versioning does not solve the primary problem associated to calibration
data, namely efficient access to the most appropriate calibration.

In summary, whereas object versioning could be used to manage calibration constants, they
offer no clear advantage, and we have therefore not developed a prototype in this area.

5.5 Object Versioning and Event Data

In this prototype, we consider the use of object versioning for handle multiple versions of a
track object. We use the word version when identity is preserved. Thus, refitting an
existing track object results in a new version of that object, whereas re-running the track
finding algorithm does not.

24

Object Versioning

An important restriction regarding the use of object versioning is that one must decide a
priori which objects are to be versioned and which are not. This is because applications
must handle versioned objects explicitly, via the geneology object. Thus, one may decide
on specific classes within the event that are to be versioned, such as the HepEvent object,
and HepEventTag and so forth.

The use of object versioning would assist the management of various production runs. The
default version would be set explicitly, following some quality control, -2nd "sers would
subsequently access this version of the objects in question, unless they explicitly requested
an different version, such as the previous one.

5.6 Object Versioning and Persistent Event Selections

The definition of event selections is often an iterative process. An initial selection is made,
then refined many times, and often compared with a previous selection. In this context,
concepts such as “next” and “previous” would appear to be convenient ways of handling,
for example, multiple versions or refinements of a named-event selection.

To investigate how versioning features could be applied to this field, we have built a
prototype application. In this prototype, we implement versioning of selections, as well as
versioning of the cuts defined by the user. To give the user full freedom, there are no
restrictions on the number of cuts, the types’ used in the cuts or their naming. The user is
simply required, prior to running the application, to define the appropriate cuts in a C++
header file, simply by specifying a type and a unique name for every cut. In addition, a
“match” function must be provided in a user class, which must be derived from the base
class HepPersistentEventCollectionPredicate. There are no restrictions on the contents of
the match function - it is fully user dependent. This function receives as a parameter an
event and should return false or true, depending if the event is accepted or not, based upon
the cuts that have been defined or indeed upon any other criteria. In the constructor of the
user class, initial values can be specified. After compiling and linking the user code with
the appropriate RD45 class library (which will become a component of CLHEP once fully
mature), the user can now start selecting events. Every selection that is created can be given
a name unique within a user scope. In other words, there is no requirement that the
selections have names that are unique across the entire federated database - multiple users
can work simultaneously, each using, for example MySelection, without interfering each
other. (It is also possible for multiple users to access the same collection simulatenously,
e.g. in the case of analysis group or even collaboration-wide named collections.) Also
versions of a selection (i.e. predicate genealogy) can be given a name®: during the creation
of a version or at any time later.

In this prototype, Tcl/Tk has been used to provide the graphical user interface. A window is
provided from which event selections can be made, in which the user is able to see the

7 All standard C++ types can be used.
8 Also unique within a user scope.

25

Object Database Features and HEP DATA Management C

various cuts that were defined in the corresponding header file, and edit the value of these
cuts.

While running the program the first time, an object for keeping track of all persistent

selections of the user is created (instance of a class VerManager). Only one such an object

per one user exists inside all the federation. When a new selection is created:

1) it becomes associated with VerManager object,

2) a “root” version of selection is automatically created, with a “root” version of the
associated predicate.

The set of cuts in a predicate can be initialized from the values given by the user in the
constructor, or simply from the edit fields provided by the GUIL The user may now create
new versions of the predicates associated with a given selection, and also create new
versions of the selection itself and again provide multiple versions of the predicates for
each version of the selection.

An active version of the selection is always marked as default inside a the selection’s
version genealogy. Similarly, an active version of the predicate is marked as default inside
a predicate‘s version genealogy. Unless otherwise specified, by clicking on the appropriate
button, the latest version becomes the default one. Event selection is performed using a set
of default cuts from a default version of selection.

Keeping many versions of the cuts inside one version of the selection is very efficient and
space-saving, as single predicate version is typically very small, consisting only of the
values to be used for the cuts in question together with a few “system” fields. In contract, a
version of a selection can become very large, as it contains references all events that
correspond to the selections.

Inside one named selection user can create up to 2°> different versions of selections, and
the same number of different versions of cuts inside one version of the selection. Every
new version is registered immediately, hence the full history of changes can be retrieved at
any time. Obviously one user can see only his selections, without even being aware of
existence of others, although once again, public or group selections are also possible.

In the current version of our prototype, versions are located in two different ways: if the
neighbour version need to be located, we use the associations “previous” or “next”, and for
locating any other version, we use “lookup” function, which traverse through all versions
until it founds the right one. For large number of versions inside one genealogy, more
clever system of decision taking could be probably more efficient. Use of the associations
“previous” and “next” could be extended for far-away neighbours, as traversing several
times through successive neighbour versions could be faster then looking for one version in
the large set of versions. For systems with hundreds of versions, a version could be also
located using an index. As an index sorts objects of a particular class according to the value
in one or more fields of the class, creating an index which would use versions’ numbers
could increase greatly accessing versions.

26

Object Versioning

apldity [3 500000 '

5.6.1 “Alone” Predicates

The term alone predicate is used for a predicate which is not connected to any selection and
exists independently. In fact, an alone predicate is a genealogy object, and it can consist of
any number of real predicates (versions), with one version default. After creation an alone
predicate, possibly with a number of versions attached such a predicate can attached to a
chosen selection as one of the versions of the selection. After being attached, there are no
differences between a standard version of a selection and attached alone predicate. Every
“not connected” alone predicate will disappear at program termination, hence alone
predicates can be also considered as temporary predicates.

For convenience reasons, all alone predicates must, in the current prototype, be given a
name (unique in the user scope). It would also be possible to manage such predicates
simply by keeping track of the appropriate object reference.

5.6.2 OrPredicates

Apart from standard predicates, which consist of a set of cuts defined by the user and a
match function, predicates of some special types could exist, for further helping in refining
events. Firstly, as the most useful, OrPredicate has been implemented. If this shows
usefulness of this type of predicates, others (AndPredicate, ...?) will be implemented in a
future version of the prototype.

The idea of these predicates is simple: a predicate has no cuts of its own and instead it
consists of some associations to other predicates (i.e. versions of predicates, not genealogy

27

Object Database Features and HEP DATA Management

objects). In place of the match function defined by the user, a specific match function
exists; this function defines features of that predicate. In case of OrPredicate, its match
function accepts an event if any of associated predicates accept this event, otherwise the
event is rejected. In case of AndPredicate an event is accepted only if every associated
predicate accepts that event.

Creating an OrPredicate can be divided into two steps:

1) creating an object, e e

2) adding any number of associations between this object and any version of predicate
from selections.’

After an OrPredicate has been created, it can be attached to any version of a selection (i.e.
predicate genealogy), as a version of predicate and then becomes a last and a default
version inside the genealogy; it cannot be attached to an alone predicate. As an OrPredicate
(unlike standard predicates) has no cuts, in the interface of our prototype for any
OrPredicate, in the entry/view fields all values of cuts are set to zero.

5.7 Conclusions

Detailed tests of versioning selections and user cuts proved, that features of versioning can
be applied to these field with a great success. Advantages of versioning such as existence
of a default version, possibility to see all versions as one object, or easy location of
“previous” or “next” version inside a large genealogy fit fine with requirement of
applications designed for iterative refining selection. We now believe that object
versioning is the best way of maintaining vast number of cuts of hundreds of users. What is
not clear now is, if user could have possibility to delete some selected versions: if it is
regarded as a history, once created versions probably should be kept for ever as read-only.
In current version of our prototype user can delete only entire selection (all versions of
selection with all versions of predicates), he carnot delete only a part of selection. If this
approach will be continued in the future is not decided yet, but clearly implementation of
tools for deleting a part of selection is fairly easy.

We believe that object versioning can be used to advantage in HEP to help manage
persistent selections of events, and their associated predicates, plus also different versions
of event (sub-)objects. Although they could also be used to handle calibration objects, we
see no particular advantage (or disadvantage) in this area, as the primary problem is rapid
access to the appropriate calibrations, for which object versioning, in this instance, offers
no benefit.

We feel that we have identified a need for “user-versions”, and have outlined a strategy for
how they could be implemented. We have fed this requirement back to Objectivity, and
await their response.

% As OrPredicate is a kind of predicate, it can be also easily associated with other OrPredicate.

28

Replication

6. Replication™

Replication, or more specifically replication of user data'’, is a technique whereby multiple
“copies” of individual objects are automatically maintained by the system.

Replication'? is an important technique that can be used to improve both performance and
fault-tolerance. By definition, replicated objects are those objects for which there is more
than one implementation (cf. “copy”). Typically, the different implementations will be
stored on separate servers, often in more than one location. The degree of replication may
vary within the system - objects that are replicated in all physical instances of a single,
logical database are termed completely replicated. The set of all replicas of a given object
is called the replication set.

Replication offers a number of important advantages, particularly in the distributed
environment:

* Performance: read access to an object can be satisfied by a local replica, without
accessing a remote server,

® Availability: remote users can continue to work with objects, even if the network or
remote server becomes available,

® Autonomy: individual sites and/or network segments can continue to work
independently.

There are, of course, a number of drawbacks, mainly related to write access. If objects are
frequently updated then the amount of synchronization that is required may be significant.
In addition, if the objects may be updated from many different locations, a strategy for
avoiding conflicts, particularly in the case of network partitioning, is essential.

Thus, replication makes most sense when:

o the data is largely read-only, or the update rate is low compared to the read rate,
o performance and availability are high priorities.

Both of these are true for HEP event data.

10 ee also: Appendix: User Data Replication in Objectivity/DB on page 50 and the Versant Fault Tolerant Server on page 63.

! Replication of system data, including the federated database catalogue, schema etc., is also essential. In Objectivity/DB, this is
provided by the Fault Tolerant Option (FTO), upon which user data replication (DRO) is layered. We do not discuss the FTO further in
this report.

12 Information concerning replication in ODBMSs is not currently available online. A discussion of the concepts of data replication may
be found in http://www.oracle.conv/info/products/symrep/chapter5.html. See also the discussion in Loomis[14].

29

Object Database Features and HEP DATA Management o

6.1 Replication in Other ODBMS Products

At the time of writing, we are not aware of any ODBMS product, other than
Objectivity/DB, that offers flexible data. Only Versant appears to offer any sort of
“replication”, as described in

http://www.versant.com/versant/products/ftserver.html.

and reproduced in the Appendix: Versant Fault Tolerant(FT) Server on page 63. The
replication provided by the current version of Versant is not considered appropriate for
usage in HEP.

6.2 ‘“Tape Replication”

In the normal case, replication is performed over network connections. However, given the
quantities of data involved and the uncertainty concerning the network bandwidths that will
be available/affordable, the possibility of “tape replication” is also of interest.

Replication by tape may be divided into three stages:

¢ recording data on tapes from the source databases
¢ sending the tapes (post,...)
* retrieving data from the tapes onto the destination partitioned databases.

Clearly, for every-day data exchange between replicated parts of a federation this approach
is not recommended, but if TB or more of data are involved, this “traditional” method of
data import/export could again play a role. For example, if it is decided that a given set of
databases that are already populated be replicated to an outside institutes, it may be much
more efficient to distribute a few TB of data by tape, rather than attempt to replicate the
data over the network.

A shortcoming of tape-replication is duration of this operation which, for remote institutes,
can take a week or more. In many cases, however, it is not the time delay but rather the
reliability of the solution that is the dominant factor. In the case of bulk data import/export,
the use of tapes may be more reliable than a network-based solution, even though it does
incur a significant management overhead, and typically requires that the database that is
being exported remain “offline” during the duration of the export. Once the bulk data has
been exported in this way, the databases can be reconfigured as online and minor changes
may then take place over the network.

30

Replication

6.3 Use of Replication in the HEP Environment

There are a number of potential uses for user-data replication in the HEP environment.
These include:

e performance,

¢ availability/reliability,

e distribution of data from a central site to regional centres, individual institutes and even
end-users,

* "collection" of simulated data from outside institutes to regional centres and/or a central
repository.

Prototype applications corresponding to each of these problem domains have been built,
and are described further below.

6.4 Replication and Performance

In the case of read-only or read-mostly applications, replication offers potential
performance benefits by allowing a read operation to be satisfied by a local replica, thus
avoiding costly network transfers, and also by off-loading a central server. Write operations
will typically be slower using replication, as the transaction cannot complete until the data
involved is written to persistent storage for all currently accessible servers.

Fortunately, HEP data is read-mostly, and thus we expect significant performance benefits,
particularly in the wide-area, from this feature. Indeed, it is at least possible, if not likely,
that some degree of replication, particularly for objects that are frequently accessed, such as
HepTag objects, will be needed simply to satisfy the performance requirements of the
users.

6.5 Replication and Reliability

In addition to potential performance improvements, replication removes single points of
failure and thus allows for highly robust systems. Not only are users protected against host
or storage failure, but, more importantly, against network failure. Thus, a user working at a
remote site does not require a permanent network connection to a central server, provided
that the needed data is replicated locally.

6.6 Distribution of Data by Replication

Data export to remote sites has traditionally been performed by bulk export of tapes. Given
the volume of data involved in LHC era experiments, it is not obvious that this solution
remains viable, and it is clearly far from being an optimized solution. For example, some
estimates call for the export of 100 TB of data to each of 10 regional centres approximately
twice per year. This immediately triples the amount of data that is handled each year, and
creates significant book-keeping problems.

31

Object Database Features and HEP DATA Management

An alternative solution would be to replicate the frequently accessed data to those sites
where it is required - a strength of the Object Database solution is that any object can be
accessed, regardless of its location in the federation, and thus it is not necessary to
duplicate the entire data-set. Preliminary estimates suggest that between 10-100 KB/event
will be required to perform most analysis - including even simple event displays! If one is
able to combine these reduction factors with appropriate streaming or tagging of the data,
one can potentially achieve reduction factors of 10* or more. This is shown in the table
below, where the data rate required to replicate 1% of the total event sample, and 1% of
each event in question, only 100KB/second are required. Certainly, for small data samples,
such as the event tags themselves (which can also be streamed), the required network
bandwidth for “real-time” replication is extremely modest.

Data Subset Data Volume Data Rate
All data for all events IMB/event 100MB/second
10% of each event 100KB/event 10MB/second
1% of each event 10KB/event 1MB/second
1% of each event 10KB/event 100KB/second
10% of all events
1% of each event 10KB/event 10KB/second
1% of all events
Event characteristics 100B/event 100B/second

Rates Required to Replicate Various Data Samples

6.7 Collection of Data by Replication

In HEP, event simulation is typically performed in a distributed fashion - simulation is
performed at many collaborating institutes and collected at a central site by means of tape
(and often redistributed to other remote institutes). The data rates involved are typically
extremely low, and data collection could be greatly simplified by replicating the events
back to a central site as they are created.

In order to test the feasibility of using data replication for “collection” of simulated data,
we have installed Objectivity/DB with the Data Replication Option (DRO) at two remote
sites:

e Krakow, in Poland, to test replication over low bandwidth connections (a “worst-case”
scenario) and :
e KEK, in Japan, to test replication in the “wide-area”.

As a fully object-oriented simulation tool-kit is not yet available, we have written
collections of objects of various sizes to approximate the structure of simulated events.
This “mathematical event generator” currently uses the draft ALICE data model.

32

Replication

This prototype has allowed us to exploit the weighting feature used by Objectivity/DB to
determine write access to a given database within the federation. In the default condition,
each partition to which a given database is replicated has equal votes. In the case of
network partitioning, the partition with the majority of the votes is permitted write access
to the database, whereas the partition with the minority is permitted only read access. By
applying weights, one can configure the database such that each site involved in the
simulation task always has write access to its “own” database. Data will be replicated
asynchronously to all other sites as required."

6.8 Conclusions

Data replication is clearly an important capability that will be required for both
performance and availability reasons. In addition, its use for data distribution and collection
potentially offers greatly superior data management capabilities over today’s, ad-hoc,
labour-intensive solutions. At the time of writing, data replication support in ODBMS
products is still immature, and more tests need to be made over time to understand to what
extent these capabilities can be used in a production system in the LHC time-frame. In
addition, the real requirements in terms of network bandwidth and resilience to network
failure need to be studied.

13 This is another case where it may be convenient to “batch” updates, by simulating that the network connection is down for most of
the time, and enabling replication of pending data at appropriate periods.

33

Object Database Features and HEP DATA Management

7. Summary and Conclusions

We have described the concepts of data replication, object versioning and schema
evolution, together with their implementation in two ODBMS products. In each case, we
have evaluated how these capabilities could be used to solve data management problems
typical of those posed by HEP event data, and have built prototypes to verify the
functionality in practice. We believe that all of these features offer advantages for HEP data
management, and feel that data replication in particular will bring significant benefits to the
problem of data management for LHC-era experiments.

We have identified a number of requirements that are not satisfied by the current
implementation in Objectivity/DB, and are working with the vendor to ensure that a future
version of the product will satisfy our needs in these areas.

At the time of writing, there are no plans to incorporate these features in a future version of
the ODMG standard, although we have requested that they be added to the list of
requirements for post-V2.0 releases.

34

Appendix: Schema Evolution in Objectivity/DB

8. Appendices

The following sections are included verbatim from vendor papers.

P S

9. Schema Evolution in Objectivity/DB'*

Objectivity/DB Version 4 supports high availability applications with a sophisticated
schema evolution mechanism that allows developers to modify the structure of persistent
data without requiring the database to be taken off-line. This increases the flexibility of the
application development process, reducing the technical and business risks associated with
modifying deployed applications.

As the requirements of a database application evolve over time, changes are made to the
definition of the physical data structure, or "schema”, of the data elements stored within the
database. Schema evolution is the process of redefining the persistent datatypes in a
database application. Data conversion is the step in the process that converts the contents
of the database from the old schema to the new schema.

Objectivity/DB provides a mechanism for implementing changes to existing applications
with large, populated databases. This ability to modify database schema "on-the-fly"
provides developers the option of making data structure changes to deployed applications
that would not otherwise be feasible. This reduces the risk of application deployment and
makes project management more flexible.

The rest of this chapter describes Objectivity/DB schema evolution in more detail. A
general discussion of the restrictions placed on schema evolution by relational technology
is followed by a description, including examples, of Objectivity/DB’s schema evolution
capabilities.

9.1.1 Relational Schema Evolution

Relational technology provides little support for schema evolution and data conversion,
offering, at best, the ability to add a statically initialized column to a table. The bulk of the
work for more complex schema changes is the conversion of the existing data, which must
be performed after the database has been taken off-line.

9.1.1.1 Application Changes

Data is usually stored in a relational database in a normalized format to provide a common
view of the data across multiple applications. Persistent data is defined strictly as rows and

' http://www.objy.com/ODB/WP/Schema/schema html.

35

Object Database Features and HEP DATA Management -7

columns within tables. The translation of data from the logical data structures of the
application into the tables that form the schema of the database is left to the application.

As a result, relational database applications must always be conscious of the tables, field
definitions, alternate views of tables, and, most importantly, table joins that must be
performed during normal execution. Since the database schema is defined by the same
mechanism that provides access the database, SQL, every point in the application that
accesses the database must be altered to reflect the change in the external data structure.

Of course, it is possible to encapsulate the physical data structure in a relational database
application by providing alternate views of tables. The proper use of modular programming
techniques can isolate the knowledge of the physical structure of the database. However,
object oriented applications, built on object databases, do this encapsulation as a natural
part of the development process, rather than as an extra step in the design, programming,
and administration of the database.

9.1.2 Data Conversion

Assume for a moment that the application is sufficiently modular to be changed with a
relatively small effort. What about the database that already exists that is filled with
operational data?

The effort required to convert the data in an existing relational database to a new schema is
one that is quite familiar. Traditionally, changing the definition of a table in a relational
database requires shutting down the database, converting the contents of the database,
updating the applications to use the new table definition, re-distributing the application,
restarting the database, and allowing the users back on the system.

Making a copy of some or all of the database and doing the job offline allows the users to
remain operational, but it raises the problems of disk space and data integrity. The
converted data will be out of sync due to normal operations that occur during the
conversion process, requiring some form of update conflict resolution to be performed.

The key issue with changing the schema is that the on-line database must be converted at
some point in time. There is no way to avoid inconveniencing the end-users during this
phase of the data conversion process.

While the technique of schema evolution and data conversion described above is also
applicable to some object databases, it is possible for an object database to provide
assistance with the schema evolution process. In particular, the conversion of previously
stored data is a process that is facilitated by Objectivity/DB’s schema evolution capabilities.

9.1.3 A Relational Example

Consider an example in which the performance of a relational database application is found
to be limited by the normalization of the data model.

36

Appendix: Schema Evolution in Objectivity/DB

The administrators discover that one of the original assumptions in their system design is
false. Table A was expected to be accessed independently of Table B most of the time,
when actual usage indicated that A is only used when B is accessed first. This lookup of A
for every B is performed through a join that is repeated over and over, causing extremely
poor performance. Denormalizing the physical implementation of the data model, merging
A information into each record of B, would improve performance by eliminating the un-
necessary join.

A B B+A

RDBMS do not provide support for such schema modifications. In order to make the
changes indicated in the example above, the development team must perform some
variation of the following general steps:

@pgrade Applicatiora

¢ Modify the application to use the new schema

e Write a monolithic Upgrade Application that performs three steps:
1. Reads the old data from the database DB
2. Converts each record from the old schema to the new schema
3. Writes the database with the new schema into DB’

¢ Kick all the users off and shut down the database

¢ Perform the monolithic data conversion

¢ Distribute the new version of the application

¢ Let users run the new application

37

Object Database Features and HEP DATA Management 0

9.1.4 The Problems

The problems with the monolithic data conversion described above are the lack of database
availability during the data conversion process, excess disk space requirements, and
general risk involved.

Availability

User inconvenience can be reduced by the steps outlined above, but it cannot be completely
removed. The data conversion takes a finite amount of time. The larger the database, the
longer it is unavailable during data conversion.

This puts a great deal of pressure on the development staff to make the conversion process
go smoothly. It also requires access to the database when it is not being heavily used so that
it can be shut down without disrupting operations. This is not possible for many
applications, since they require the database to be available continuously.

Disk Space

During data conversion itself, the data is copied from one place to another, meaning that
there will be two images of the database in storage. This could, in the worst case, double
the disk space requirements.

If the entire database was copied during the conversion program, the disk requirements
would double. If the tables are copied back into the same database, then obsolete versions
of tables may exist that can be archived or deleted, as appropriate.

Disk space is a particular issue for schema evolution in object databases, since object
databases are able to hold significantly more operationally useful data than relational
databases.

Risk
Monolithic data conversion incurs tremendous risk to the schema evolution process in
terms of the lost business opportunities during the data conversion time period. The

business costs associated with the database being unavailable are entirely application
dependent, but can be considerable in strategic applications.

The primary technical risk involves data integrity. At some point, the users will all change
over to a new version of the end-user application to run against a new version of the
database that was created with a separate upgrade application. The possibility of corrupting
the database with two applications is greater than with a single application.

38

Appendix: Schema Evolution in Objectivity/DB

9.2 Schema Evolution with Objectivity/DB

Objectivity/DB provides a robust schema evolution mechanism that handles most schema
changes quite simply, giving the developer control over the timing and the granularity of
the data conversion process. A developers is able to alter the schema of a deployed
application and convert the existing database without forcing end-users off the database
during a lengthy off-line, monolithic data conversion process.

Rather than have to convert the entire database at once, only the objects whose definitions
have changed are candidates for data conversion. Those objects are referred to as
"affected" objects. They may be converted one at a time, or in various size groups. When
converted, affected objects are written back into the space in which they existed before,
allocating or freeing incremental disk space according to the type of change being made to
the schema.

During the data conversion process, and in stark contrast to relational databases, the
database remains on-line for the business function it supports, minimizing business risk.
The technical risk is also minimized because in most cases the "conversion program" and
the "end-user application" are the same. Data is converted automatically by Objectivity/DB
in the end-user application, which greatly reduces the risk of programming errors.

The remainder of this discussion revolves around the type of schema changes that can be
made, and how the timing and granularity of the data conversion is controlled by the
developer.

Types of Schema Change

Many schema changes are possible, ranging from purely logical changes (such as changing
the name of a data member) to inheritance changes. The basic types of schema changes
supported by Objectivity/DB are:

¢ Logical changes

Class member changes

e Association and reference changes
e Class changes

¢ Inheritance changes

Basic schema changes of each of these types can be handled automatically by
Objectivity/DB, with the optional use of Conversion Functions as required.

39

Object Database Features and HEP DATA Management

Automatic Conversion

Objectivity/DB handles many types of schema changes automatically, such as the
conversion of one primitive datatype to another, the addition or deletion of new class
members, and the modification of the access control of a base class.

Application
y Old Objeet

Objectivity Engine > User Defined
(Schema Evolution) < Conversion Function

y New Obiject
old New

Object Object
v
DB

Conversion Functions

Conversion Functions are developer defined call-back functions that provide an
opportunity for application dependent processing to be applied at the point of data
conversion. The Conversion Function is executed by the database engine during the
automatic conversion of affected objects. Each time an object of the old schema is
accessed, the Conversion Function is executed. When objects of the new schema are
accessed, the Conversion Function is not executed.

9.2.1 Conversion Modes

After the type of schema change has been specified, the issues of timing and granularity of
data conversion must be addressed. In other words, we have to decide when to convert the
existing data, and how much of it to convert at a time.

Relational databases, and some object databases, only provide monolithic data conversion.
In object database terms this is called "Immediate Mode" conversion, because all the data
has to be converted immediately before any user application can be given access to the
database. This makes the database completely unavailable to the users. By comparison,
Objectivity/DB does not limit access to the database during data conversion.

In addition to Immediate Mode, Objectivity/DB also offers alternative conversion modes
that allow the application requirements to dictate the timing and granularity of data
conversion. Data conversion can either be deferred until objects are physically accessed by
an application, or performed when the developer demands. These are known as Deferred
and On-Demand schema conversion, respectively, which never limit database availability.
Even Immediate Mode data conversion leaves the database available, because only the
affected objects are made unavailable.

40

Appendix: Schema Evolution in Objectivity/DB

Mode Granularity
Deferred Object
On-Demand Container
Database
Federated Database
Immediate Federated Database

Deferred Mode Conversion

Deferred Mode Conversion leaves the affected objects in the database in the old form until
they are required for use by the end-user application. Objectivity/DB converts each affected
object as it is used in the course of normal end-user operations.

Deferred Mode, which encompasses the majority of schema changes, is the easiest form of
conversion from the developer’s standpoint: the end-user application is simply modified to
use the new schema. The process of changing the schema in the application source code
will automatically set the program up to convert affected objects as they are encountered;
i.e. in Deferred Mode. If a Conversion Function is required to augment the data conversion,
it would be added to the end-user application.

The end-user simply receives a new version of the application and operates it as before.
The conversion takes place in the database engine automatically. There is no need to stop
all the users from using the system for an extended period of time, because down-time for
an individual end-user is limited to the amount of time it takes them to restart their
application.

On-Demand Mode Conversion

On-Demand Mode Conversion does the same type of conversions as Deferred Mode,
defined above, but to groups of objects explicitly indicated by the application developer at
various points in an application.

On-Demand Mode is implemented by calling a member function for one of the data storage
constructs in the end-user application. The function call would be placed at that point
where the application encounters new containers, databases, or federated databases.
Objects, and groups of objects, are flagged as they are converted, so that each affected
object is only converted once. Unless On-Demand conversion is used for the entire
federation, it is likely that there will be some unconverted objects in the database. This is
not a problem, since they will simply be converted when the end-user application tries to
use them.

41

Object Database Features and HEP DATA Management

Immediate Mode Conversion

The use of Immediate Mode data conversion allows schema evolution to be performed
despite the presence of uni-directional associations and inherited references in the schema.
Objectivity/DB offers a flexible implementation of Immediate Mode conversion that leaves
the database on-line, making only the affected objects unavailable during data conversion.
Note that Immediate Mode conversion is only required for two specific types of schema
change; replacing base classes and deleting classes.

9.2.2 Other Schema Evolution Issues
Multiple Changes Over Time

Objectivity/DB can keep track of an arbitrary number of Deferred Mode schema changes to
the same class. This becomes an important issue when multiple changes are made to the
schema over time, and not all of the objects in the database have been converted.

For example, assume that a particular class is changed two or three times using Deferred
Mode data conversion. The database will contain both converted and un-converted objects
mid-way through a Deferred Mode conversion. Objectivity/DB allows the subsequent
schema evolution processes to be started, even though all the data has not yet been
converted from the earlier schema changes. As objects are accessed, they will be converted
to the newest schema automatically.

Upgrade Applications
Upgrade Application End User
Application
ObjectivityDB ObjectivityDB
Engine (w/Schema Engine (w/Schema
Evolution) Evolution)

o]
Upgrade Applications are primarily small programs that make one or more calls to the On-
Demand Mode member functions to convert objects in containers, databases, or across the
entire federation. Such an Upgrade Application can usually be run in parallel with the new

version of the end-user application, with the knowledge that when it completes, all affected
objects will have been converted.

Of course, it is not possible to anticipate every type of schema change. Objectivity/DB
schema evolution supports unanticipated schema changes through the sequential execution

42

Appendix: Schema Evolution in Objectivity/DB

of multiple schema changes. Some of these multiple step schema changes will require an
Upgrade Application to explicitly traverse all of the affected objects prior to moving on to
the next step in the schema evolution.

In a similar fashion, schema changes that are complex in nature, such as those where
Immediate Mode conversion is required, are dependent upon application-specific
information to be provided in an Upgrade Application in order to be able to apply integrity
constraints during the schema evolution process. a e

9.2.3 Schema Evolution Scenarios

Objectivity/DB In Centralized Client/Server Applications

Take the example of a repository built using Objectivity/DB, where the end-users start and
stop the client application each day. In this scenario, the client applications are able to be
re-distributed as a normal part of operations. In an application in which Objectivity/DB
resides in the client workstations, performing schema evolution simply requires updating
the client workstation applications.

Application Application
Local Server Local Server

The only time that the database would be "unavailable" is during the brief moment when
the client applications are being restarted.

43

Object Database Features and HEP DATA Management S

Objectivity/DB In Server Application Only
Removing Objectivity/DB from the client workstations changes the situation.

Web Browser Web Browser
Local Server

This might be an advanced Web server application built with Objectivity/DB, where the
“client application" is an off-the-shelf Web browser. Since the client and server processes
are effectively decoupled through the use of HTML, it is unnecessary to re-distribute the
client portion of the application. The only time that the Web site would be unavailable is
during the restart of the Web server application.

One way to prevent even this minor interruption of service is with Objectivity/DB Data
Replication Option, which allows an individual server to be taken off-line for service, and
brought back on-line again, without disrupting access to replicated data in a federated
database.

Schema Evolution Examples

Adding Data Members

This example is the classic situation where a new piece of information needs to be
maintained in an object.

Before After
long Firstltem long Firstltem
long Lastltem * ' long Newltem
long Lastltem

44

Appendix: Schema Evolution in Objectivity/DB

The steps to performing the schema evolution are quite simple.
¢ Change the schema and application to add the new data type.
¢ Re-compile, re-distribute, and run the application as before.

The conversion of objects residing in the database will be deferred until they are accessed
in the normal operation of the application. Objectivity/DB can automatically initialize a
new data member to a predefined value. If the initial value must be calculated, a
Conversion Function is required.

Conversion of Primitive Datatypes

In this example, the number of unique BufferIDs required was under-estimated. Converting
BufferID from a short to a long will solve the problem. The physical conversion of the
object is shown below.

Before After
long Firstltem long Firstltem
short BufferID e long BufferID
long LastItem long Lastltem

The steps to performing the schema evolution are quite simple.

¢ Change the schema and application to use the new data type.
¢ Re-compile, re-distribute, and run the application as before.

Logical Schema Change

In this example, no change to the physical structure of the persistent objects is required. An
object has in-line references to other objects. New requirements dictate that when the
object is locked or deleted, all the referenced objects should also be locked or deleted.
Adding lock and delete propagation to the in-line references requires a logical schema
change to the schema that can be implemented in Deferred Mode.

The steps to performing such an operation are as follows:

® Change the schema to propagate locks and delete properties across the in-line
references.

® Re-compile, re-distribute, and run the application as before.

Modifying Inheritance

Objectivity/DB’s schema evolution support is not limited to modifying the contents of a
class. It is also possible to modify the inheritance relationships between existing classes in
Objectivity/DB.

45

Object Database Features and HEP DATA Management

For example, adding a non-persistent base class to a persistent class is a schema change
that can be implemented in Deferred Mode. The same is true for removing a non-persistent
base class. In this example, we also wish to ensure that all the objects are converted in a

finite amount of time.
)
e
)

The steps are the same as in the earlier examples:
® Change the end-user application to add or delete the base class.
* Re-compile, re-distribute, and run the user application as before.

Over time, most of the affected objects are likely to be converted. In order to force the

remaining affected objects to be converted, an Upgrade Application can be written that

calls the function to convert the remaining affected objects in the federated database. If

Conversion Functions are used in the end-user application, they should also be used in the

Upgrade Application.

® Create an Upgrade Application that also converts the objects in On-Demand mode
against the entire Federated Database.

¢ Run the Upgrade Application to convert the affected objects simultaneously with the
execution of the end-user applications.

9.2.4 Conclusion

Schema evolution is a key requirement in high availability applications. Objectivity/DB
provides powerful and flexible schema evolution capabilities which clearly demonstrate
our support of mission-critical application environments in which the database must remain
available at all times.

Not only are application developers able to make schema changes that were not possible
before, but they are able to do it easily with Objectivity/DB. The flexibility of Deferred and
On-Demand Mode data conversion allows the developer to select the timing and
granularity of the data conversion appropriate for the application.

Objectivity/DB’s support of on-line data conversion minimizes the risk traditionally
associated with making schema changes in deployed applications. Application developers
are better able to plan incremental application modifications, reducing the risk of being
locked into a deployed application that might be inadequate to meet future needs.

46

Appendix: User Data Replication in Objectivity/DB

10. User Data Replication in Objectivity/DB"°

Objectivity/DB Data Replication Option (DRO) extends Objectivity/DB Version 4 to
include database replication capabilities that provide improved read performance and
continuous availability, while ensuring data integrity in a manner that is transparent to
applications.

Objectivity/ DRO provides a method of data replication by which data integrity is
maintained not by application specific code, but by the database engine itself. By
comparison, traditional database solutions that offer asynchronous replication require data
integrity to be maintained by the application, rather than the database.

The fundamental problem in maintaining data integrity in a set of replicated database
images is propagating the changes from one database image to each of the others. With
Objectivity/DRO, this is accomplished using a highly efficient voting mechanism to
determine whether a particular access can successfully be granted to the database. If a
majority, or "quorum", of database images agree, then access will be granted. If one or
more of the database images are unavailable due to network or server failure, a quorum of
database images is still sufficient to successfully modify the database. When the failed
servers are repaired, or reconnected to the network, the database images that they contain
will be automatically resynchronized to match the contents of the quorum database image.

Data replication with Objectivity/DRO provides continuous system availability in the event
of either server or network failures. Since database images can be distributed
geographically, Objectivity/DRO protects against physical and catastrophic site failures, as
well as hardware and software failures at a given location.

The rest of this document describes Objectivity/DRO in more depth. Discussion will center
around the various methods of data replication and present a detailed description of
Objectivity/DRO. A number of data replication examples will be presented to demonstrate
how to configure Objectivity/DRO in a variety of situations.

The fundamental issue in data replication is maintaining data integrity across multiple
database images. Two primary solutions exist, synchronous and asynchronous replication.

10.1 Synchronous Replication

Synchronous replication requires that every image of the database be written at once. Data
integrity is maintained in traditional database solutions with a two-phase commit within a
transaction that accesses every image of the database element to be written, and proceeds
only when every image is available for update. In traditional database solutions,

3 http:/fwww.objy.com/ODB/WP/DRO/dro. html

47

Object Database Features and HEP DATA Management

synchronous replication eliminates the distinction between master/slave and peer-to-peer
configurations.

However, traditional synchronous solutions are vulnerable to system failure. If one image
of the database is unavailable due to server failure, the transaction is prevented from
completing.

Database Server 1 Database Server 2

Database Server 3

While synchronous replication assures data integrity, it does so at the expense of
availability. System availability is greatly reduced with synchronous replication if the links
between the database images are fragile. This vulnerability to network failures also
prevents synchronously replicated database servers from being geographically distributed,
leaving them vulnerable to location specific disasters, like fire or earthquake.

10.2 Asynchronous Replication

Asynchronous data replication provides two benefits, improved read performance and
continuous availability. The failure of a particular server does not generally affect the
operation of the other servers, but does force more work to be done in the application to
maintain data integrity.

When changes are made, a single image of the database is updated, and then the changes
are propagated to the remaining images. The two popular mechanisms for propagating
changes to the other database images are imbedded triggers and passing change logs.
Triggers are implemented inside the database and add to the overhead associated with
performing transactions in the database. Passing change logs also increases network
overhead during the replication of the update, but is less intrusive on the local database.

Asynchronous replication also allows database images to be isolated geographically, since
each site has its own version of the data.

48

Appendix: User Data Replication in Objectivity/DB

10.3 Conflict Avoidance, Detection, and Resolution

Conlflict resolution is required when two images of the same database are updated at the
same time, without knowledge of the other image. The simplest solution for this type of
conflict is to have the application avoid such conflicts by ensuring that each data element
belongs to one database image or the other. This forces a master/slave relationship between
database images.

Once the conflict exists, traditional databases provide mechanisms to detect and resolve
them. Conflict resolution algorithms assign priorities to the conflicting updates based on
update requester status (master/slave), timestamps, or some type of application dependent
algorithm. However, all applications do not fit these models. Certainly, a last-writer-wins
model can cause problems for the second-to-last-writer. A master/slave relationship does
not allow for a true peer-to-peer situation, where multiple servers have equal ability to
update the same data.

Traditional Hot Fail-Over Solutions

Take the example shown below with two images of the same database on different
database servers, separated by a failed network.

In this scenario, each database server thinks that it is the only one that exists, and that it has
the ability to modify the database. Each server continues to process changes, creating the
appropriate change log entries, not realizing that the failed server will come back on-line.
When the connection is re-established, each will try to update the other.

The problem occurs when both have made changes to the same data element. In this case,
both have updated element X, creating Y and Z, creating a conflict that may or may not be
able to be resolved. Conflict resolution in this case is entirely application dependent.

49

Object Database Features and HEP DATA Management C

10.4 Summary of Traditional Replication Solutions

Synchronous and asynchronous replication are summarized in the table below. With
synchronous replication, data integrity is assured, but availability is not maintained. With
asynchronous replication, availability is higher, but data integrity is not maintained.

Traditional database solutions have struggled to provide data replication, because their
fundamental architecture assumes a centralized server that is designed to operate in
isolation. Replication and distribution are then provided by connecting multiples of these
stand alone servers.

The reason that traditional database solutions offer both synchronous and asynchronous
solutions for the data replication problem is that they are unable to provide data integrity
and continuous availability at the same time. They are able to provide one or the other, but
not both.

In order to provide both availability and data integrity, a third alternative is required that
provides a fundamental improvement to synchronous replication. Objectivity/DRO is an
implementation of this third category: synchronous data replication with a dynamic quorum
calculation mechanism that provides both availability and data integrity.

10.5 Objectivity/DB Data Replication Option

Objectivity/DB has been designed from the beginning to be a distributed database,
efficiently maintaining data integrity across multiple database servers. Objectivity/DRO
extends this distributed functionality to provide data replication. Before we can describe
the technical aspects of Objectivity/DRO, it is necessary to review the key concepts of
Objectivity/DB and Objectivity/FTO.

Review of Objectivity/DB Key Concepts

Objectivity/DB is built around the concept of the “federated” database, which is defined to
be a set of individual databases that reside on a number of servers.

The architecture features Local Servers, Remote Servers, and Lock Servers. The Local
Server is linked to the applications, and provides access to the local disk, while Remote
Servers provide access to disks on other machines. The Lock Server manages concurrency
among users. Caching is maintained on the Local Server to provide improved performance
through efficient use of disk I/O. Cross-transaction caching is managed by the database.

50

Appendix: User Data Replication in Objectivity/DB

Application

Application

Local Server

Local Server

l
G

Objectivity/DB has the ability to distribute the databases across numerous servers, as
shown above.

Distributing databases across multiple servers provides tremendous scalability, since there
is no single bottleneck for data access. The lock server process is not a bottleneck, since it
uses IDs to determine locking, and does not require accessing the object itself.

Review of Autonomous Partitions

Autonomous partitions operate as independent groups of databases within the context of a
single federated database. Each autonomous partition has its own lock server process
controlling access to its data. Autonomous partitions are provided by Objectivity/DB Fault
Tolerant Option (FTO), which is a required option to implement data replication with
Objectivity/DRO.

Objectivity/FTO allows Lock Servers to be replicated for each autonomous partition.
Catalog information is replicated across autonomous partitions to provide schema
definitions when partitions are isolated by network failures.

51

Object Database Features and HEP DATA Management

Application Application

Local Server

Joo e

o)

Local Server

| Network l

Placing a lock server in each autonomous partition protects one from the failure of another.
Even if an autonomous partition fails, the others can continue to operate among themselves
on their own data.

It is important to note, however, there is only one copy of any particular database. With
Objectivity/FTO, if one autonomous partition fails, access to that data is interrupted until
the autonomous partition is repaired or brought back on line.

Data Replication

Objectivity/DRO provides multiple images of a database, placing each one in a separate
autonomous partition. The application requirements determine which databases are to be
replicated, and how the database images will be configured.

Objectivity/DRO allows flexible replication of selected data. Since the definition of any
individual database is determined by the application developer, and can be dynamically
altered, the granularity of the data replication can be selected to meet the requirements of
the application.

Updates to data elements are synchronous, so there is no concern of data integrity
violations. When an image of a database is brought back on line, it will be automatically
resynchronized with any updates that occurred to the other images while it was off-line.

52

Appendix: User Data Replication in Objectivity/DB

Application

Application

Application

Local Server

T o .5

| W:

Note that only one image of each database can reside in any autonomous partition. Adding
Objectivity/DRO makes it possible to have continuous access to the data.

Creating a sufficient number of database images protects against having a single point of
failure. Even multiple failures will not prevent access to the data, as long as enough
database images exist.

Quorum Calculation

The number of database images required to complete a transaction is calculated implicitly
at runtime. This is called the "quorum calculation”. Simply put, the database images vote
and the majority wins.

When a database image is accessed, and a lock is implicitly requested as part of that access,
the application process running on the local computer contacts each lock server to
determine which database images are available to vote. If a majority of the images of a
database is available, called a "quorum", the access is permitted.

In this example, any two of the three database images form a quorum.

53

Object Database Features and HEP DATA Management

I EFTCrEN,

l

The images that are not available, for whatever reason, will be automatically
resynchronized when they come back on line.

The quorum calculation uses a minimum of network traffic overhead, since only
identification information is being passed. The data itself is not required to be passed,
saving the network bandwidth for transmission of the data directly from database server to
database server during normal operation of the application.

There is a trade-off to be made in designing an application with Objectivity/DRO, since
write performance depends partly upon the number of images of a given database that is
being updated. On one hand, the more images in the quorum, the longer it may take to
modify the database. On the other hand, the more images of a given database there are, the
more assurance there is that a quorum will be available.

Non-Quorum Access

The quorum calculation occurs on every inquiry and update transaction. A quorum is not
required for inquiry transactions. The requirements of the particular application determine
whether data is accessible for read access when a quorum is not available. While the
system default does not allow non-quorum reads, it may be changed programmatically.

A quorum of images is required to successfully access the database for update. The quorum
calculation ensures that enough database images are available to represent the true state of
the database. Objectivity/DRO prevents non-quorum writes from ever occurring to ensure
the integrity of the data, and prevents the need for merging multiple versions of a database
together. ‘

The bottom line is that if the application can write the data, there must be a quorum of
database images available to ensure the availability of the modified data in the future.

54

Appendix: User Data Replication in Objéctivity/DB

Non-Unitary Weighting

There are many replication scenarios in which some database images require special access
or ownership of particular data, regardless of server or network failures elsewhere in the
system. Objectivity/DRO addresses this by assigning voting ‘weights’ to each database
image.

Previous examples have been simplified to imply a single vote per database image. The
actual case is that, rather than merely counting the number of database images available,
the quorum calculation compares the weight of the available database images to the total
weight assigned to all the images of that same database.

An example of this is a master/slave configuration in which one particular database image
must be available for update transactions to succeed. The other database images are used to
provide improved read access performance.

Setting the weight of the first database image to be greater than half the number of total
weights assigned has the effect of making the first database image the owner of the
database.

P
i

This is a master/slave configuration, since it only allows the slave database images to be
updated if the master database image is also available to provide a quorum.

Administration and Maintenance

Data replication with Objectivity/DRO is easy to maintain and administrate. There are no
complicated database resynchronization procedures for out-of-date database images since
Objectivity/DRO automatically re-synchronizes them when they come back on-line.

This capability allows easy platform maintenance. For example, in order to update the
operating system on a computer, simply take it off-line, install the new version of the
operating system, and put the computer back on line. Objectivity/DRO will automatically

55

Object Database Features and HEP DATA Management

re-sync the database image, and the end-users will not be aware that maintenance was
being performed.

The maintenance of multiple images of a database, including the assignments of weights, is
primarily an administrative activity. Applications developed with Objectivity/DRO are not
required to be aware that they will have their database replicated. This allows control of the
application configuration to be maintained outside of the application development team.

Non-Quorum Recovery

No software can protect against every kind of failure. There may still be a situation in
which a catastrophic event wipes out a quorum of the database images.

Take the example of a master/slave configuration in which all the master database images
are located within a geographic region that is destroyed in an earthquake. All that remains
after the earthquake is a non-quorum group of database images in some remote location. If
the remaining, non-quorum database images were part of the quorum at the time of the
earthquake, then the data in them is current. The data is inaccessible, however, since the
remaining database images do not form a quorum. The database administrator will have to
use Objectivity/DRO’s administrative utilities to redefine the quorum to be within the
remaining database images. Effectively, the administrator makes the federated database
think that the database images destroyed in the earthquake never existed.

10.6 Business Scenarios

Objectivity/DB does not distinguish between database images on "client” workstations and
database "servers". There is an inherent peer-to-peer relationship that can be modified to
fulfill the requirements of the application. The database administrator creates a
master/slave or peer-to-peer relationship with Objectivity/DRO by assigning the
appropriate weights to the database images.

Telephone Call Routing

Protection Against Server Failure

Consider the conflict resolution example described earlier and apply it to telephone call
routing; a situation that requires 100% availability of network configuration information.
This application requires a hot backup of its data so that no interruption of service occurs.

In order to protect against the database server crashing, an image of the database is placed
on a second server. If the first server fails, the second server continues processing normally.

56

Appendix: User Data Replication in Objectivity/DB

The situation is pictured as follows:

In this configuration, two different servers contain images of the same information. If one
of the servers fails, database reads are still possible through the other server. (Note that
autonomous partitions may span servers, LANs, and WANSs. For the sake of simplicity, this
example assumes that each server contains its own autonomous partition.)

Simple Hot Fail-Over With Objectivity/DRO

Objectivity/DRO does not assign primary or secondary status to either of the database
images. All images are equivalent representations of the same database. The only
differentiator between images is the weight assigned to each which is used in calculating
the quorum. If access is available to most of the weight of the replicated database images,
authority is granted to make a change to the database.

In this example we have chosen to assign equal weight to each database image, which
raises the issue of breaking ties. If one of the servers has failed and someone wants to write
to the database, there is no quorum available since there is not a majority of weights
available. It’s a tie. There are as many weights available as there are unavailable.

The way Objectivity/DRO provides a quorum in the basic two image scenario is to create a
third autonomous partition. A "tie-breaker" is placed into this third autonomous partition
which casts the deciding vote in the quorum calculation. The tie-breaker is considered the
equivalent to a database image for purposes of the quorum calculation, but it contains no
data.

Any two of the three database "images" constitute a quorum, even though one of the
images is really a tie-breaker.

57

Object Database Features and HEP DATA Management R

Protection Against Network Failure

Locating each autonomous partition on a different network shows that this capability is not
limited to use in single network configurations. Objectivity/DB, combined with
Objectivity/DRO, provides a solution that is able to span networks to protect against
network failure.

In the previous example, if all of the servers were on a single network, they would be
vulnerable to network failures. In most environments, each geographic location has a
number of LAN segments to isolate network failures. Objectivity/DRO handles this
complexity transparently.

The configurations shown above both protect against network failure as well as server
failure. Any two of the three database images will form a quorum allowing the database to
be updated, as if they were on a single LAN.

Should one LAN fail, or the internetwork connection to one of the LANs fail, the quorum
is still available to client workstations on the remaining LAN.

When the network between servers is disconnected with Objectivity/DRO, data is not
corrupted, since only those servers that form a quorum of databases are able to process
updates. While the network connection stays broken, only the contiguous servers forming
the quorum can write to the database, thus ensuring data integrity.

Afterwards, when the network is reconnected, Objectivity/DRO automatically re-syncs the
out-dated database images, eliminating the worries of accessing stale data, or corrupting the
database through simultaneous updates.

Airline Customer Profile

Another example is that of an airline providing customer profile information to each
counter at airports that are geographically dispersed.

Tokyo 1 3 1

58

Appendix: User Data Replication in Objectivity/DB

Consider a customer of good standing. A frequent flyer comes to expect a higher level of
service from the airline. When dealing with a ticket agent the customer’s status will be
indicated on the ticket agent’s screen.

Clearly, performance is important, since the customer could potentially miss a flight if they
had to wait too long, or if their status was not known at a remote location.

For argument’s sake, let’s assume that there are so many customers that ownership of the
customer profile database is divided regionally. (Only New York can update New York
customers, etc.) Quorum weighting would be applied as shown above.

With this weighting, each region would effectively own it’s data, but replicas would be
maintained by the remote locations to address the needs of international travelers. If the
internetwork fails, isolating New York from Tokyo and London, New York would still be
able read the profile of a European customer flying from London. Updates would not be
permitted unless the customer’s "home" region was available.

This ability to read "stale" data - called a "non-quorum read" - is an option that may be
enabled or disabled, according to the requirements of the application.

This example exposes an application design trade-off true for any database replication
implementation in which access to stale ("non-quorum") data is not available for inquiry.
When reading stale data is not allowed, data replication is only useful as a means to
improve read performance at remote sites.

Flexibility
The primary reason for setting the weights in this manner is to point out the flexibility

provided by weighting database images.

If regional ownership is required such that only the "local" region is able to update the
customer profile, weights would be assigned as shown. The owner would be given
ownership by assigning a weight of 3 to the local image, and a weight of 1 to the remote
images.

If regional ownership of customer profiles is not a requirement, a simple change to unitary

weights on each database image can alter the behaviour of the system to allow any two of
the three regions to update a customer profile.

10.7 Web Server

Many situations require a large volume of data to be updated in a single location that needs
to be accessed in geographically separated locations, such as with a Web server.

This scenario generalizes to most situations with the following characteristics:

¢ many reads / few writes

59

Object Database Features and HEP DATA Management

e geographic dispersal of information

¢ 100% availability required

As an exercise, consider the case of multi-media production facilities at three affiliated
news organizations maintaining Web sites for the distribution of current event information.
These Web servers would by definition contain a high concentration of audio, full-motion
video and bit-mapped graphics.

Some of the information is accessed hundreds of times per day, other information is only
accessed occasionally. Though the number of reads is very large in comparison to the
number of writes, the data is written on a weekly, or sometimes daily basis.

Web Server

PARIS

Web Server

Browser

——g

Lk

e

SAN FRANCISCO HONG KONG

The problem in trying to access all the information from a single server location Hong
Kong is that the data volumes are too high to be transmitted on demand through the WAN
connecting sites in San Francisco, Paris and Hong Kong. The information still needs to be
accessed in Paris and San Francisco, but it is extremely inconvenient if, at runtime, the
staff at those facilities has to wait for transmission when reading the database.

The solution is to use Objectivity/DRO to maintain multiple images of the data. The
information is locally held to improve read performance. When updates are made to the
database, all the locations will be kept up to date with the latest information. If one of the
sites is off-line, Objectivity/DRO will perform the automatic re-synchronization as soon as
the problem is resolved.

60

Appendix: User Data Replication in Objéctivity/DB

A geographic distribution of database images will improve read performance by moving
the data closer to the end-users. Simple reads can be performed against the local image of
the database, eliminating transmission delays due to accessing remote Web servers.

Load Balancing

Note that this application has an uneven distribution of data access. Some of the data is
accessed frequently, while other parts of it are read in-frequently.

Web
Server

& (][]

In this scenario, A represents the hot news item of the day. It is only a small portion of the
total volume of the database, yet it is accessed by 90% of the database reads. B represents
the background information on A. It is larger than A in terms of size, but is only accessed
by 9% of the read traffic. C is only responsible for 1% of the read traffic, but it comprises
the vast majority of the database.

Clearly it is desirable to distribute A as widely as possible to provide better response to the
majority of the database accesses. B requires some replication, but not as much as A. C,
however, can be left on a single server, since it is so infrequently accessed.

Web e Load
Server Balancing
Daemon

61

Object Database Features and HEP DATA Management

You could build a Web server using Objectivity/DRO that is able to dynamically distribute
the load across multiple database servers. As Web page access profiles changes over time,
the Web server would be able to dynamically re-distribute the data across the database
servers according to an application specific load distribution algorithm.

10.8 Conclusion

Objectivity/DB Data Replication Option improves read performance and ensures
continuous availability with a dynamic quorum calculation mechanism that maintains data
integrity despite server or network failures.

Objectivity/DRO protects against failures in both servers or networks. There is no need for
applications to perform conflict resolution because Objectivity/DRO’s synchronous data
replication ensures data integrity. When database images on servers or networks that have
failed become available to the quorum, they will be automatically resynchronized to the
quorum database image.

Where traditional data replication solutions force the designer into a particular server
configuration, Objectivity/DRO offers the flexibility to select the configuration that best
fits the application. Configurations can range from simple hot fail-over systems, to widely
distributed systems that offer protection against multiple points of failure. By adjusting the
weight of database images, Objectivity/DRO supports master/slave, peer-to-peer and mixed
configurations.

62

Appendix C: Versant Fault Tolerant (FT) Server

11. Versant Fault Tolerant (FT) Server'¢

VERSANT databases are in production use in many application areas that require system
availability 24 hours a day, 7 days a week (24 x 7) with no scheduled downtime. At a
system level, hardware vendors have addressed this issue with such features as hot standby
systems and disk mirroring. VERSANT addresses this need through synchronous
replication. Synchronous database replication coordinates duplicate transactions distributed
to multiple database servers within the standard VERSANT two-phase commit protocol.

11.1 Continuous Normal Operation

The VERSANT FT Server establishes a replicant pair and coordinates identical
transactions to the pair of VERSANT databases. Database clients connecting to a replicated
database are automatically and transparently connected to the replicated pair. Update
transactions are coordinated using standard VERSANT distributed two-phase commit.
Objects requested by an application are fetched from only one of the servers, but
appropriate locks are acquired on both. During normal operation, identical transactions are
processed simultaneously thereby maintaining logical equivalence of the two databases.

11.2 Redundancy is Application Transparent

The VERSANT FT Server is unique in its support for database mirroring. Since fault
tolerance is implemented within VERSANT’s standard two-phase commit protocol, both
transaction and database integrity are preserved. Only VERSANT provides this
functionality without any changes to applications or class libraries; fault tolerance is
managed as a DBA function.

11.3 "MASTER-SLAVE" Operation

Should a replicated database or the network connection fail due to either software or
hardware causes, failure of the connection between the databases is treated as a database
failure and all changes from that point are recorded to a change log. To resynchronize the
databases, this log is applied to the failed database when restarted. As with standard
operation, the synchronization process is transparent to the applications. Client applications
that use a "slave" database for primary access are not allowed to update objects within the
slave database until the network connection is restored. This precludes the possibility of
creating inconsistencies resulting from uncoordinated updates to replicated databases.

'® This section is reproduced from http://www.versant.com/versant/products/ftserver.html.

63

Object Database Features and HEP DATA Management

11.4 Geographic Distribution

Just as VERSANT provides transparent database distribution, allowing objects residing in
one database to transparently reference objects residing in any other database across the
network, the VERSANT FT Server allows replicants to be widely separated across LANs
or WANS. For example, an organization could place a system in California and its replicant
in London to protect their operations. For some organizations, the ability to protect system

operations from unforeseen occurrences is a standard part of disaster nlanning.

64

12. Glossary

ADSM - A storage management product from IBM

AFS - the Andrew (distributed) filesystem

CORBA- the Common Object Request Broker Architecture, from the OMG
CORE - Centrally Operated Risc Environment

DFS - the OSF/DCE distributed filesystem, based upon AFS

DMIG - the Data Management Interface Group

GB - 10° bytes

HPSS - High Performance Storage System - a high-end mass storage system developed by
a consortium consisting of end-user sites and commercial companies

KB - 2" (10* bytes - normally referred to as 10° bytes

IEEE - the Institute of Electrical and Electronics Engineers

MB - 10° bytes

MSS - a Mass Storage System

NFS - the Network Filesystem, developed by Sun

ODBMS - an Object Database Management System

ODMG - the Object Database M.anagement Group, who develop standards of ODBMSes
OMG - the Object Management (5roup

OQL - the Object Query Languag* defined by the ODMG

ORB - an Object Request Broker

OSM - Open Storage Manager: a commercial MSS

PB - 10" bytes

SQL - Standard Query Language: the language used for issuing queries against databases
SSSWG - the Storage System Standards Working Group

TB - 10'* bytes

VLDB - Very Large Database

VLM - Very Large Memories (> 2GB, i.e. requiring 64-bit addressing)

VMLDB - Very Many Large Databases

XBSA - the draft X/Open Backup Services Application Program Interface

65

13. References

[1] RDA45 - A Persistent Object Manager for HEP, LCRB Status Report, March 1996,
CERN/LHCC 96-15

[2] RDA45 - A Persistent Object Manager for HEP, LCB Status Report, March 1997,
CERN/LHCC 97-7

[3] Object Databases and Mass Storage Systems: The Prognosis, the RD45 collaboration,
CERN/LHCC 96-17

[4] Object Databases and their Impact on Storage-Related Aspects of HEP Computing,
the RD45 collaboration, CERN/LHCC 97-7

[5] Object Database Features and HEP Data Management, the RD45 collaboration,
CERN/LHCC 97-8

[6] Using an Object Database and Mass Storage System for Physics Analysis, the RD45
collaboration, CERN/LHCC 97-9

[71 Where are Object Databases Heading? CERN/RD45/1996/4

[8] Why Objectivity/DB? CERN/RD45/1996/6

[9] Objectivity/DB Database Administration Issues. CERN/RD45/1996/7

[10] Object Data Management. R.G.G. Cattell, Addison Wesley, ISBN 0-201-54748-1
[11] DBMS Needs Assessment for Objects, Barry and Associates (release 3)

[12] The Object-Oriented Database System Manifesto M. Atkinson, F. Bancilhon, D.
DeWitt, K. Dittrich, D. Maier, and S. Zdonik. In Proceedings of the First International
Conference on Deductive and Object-Oriented Databases, pages 223-40, Kyoto,
Japan, December 1989. Also appears in [17].

[13] Object Oriented Databases: Technology, Applications and Products. Bindu R. Rao,
McGraw Hill, ISBN 0-07-051279-5

[14] Object Databases - The Essentials, Mary E. S. Loomis, Addison Wesley, ISBN 0-201-
56341-X

[15] An Evaluation of Object-Oriented Database Developménts, Frank Manola, GTE
Laboratories Incorporated

[16] Modern Database Systems - The Object Model, Interoperability and Beyond, Won
Kim, Addison Wesley, ISBN 0-201-59098-0

[17] Objets et Bases de Donnees - le SGBD O,, Michel Adiba, Christine Collet, Hermes,
ISBN 2-86601-368-9

[18] Object Management Group. The Common Object Request Broker: Architecture and
Specification, Revision 1.1, OMG TC Document 91.12.1, 1991.

66

[19] Object Management Group. Persistent Object Service Specification, Revision 1.0,
OMG Document numbers 94-1-1 and 94-10-7.

[20] The Object Database Standard, ODMG-93, Edited by R.G.G.Cattell, ISBN 1-55860-
302-6, Morgan Kaufmann.

[21] ADAMO Reference Manual, CERN ECP

[22] HBOOK - Statistical Analysis and Histogramming Package - CERN Program Library
Long Writeup, Y250

[23] PAW - the Physics Analysis Workshop - CERN Program Library Long Writeup,
Q121

[24] ATLAS Computing Technical Proposal, CERN/LHCC 96-43
[25] CMS Computing Technical Proposal, CERN/LHCC 96-45

67

