CERN - LHCC -53 - 3~

Cc

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

P

LCB/RD45
February 3, 1997

CERN LIBRARIES, GENEVA

U

SC00000795

OBJECT DATABASES AND THEIR IMPACT
ON STORAGE-RELATED ASPECTS OF
HEP CoOMPUTING

The RD45 collaboration
CERN, Geneva, Switzerland

We present an analysis of the impact of using an Object
Database (ODBMS) for the storage of HEP event data on
various aspects of HEP computing, including the Object Model,
physical data organisation, coding conventions and the use of
third party class libraries. This document has been produced in
response to the first milestone set by the LCRB for the second
year of the RD45 collaboration, namely:

“Identify and analyse the impact of using an ODBMS for event
data on the Object Model, the physical organisation of the data,
coding guidelines and the use of third party class libraries.”

TABLE OF CONTENTS "
1. Executive Summary - |
2. Introduction . |
3. Impact of the Use of an ODBMS on HEP Applicationsc.cceeesueencenees 1
3.1 Impact on the ObJect MOdEL.........ccccoiririiiiiirieeeeeeeeeeeeveee st see e ee s enes 2
3.1.1 Object Model for Persistent Dataccceeeeevrerirenreeeieneeeereeeceeeeesesesse e e 2
3.1.2 Impact on Physical Data Organisationcceecveeeieereeeeeeeneerineeereeeesseseseraeees 3
3.1.3 Object Model Design Using CASE TOOIS...........cccovueereeiieieeeieeeeereeeseseesseseeanns 6
3.2 Impact of an ODBMS on C++ Application Code..........uuvrevrieeerinneeinreneecreeeereeeesaenens 7
3.2.1 Creation Of PersiStent ODJECScceeviviiieciecerreereeeeeectesr ettt e eeseefaeeeseane 8
3.2.2 Replace References to Persistent Objects by Database References.................... 11
3.2.3 Implementation of a CluStering Strategy........c.cceevevverrerererrinreceererreseeieeeeeraeseeseas 11
3.2.4 Implementation of a Locking Strategyccecueveeveeereeiriereneerirreeseneeeeseseeses 11
3.3 Experience from CERES/NA4GScccomiminennieneresiecneseeresesreeesesssssssesestssesesne 11
3.3.1 Object MOdel Changescoceueeeeeinirirneneeirieeieeeteeeeseeseseescssssssesssseeseeseeseenes 11
3.3.2 Use Of Collection ClasSes.........ccceeererreererrieriereereerrersesseessessessesseesseseesseseessessesasses 12
3.3.3 CIUSIETING SIAEZYceerercreerereeerirrersteraernaressecsesssesseesesssessessesssessessesesssessessesseens 12
3.3.4 LOCKING SIALEEY.....ccoeerirerieietentieirctetenteseete e eseeessesae e esecessesseseosesnnenesenensenes 12
3.4 Experience from CLHEP..........cccccoorineiiirinecieeeee ettt esee e s saene 12
3.4.1 Use of Objectivity/DB with HistOOZrams..........ccccceeeveeveeeerreenreererreceeereseesseneeenns 12
3.5 Experience from GEANT-4c.cocovirioiinieeneeieeeeeeete et cesessessesecsseneeeessesnes 13
4. Impact of Using an ODBMS on 3™ Party Class Libraries........c.oceeen.. 14
4.1 Issues Related to Compilers and Compiler/Operating System Levels....................... 15
4.2 Use of an ODBMS with the Standard C++ Librarycccceveeveveeveeeeeieecceseereenen. 16
4.3 Use of an ODBMS with Rogue Wave Tools.h++.......coeeeeereeiiiieriiieeeeeeeeeeeeseeeene 16
4.3.1 Porting Tools.h++ to OBJECLSIOTEcceereererieiecieeecreeee et saeeas 18
4.4 Use of an ODBMS with OpenInVentorccceceroierieeceeereereeneesesreseesesseessesssessneenne 18
4.5 Use of Objectivity/DB with IRIS EXPIOTETcc.cceerireerieirieeerireeeecee e 19
3. Design Hints for the Development of Persistent-Capable Applications20
5.1 ODMG ODbject MOdEL......c.coociiiiriiiriirerteeteseerirrieesteeseessrene s et sasetesseessessesneon 20
5.1.1 Persistent Objects Should Inherit from the d_Object base class.......................... 20
S LT ettt sttt e st st s e e an et e s reeane e e seen s et saeenesae et eneeans 20
5.1.2 Use of d_Ref<T> Smart POINEEL........cccueeriiiueeiiieteeeeeeeeecreeeessesseesessanes e 20
5.1.3 ODMG Fixed Length TYPES......cccccecteerieerirneniiriinesineseesseessessesseseseessessessssssesssees 21
5.1.4 Avoid Transient Memory References as Part of Persistent Objects.................... 22
5.2 Objectivity/DB IMplemMentationccceccevurveerreeesrenessersssscessiessessesseessersensesssessssssenne 22
5.2.1 Persistent Capable Objects Cannot Contain Other Persistent Capable Objects..22
5.2.2 Objectivity/DB References and Transient Objects.......ccoceecereereereeevernervrernenenne 23
5.2.3 Avoid Creating Persistent and Transient Objects of the Same Class.................. 24

5.2.4 Passing of Persistent References and C++ Pointersccvecuveevevveeeecreeveeneenne 24

5.2.5 Initialisation of Persistent References from C++ POINEIS.....cocevvveevieeereeeeeresinnes 24

5.2.6 Default Constructors of Embedded Classes..........ccccoevrrreveemrereeerereeeerensennennns 25

5.3 The HepODBMS Portability Layer..........ccccocerererererreririenieeeerreeiesesieeseessseessesseneane 25
5.3.1 Support for a Consistent Type Naming Scheme..........ccececevereeereereereeereeereerennns 25
5.3.2 Support Classes to Implement Clustering and Locking Strategies..................... 25
5.3.3 Use of the HepHintDeclare, HepHintInit and HepHintSet Macros..................... 25
5.3.4 Use HepNew and HepDelete Instead of the C++ New and Delete Operators....26

5 3ttt ettt ettt a et et e e e bt e e et e seaserenn 26
5.3.5 Encapsulation of Database Session Control...........cceeeerecereereeciennenreeireeenene 27
5. S ettt ettt st et et et e ab e e s e easeneesneaenneesenees 27
5.3.6 Support for Container Librariescccocevecieeeerensereenneseereesereseniesensssesssesseses 27

6. Conclusions 29
7. Glossary - . 30
8. References . - 31

Object Databases and their Impact on HEP Computing

1. Executive Summary

In response to the milestones set by the last LCRB review of the RD45 project, we have
identified and analysed the impact of using an ODBMS for HEP event data on the object
model of the experiment, on physical data organisation, coding guidelines, and the use of
34 party products, including class libraries and CASE tools.

It is our conclusion that the standards for ODBMSs defined by the Object Database
Management Group (ODMG) [20], extend the object model of the language in question
(C++) in a very natural way. The impact on both existing and new applications can be
minimised by a small layer of software and a small number of coding guidelines.

More details regarding the topics that have been investigated are given below.

2. Introduction

This report has been produced in response to the first milestone set at the March 1996
review of the RD45 project by the LCRB, namely:

Identify and analyse the impact of using an ODBMS for event data on the Object Model,
the physical organisation of the data, coding guidelines and the use of third party class
libraries.

This document should be read in conjunction with the March 1997 RD45 status report to
the LCB [2], together with the supporting documents produced for the work relating to
milestones 2 [5] and 3 [6]. This document assumes a working knowledge of object-
oriented methods and object data management, as described in [10].

3. Impact of the Use of an ODBMS on HEP Applications

Traditionally, the selection of a storage sub-system has been one of the most important
choices during the design of software systems for HEP experiments, as this choice strongly
influences the data model of the experiment. All data types and relations between different
parts of the data have to be expressed within the model implemented by the chosen system.
In addition, traditional solutions enforced a special coding style on a large fraction of the
software of the experiment. Contributing collaborators had to be trained to adhere to a
common set of coding rules in order to make the software system maintainable as a whole.

Object Databases and their Impact on HEP Computing

Compared with such approaches, object databases offer the advantage that, rather than
defining an arbitrary new data model, they extend the object model of standard OO
languages such as C++, Smalltalk or Java with respect to object persistency and do not
require large object model or code changes to transient applications that have to be ported.

In the next two sections we will report on the impact of the use of an object database on the
object model in general and on C++ applications in particular. All information presented
here is based on the experience gained in several prototype projects, in which non-trivial
C++ applications from most major HEP problem domains like simulation, reconstruction,
filtering and analysis, have been ported to use an ODBMS.

3.1 Impact on the Object Model

In order to estimate the impact of the use of an ODBMS on the Object Model, we have
considered the following points:

¢ the ODMG standard requires that persistent-capable classes are defined using a special
definition language, the Object Definition Language, or ODL. Non-persistent
applications are typically created by defining C++ classes using header files, often
generated automatically using a CASE tool. We evaluate how the use of ODL impacts
the development of both persistent and transient applications,

e an application that is designed without persistence in mind might result in an object
model that leads to unacceptable performance when combined with an ODBMS. To
investigate the impact of an ODBMS on the Object Model, we consider aspects such as
object granularity and the use of C++ pointers versus ODMG associations, based on the
experience with both NA45 and GEANT-4,

e closely linked to the above is the use of CASE tools. We evaluate the possibilities for
generating ODL files directly from two CASE tools - Rational ROSE and Classify/DB.

3.1.1 Object Model! for Persistent Data

The starting point for the conversion of a transient application to use the database is to
identify all persistent classes and make them inherit from the persistent capable base class
d_Object.

3.1.1.1 ODMG Container Classes

The ODMG ODL provides some significant extensions to the standard C++ object model.
For example, it includes a variety of container classes, including sets, variable length arrays
and so forth. These classes can contain persistent objects and may also be embedded in
other objects.

3.1.1.2 ODMG Object Associations

Relations between persistent objects - from simple uni-directional 1:1 object references
(like pointers in C++) to 1:n and bi-directional associations - are provided by the database.
In the case of bi-directional associations, referential integrity is guaranteed by the database,

Impact of the Use of an ODBMS on HEP Applications

so that common coding errors in the C++ object model like invalid references to objects
which have been moved or deleted are avoided.

3.1.1.3 Typical Problems During the Model Conversion

3.1.1.3.1 Model Defines a Logical Entity by the Lifetime of its Components

During the design of transient applications, a consistent model for the complete class
hierarchy is developed. However, when the application is ported to a database this model is
typically split into transient and persistent parts. Since only the persistent part is available
to another process, the model has to be revised to make sure that all use cases can be
implemented from the persistent model.

As an example, we cite the case of an event. In a purely transient application, an event is
typically defined as all reconstructed objects which exist at a given time. Before the next
event is processed, be it simulated, reconstructed or analysed, all objects corresponding to
the previous event are deleted and new instances are created. In the case of persistent
objects, this approach must be changed. Deleting persistent objects from within an
application also results in their deletion from the database, and so should be avoided. In
addition, mechanisms for retrieving persistent objects need to be provided, which is
typically performed by creating additional persistent classes, such as event, run, burst etc..
These new classes contain associations to all their persistent components and thus permit,
for example, iteration over all of the events belonging to a given run.

3.1.1.3.2 Classes Containing Components of Different Lifetime

Another problem that must be faced when making transient applications persistent, is that
of object lifetime. One such example is the definition of a detector object, which contains
its calibration and event data. A transient application might, for example, reset the event
data for each new event but only reset the calibration part once per run. Simply making the
detector object persistent would result in a very inefficient implementation. Since the
lifetime of the event data determines the lifetime of the detector, one would have to create a
new instance of the detector for each event. This would mean that, not only would the
event data be written to the database per event, but also the calibration constants, even
though, in this scenario, they are constant over a much longer period, i.e. the entire run.

This problem can easily be solved by splitting the detector object into multiple parts, each a
with well defined lifetime. Multiple detector event data objects could, for example,
reference the same detector calibration constant object, thereby avoiding the problem
described above.

3.1.2 Impact on Physical Data Organisation

To understand how the use of an ODBMS affects the physical organisation of data, we
have considered the following topics:

¢ Performance,
¢ Replication and other distributed techniques,
e Impact of the above on the Object Model.

Object Databases and their Impact on HEP Computing

3.1.2.1 Performance Issues

The fundamental key to improving performance is to minimise I/O. The only way that /O
can be minimised is to ensure that each read or write that is performed transfers the
maximum amount of useful data.

In other words:

e the data overhead introduced by ODBMS should be minimised,

¢ the objects must be physically clustered so that the amount of unwanted data that is
transferred is minimised.

Obviously, there is no way of clustering data that satisfies all conceivable access patterns -
it is always possible to invent a pathological case that defeats any attempt at optimisation.
However, by understanding the dominating access patterns, it is possible to greatly improve
both read and write performance. In HEP, data is typically written once, and then read
(very) many times. Hence, if a trade-off is required between read and write performance,
read performance should probably be given priority.

I/O is always performed in units that are much larger than the size of an atomic data item -
it is not possible to read or write a single byte or word from a storage device. A transfer
will typically involve a page of 512 bytes or more, depending on the characteristics of the
filesystem and/or device(s) involved. In addition, the network overhead is often such that a
large block size is most efficient.

In the current version of Objectivity/DB, replication is performed at the level of a physical
database, or file, although different policies are possible for each physical database. This
obviously has a strong impact on the physical organisation of data - the database structure
must clearly match the replication policy. Furthermore, data that do not need to be
replicated should clearly not be stored in databases that are replicated.

The question of performance is investigated further in [6], whilst replication is covered in
[5]. We summarise the main conclusions of these reports below, and discuss the
implications for physical data organisation.

3.1.2.2 Persistent Object Granularity

Making an object persistent by storing it in an ODBMS typically involves a small space
overhead. This varies from product to product, and is a minimum of 14 bytes with
Objectivity/DB. For objects with associations to other objects, the overhead increases
accordingly. During the design of a persistent object model, one therefore needs to consider
different containment scenarios. For example, should the instances of a particular class
exist as separate objects and used by reference from other classes or should they be directly
embedded in these other classes?

Although such questions are also relevant in the context of transient-only applications,
there are additional issues involved in the case of persistent applications.

Impact of the Use of an ODBMS on HEP Applications

The alternatives - persistence by containment or not - have both advantages and drawbacks:

 Instances of classes which are persistent by containment do not have an OID and can
therefore not be used as a target in associations, hash tables or indexes, nor can they be
named.

e On the other hand, individual persistent objects - each with their own OID - have a
storage overhead of 14 bytes. This overhead can lead to a significant storage inefficiency
especially for large numbers of relatively small objects, e.g. those less than about 10
words in size.

In other words one may decide to use individual, rather than contained, objects if one or
more of the following are needed:

indexing,

naming,
associations,
maps,

versioning,
general flexibility.

Finding the most efficient implementation with respect to storage efficiency and retrieval
performance needs careful consideration and the knowledge of typical access patterns of
the software which uses these objects.

Most databases implement variable length arrays (Varrays) as a storage entity separate
from the containing object. If any of the array elements is accessed!, the whole VArray
storage is mapped automatically into the client process as one continuous block. Although
this is useful if all or most elements will be accessed, it is not always the optimal solution.
An example would be a variable size array of 10000 calorimeter clusters which are ordered
by energy. In many use cases, the analysis will only access those clusters which carry large
energies and thus mapping the entire VArray to memory will result in a large I/O overhead.

class Calorimeter;

class CaloCluster : public d_Object {

public: ,
d_Float depositedEnergy; // a single float of data
d_Ref<Calorimeter> itsCalorimeter; // associated with the calorimeter

Y

class Calorimeter : public d_Object {
d_VArray<d_Ref<CaloCluster> > itsClusters;
Y

Separate object implementation

t Complete mapping in one step is the simplest way to retain the semantics of calculations with pointers to vector elements and permits
the assignment of e.g. multiple vector elements through'bit-wise copy operations (e.g. memcpy()).

Object Databases and their Impact on HEP Computing

class CaloCluster { // transient

public:

d_Float depositedEnergy; // just one float of data
}i

class Calorimeter : public d_Object { // persistent
d_VArray<CaloCluster> itsClusters;

} I

Contained object implementation

3.1.3 Object Model Design Using CASE Tools

3.1.3.1 Tools Based on Objectivity/DB - Classify

Classify/DB is a set of products developed by Micram Object Technology, the distributor
of Objectivity products in Germany. They are designed to work exclusively with
Objectivity/DB - not only does the product generate Objectivity DDL (as well as ODMG?
ODL for the C++-binding), but an Objectivity/DB ODBMS is used to store and manage the
object model. The Classify CASE tool, Classify/Views, provides an OMT editor and
diagram generator.

Classify/DB offers a CASE-environment that facilitates the creation of object models and
the development of object-oriented applications for these models. A central (Objectivity)
database, the repository, is used to store all information describing the static and dynamic
aspects of the various object models. Thus, Classify/DB integrates the object modelling
phase with the implementation of the model.

Moreover, Classify/DB is capable of automating and managing the entire software
development life cycle and eliminates the laborious and error-prone task of writing code by
hand.

The Classify products can handle a variety of input/output formats, including:

C++ header files,

ODMG ODL files,
Objectivity/DB DDL files,
Metaphase MODelL.,

Step EXPRESS.

Java.

The Classify tools were used to help design the ALICE raw data model, and also for an
ATLAS DAQ project. These exercises demonstrated that ODL can indeed be generated
from a CASE tool. However, due to problems with the early release of the tool, its use was
abandoned. A newer release of the product showed significant improvements, but it is our

2 In fact, the Classify products were the first of any to support an ODMG binding.

6

Impact of the Use of an ODBMS on HEP Applications

feeling that the CASE tool of choice should be able to generate ODL directly, rather than a
specific tool being imposed due to the requirement of generating ODL.

3.1.3.2 General Design Tools ROSE and StP

In order to produce ODL from a commercial design tool, such as ROSE or StP, one
typically needs to customise the C++ code generator, adding a post-processing script to
handle associations. Early investigations using ROSE, indicate that the main problems are:

e obtaining the role names of bi-directional associations,

e change the association implementation from a C++ pointer to ODMG-compliant base
types (ODL),

* dealing with additional properties on associations, such as delete and lock propagation.

We are aware of a number of customisations of ROSE to produce both ODL and
Objectivity/DB DDL. However, we were unable to obtain these customisations under
favourable terms.

3.1.3.3 Conclusions Regarding CASE Tools

Although today’s CASE tools do not normally generate ODMG ODL directly, they are
typically sufficiently tailorable so that rudimentary ODL generation can be added with
relatively little effort. In the short term, such export filters should be made available for the
commonly used tools, namely StP (ATLAS) and ROSE (CMS, GEANT-4). In the longer
term, as the market penetration of ODBMSs increases, we believe that this capability will
be added to these products, and the need for a specialised tool, such as Classify/DB, will
disappear.

In any case, it is our conclusion that a CASE tool designed specifically to work with a
given ODBMS product is of limited appeal. A highly preferable solution is that described
above, namely that the CASE tool of choice be capable of generating ODMG ODL files,
and of performing reverse engineering from such files.

3.2 Impact of an ODBMS on C++ Application Code

In ODMG compliant databases object persistency is introduced through a very natural

extension of the standard object allocation and object pointer semantics.

e The database overrides the standard new operator in C++ and thereby intercepts the
normal object creation. Instead of allocating the storage for a new object on the heap,
the object is registered with the database and allocated in a client-side database cache.
The cache is written to disk at the end of the current database transaction.

® References to existing persistent objects are maintained via smart pointer types (e.g.
d_Ref<T> or ooHandle(T)) which replace C++ object references through raw
pointers. The smart pointers transparently intercept any program access to a persistent
object and allow the database to bring in the object from the disk storage as needed by
the application. 4

Object Databases and their Impact on HEP Computing

Since this approach does not involve any explicit I/O statements and no explicit copying
between I/O buffers and program variables, porting of existing code to a database typically
involves many fewer code changes than a port to a traditional I/O system, such as ZEBRA.

To understand the impact of a database on existing C++ code, several non-trivial HEP
applications and class libraries have been ported to use object persistency provided by an
ODBMS. The ported code covers most HEP problem domains, including event simulation,
reconstruction, filtering and analysis. It should be noted that none of these applications was
originally designed with the use of an ODBMS in mind.

We present below some considerations on the common tasks that have to be performed
when adding persistence, including:

¢ implementation of a creation and deletion strategy for persistent objects,
¢ definition of a coherent logical object model of the persistent part of the data,
¢ definition of a physical object model: clustering and locking.

We also describe the results of the different porting efforts.

3.2.1 Creation of Persistent Objects

As described above, clustering of objects is of crucial importance for both write and
retrieval performance. In an ODMG-compliant system, the new operator is overloaded to
allow a clustering hint to be specified at object-creation time, via an additional argument.
This argument specifies another object in the database close to which the new object
should be placed. The exact meaning of "close to" is implementation dependent. Typical
implementations place the new object on the same page as the hint object, or in an adjacent
page if there is insufficient space on the page in question. With Objectivity/DB, this
clustering hint also defines the container and database within the federation where the new
object will reside.

The clustering hint argument gives the application a great deal of flexibility in defining
even complex clustering strategies to optimise the database performance, based on typical
access patterns.

One drawback of this implementation, especially with respect to existing C++ code, is that
all occurrences of the new operator have to be changed consistently to use an appropriate
hint argument.

// old code: create a new track on the program
Track *tr = new Track(phi,theta,p_t);

// new code: create a persistent track in

// the container that the variable “clustering” points to
d_Ref_Any clustering = calculatePlacement () ;

d_Ref<Track> tr = new(clustering) Track(phi,theta,p_t);

Comparison of transient and persistent object creation

Impact of the Use of an ODBMS on HEP Applications

In many cases, the clustering strategy used for all objects of a particular class is the same,
e.g. all persistent Tracks go into one well defined container and database:

// new code: create a new persistent track in the container “trackCont”
tr = new(trackCont) Track(phi,theta,p_t):;

Creation of a persistent object

In this case of class-based clustering, we suggest the definition of a static member (class
variable) named "clustering”" in each persistent class. This member, which should be
derived from the base class HepClusteringHint, is used to encapsulate the calculations
needed to determine the object placement. The prototype HepODBMS package, which will
eventually be distributed as a component of LHC++, provides several concrete hint
subclasses, e.g.

¢ HepContainerHint
This class implements the simple strategy to put all objects into a single Objectivity/DB
container.

¢ HepContainerGroupHint
This class generalises the above strategy for large amounts of data: If the total amount of
data is larger than the maximum number of pages per container, new containers will be
created automatically as needed.

¢ HepParallelWriterHint

This class implements a lock-free clustering strategy for multiple writer configurations.
Objectivity containers are not only a physically clustered group of objects but are also the
locking granularity of the system. Access to individual containers is therefore organised in
such a way that each process is guaranteed to write to a separate group of containers.

These classes could perhaps be implemented as a single class with different initialisation,
which would permit, for example, automatic switching to multiple container and/or parallel
writing mode as required.

Object Databases and their Impact on HEP Computing

#include “HepODBMS.h”

class Track : public HepPersObject {
protected:
d_Double phi;
d_Double theta;
d_Double p_t;
d_Double chiSaqgr;
public:
Track() ; P

// clustering hint class variable
static HepClusteringHint clustering;
}s;

class MyTrack : public Track{
public:
refit(); // my new refitting method

// clustering hint class variable
static HepClusteringHint clustering;
Y

Object definition

// during the application initialisation
MyApp: :ClusteringInit ()

// call the application base class to establish the clustering
// strategy for HepXXXX base classes
HepDbApplication: :ClusteringInit () ;

// select a logical db for reconstructed data
db ("ReconstructedData") ;

// set track clustering to the container "Tracks"
Track::clustering = container ("Tracks") ;

db("PrivateDB") ;
// put my tracks into the container “MyTracks”
MyTrack::clustering = container ("MyTracks");

}

MyApp: :processTracks ()
{

tr = new(Track::clustering) Track(...):;
}

MyApp::refitTracks ()

{

// some processing

// creat new hit list object
hits = new(FadcHits::clustering) FadcHits;

// ... more processing

}

Example use of ClusteringHint objects

10

Impact of the Use of an ODBMS on HEP Applications

3.2.2 Replace References to Persistent Objects by Database References

e references to persistent objects like pointers and C++ references (operator &) with smart
pointer d_Ref<T> supplied by the database,

e existing collections must be replaced by the equivalent ODBMS collection.

The first item is typically the most intrusive change that has to be made. However,
although the type declarations of the pointers that reference persistent objects need to be
changed, the code that uses these variables stays untouched. In addition, there are other
reasons why the use of smart pointers should be considered, including:

¢ to implement automatic garbage collection,

* to allow checks to be made on pointer validity, particularly during the development -
phase.

3.2.3 Implementation of a Clustering Strategy

In an ODBMS, the physical organisation of the data is independent of the logical object
model. However, the physical organisation has a direct impact on performance, as /O can
be minimised by storing objects that will be accessed together on the same, or adjacent,
database pages. Clustering can be performed at many levels, including per class or even per
object. Further investigations of clustering strategies are discussed in the report on
milestone 3 [6].

3.2.4 Implementation of a Locking Strategy

Although HEP data is read-mostly, there are areas where locking is required, including the
reconstruction farm. To minimise conflicts, an optimal locking strategy needs to be
defined. Different ODBMS products implement locking in a variety of ways, including
object level, page level and container level locking. Objectivity/DB implements container
level locking, which allows lock traffic to be minimised. In the case of parallel database
update, e.g. from multiple nodes in a reconstruction farm, a lock-free strategy can be used,
as described below for NA45. Objectivity/DB also implements an access mode which
permits multiple, concurrent readers and a single writer (MROW). This implementation
also guarantees that users see consistent data during a transaction.

3.3 Experience from CERES/NA45

The NA45 (CERES) experiment redesigned and reimplemented their reconstruction
program in C++ in early 1996. The initial design and implementation was made without
any consideration of persistence and a number of changes had to be made to accomplish
the latter. The experience gained from this exercise has helped establish the list of
guidelines described in section 3.1 on page 2.

3.3.1 Object Model Changes

The CERES data model was made persistent in two steps. Firstly, only the raw data classes
(labels and raw data event) and the setup information (start of run, end of run, start of burst,

11

Object Databases and their Impact on HEP Computing

end of burst, etc.) classes were made persistent. These changes were made without
encountering any major problems. The main change was the introduction of new persistent
classes CEvent, CRun and Cburst, which were used in the persistent part of the model to
implement a burst object with a 1:n relation to all associated events.

3.3.2 Use of Collection Classes

The transient version of the NA45 reconstruction program made heavy use of a number of
collection classes from Rogue Wave’s Tools.h++ class library. Although a version of this
library exists for Objectivity/DB, it is unfortunately unavailable on HP/UX systems, due to
compiler limitations, HP/UX being the primary development platform used by NA45.

This problem was circumvented by migrating to functionally equivalent classes based on
the Objectivity/DB ooV Array persistent collection class.

3.3.3 Clustering Strategy

The NA45 data was written into separate streams, using a special clustering hint class.
The streams were as follows:

Raw database: for raw data “labels”, raw data event objects,
Event database: for run, burst and event objects,

Reconstructed database: for RICH ring-lists, vertex and track lists,
Start-of-run database: for setup data from start of run/burst.

3.3.4 Locking Strategy

To avoid locking conflicts, a lock-free strategy was used. Each node used in the production
process used a separate container in the same federation, thus avoiding locks. These
containers may be accessed as a single logical container, using special application classes.

The locking strategy was implemented via the clustering hint class, as it is the clustering
directive which determines where individual objects are placed.

3.4 Experience from CLHEP

3.4.1 Use of Objectivity/DB with HistOOgrams

In the context of the LHC++ working group, a set of persistent-capable histogram classes
are being developed. To make these classes persistent, the main changes were:

e the use of ODMG-defined types (d_Double) etc. The ODMG-defined types have a
fixed implementation regardless of platform to overcome compiler and machine
architecture differences,

e the use of smart pointers to implement associations.

12

Impact of the Use of an ODBMS on HEP Applications

Thus, by following the guidelines described earlier in this report, and by using the header
files and classes (e.g. the HepRef smart pointer) that will become part of LHC++, it was
relatively straightforward to implement both transient and persistent-capable histogram
classes.

3.5 Experience from GEANT-4

Persistence for calorimeter and tracker “hits” objects has been introduced in GEANT-4
using Objectivity/DB. Two different implementations have been tested:

e storing each hit object as a separate persistent object in the database,
e storing the hits in a persistent V Array.

In both cases, as can be seen from the tables below, the overhead introduced by making the
objects persistent is very small. In the case of the calorimeter hits, two collections are
created, of 19 and 17 objects respectively. The objects are accessed 100 times, as the
energy deposition is accumulated. In the case of the tracker hits, collections of 1900 and
1700 objects are created. However, each object is accessed only once (at construction
time).

Calorimeter Hits Tracker Hits
Transient Persistent Transient Persistent
User time 7.96 9.63 8.80 13.09
Real time 12.2 14.22 9.63 26.33

Individual Persistent Objects

User time 8.66 8.37 9.66 8.89

Real time 10.96 15.87 11.28 14.41

Persistence by Containment in a VArray

These numbers include only minor optimisations - for both persistent and transient
Varrays, the arrays are extended in blocks of 1024, rather than one entry at a time. In both
cases, this results in a performance improvement of approximately a factor of four. One
might also expect improvements in the case of individual objects, if an enhancement was
made to the database to create multiple objects in one go.

The small overhead introduced by the database is striking, and can be compared with that
incurred by storing ZEBRA objects in an RZ file. In the case of a very simple test, e.g.
using a linear chain of 1900 banks, each containing 10 data words, the /O overhead
represents a small factor, rather than a fractional increase, as is the case using an ODBMS.

13

Object Databases and their Impact on HEP Computing

4. Impact of Using an ODBMS on 3™ Party Class
Libraries

Certain foundation classes are unfortunately highly intrusive. As a result, it is non-trivial to
change from one implementation to another and consequently the choice of appropriate
foundation class libraries is extremely important.

The types of class library involved include those that provide:

® a “universal base class” of all objects,
e object references and pointers,

¢ object containers and collections,

¢ container and collection iterators.

For example, in the case of container libraries, the interface is typically very different, as
may be the object model relation between containers, collections and iterators.

In an environment where multiple large class libraries have to collaborate in order to
provide a consistent set of foundation classes, any component that forces the user to use
yet another non-standard container system or base class would be major problem. Only a
properly layered system based on standardised foundation classes will allow a consistent
integration and keep the system open for new packages

In order to understand the implications of using an ODBMS together with class libraries,
we have tested the use of Objectivity/DB with most of the components of LHC++, namely:

The Standard C++ library
RogueWave Tools.h++
CLHEP

Openlnventor

IRIS Explorer

GEANT-4

In all cases, the issues involved can primarily be divided into two classes:

1. Those related to requirements for specific compilers, compiler versions, and/or
operating system levels,

2. Those that are concerned with persistence - i.e. producing persistent-capable versions
of classes defined in the class libraries, and not using an existing (transient) class
library and an ODBMS in the same application.

14

Impact of Using an ODBMS on 3™ Party Class Libraries

4.1 Issues Related to Compilers and Compiler/Operating System Levels

As is common in the field of software, and has long been true for the current, FORTRAN-
based, CERN Program Library, software packages or libraries often require, or are only
validated on, certain compiler/operating-system combinations. Object databases need an
intimate knowledge of how different compilers lay out objects in memory - and, in the case
of certain ODBMS products, also require detailed operating system knowledge.
Irrespective of these concerns, one of the principle roles of a database is to guarantee
integrity, and this implies that exhaustive testing of the database code has been performed
on a system ideally identical to that employed for the deployment of the application in
question.

Objectivity/DB is currently supported on all of the “reference platforms” in use at CERN
(namely AIX, Digital-Unix, HP/UX, SGI Irix, Sun Solaris and NT). Although more than
one compiler version is supported on one platform, and in some cases multiple operating
system/compiler levels are either supported or can be shown to work, it is clearly advisable
to adhere as closely as possible to the officially supported platforms.

Given that the proposed LHC++ environment (the approximate equivalent of the current
CERNLIB) is based upon several commercial products (all de-facto or de-jure standards),
the possibility of conflicting requirements arises.

As examples of possible conflicts, we cite the following cases:

* Objectivity/DB version 4.0 supports a persistent-version of Rogue Wave’s Tools.h++
class library, (based on Tools.h++ 6.1) whereas the current version of the standard
(transient) version of this product from Rogue Wave is 7.0,

® OpenlInventor (from Silicon Graphics) does not support g++, nor are there any plans for
such support to be provided in the future,

¢ Objectivity/DB does not yet support a persistent version of Tools.h++ on HP/UX or
Alpha NT, the former as Tools.h++ requires full template support, which is not yet
available in the current C++ compiler from HP, the latter simply due to manpower
constraints.

Eventually, one may hope that such problems will disappear - as the appropriate
technologies become mature. In the interim, however, we have taken the pragmatic
approach of strongly encouraging the vendors involved to establish links, and produce
compatible products. Although strictly an LHC++ issue, we report here the following
successes:

e Objectivity/DB have committed to improve their relationship with Rogue Wave, and
synchronous releases of their respective versions of Tools.h++,

¢ NAG (the supplier to CERN of IRIS Explorer, Open Inventor, Open GL), has
established links with both Objectivity and Rogue Wave. For example, NAG is now a
distributor of Rogue Wave products, and the two companies are combining forces on
future C++ based mathematical libraries,

15

Object Databases and their Impact on HEP Computing

® Finally, through regular workshops at CERN, and via close contacts with the
companies in question, we intend to push for synchronised (or at least compatible)
releases.

In summary, we propose to minimise this unavoidable problem by encouraging strong
relationships between the major suppliers of the LHC++ environment - a strategy that
offers considerable advantages not only to the HEP community but also to the suppliers
involved - and hence offers a reasonable chance of success. e o

4.2 Use of an ODBMS with the Standard C++ Library

The current version of the ODMG standard, V1.2, provides a number of templated
collection classes, namely:

e d_Set

e d_Bag

e d List

e d_Varray

For these collection classes, a templated iterator, d_Iterator, is defined. It is the stated intent
of the ODMG to comply fully with the C++ Standard Template Library (STL) in future
releases of the ODMG standard - V2.0, scheduled for late 1997, will offer much more
complete support than is available in V1.2. Today, d_Iterator<T> objects conform to the
STL specification of constant iterators of the bidirectional_iterator category.

In practice, this is still an area which is developing rapidly - the C++ standardisation
process is not yet complete, there are still platforms for which compilers with adequate
template support is not yet available, the ODMG standard is still evolving, and conforming
products are waiting for the evolution of these standards before committing to a specific
implementation. As a pragmatic interim solution, the use of Rogue Wave (persistent-
capable) collection and container classes is recommended.

4.3 Use of an ODBMS with Rogue Wave Tools.h++

Rogue Wave Tools.h++ has been de-facto standard foundation class library for C++
programmers for many years. Recently, Rogue Wave have introduced a new version, V7,
restructured to make full use of the draft standard C++ library, and the Standard Template
Library (STL) component in particular.

Tools.h++ provides many “building-block” classes, including string, date and time, I/O and
collection classes, the latter being of particular interest. It is not possible to use the standard
Tools.h++ class library with an ODBMS (if one wishes to have persistent-capable instances
of the Rogue Wave classes). However, versions of Tools.h++ exist for a number of
ODBMS products, including Objectivity/DB.

16

Impact of Using an ODBMS on 3™ Party Class Libraries

At the time of writing, the current version of Tools.h++ from Rogue Wave is 7.0, whereas
that supplied by Objectivity is 6.1. This is currently a significant inconvenience, but we
have been assured by Objectivity that they will address this problem in the coming months.

The version of Tools.h++ for Objectivity/DB implements a subset of the standard product,
which allows persistent versions of the Tools.h++ classes to be used to create objects

stored in an Objectivity/DB federated database.

Objectivity/Tools.h++ offers the following persistent classes:

| Class Category Rogue Wave Tools.h++ Objectivity/Tools.h++
List, doubly-linked | RWTPuDlist<T> RWODTRefDlist<T>
Hash dictionary RWTPtrHashDictionary<K,V> RWODTRefHashDictionary<K,V>
Hash set RWTPtrHashSet<T> RWODTRefHashSet<T>
Hash table RWTPtrHashTable<T> RWODTRefHastTable<T>
String RWCString RWODCString
Vector, ordered RWTPtrOrdered Vector<T> RWODTRefOrderedVector<T>
Vector, plain RWTPtrVector<T> RWODTRefVector<T>
Vector, sorted RWTPtrSortedVector<T> RWODTRefSortedVector<T>

In addition, the following embedded classes are defined. These classes may only be used as
embedded member data in persistent classes, as with d_Varray.

| Class Cétegory Rogue \V&‘l;:TOOlS.hH Objectivity/Tools.h++
Bit vector RWBitVec RWEmbBitVec
String RWCString RWEmbCString
Vector, ordered RWTPtrOrderedVector<T> RWEmbOrderedVector<T>
Vector, plain RWTPtrVector<T> RWEmbVector<T>
Vector, sorted RWTPtrSortedVector<T> RWEmbSortedVector<T>

17

Object Databases and their Impact on HEP Computing

Finally, there are also transient classes for containing persistent objects and performing
operations such as sorting, ordering and iterating.

Class Category Rogue Wave Tools.h++ Objectivity/Tools.h++

List iterator, doubly linked | RWTPtrDlistIterator<T> RWODTRefDlistlterator<T>

Hash dictionary iterator RWTPtrHashDictionary RWODTRefHashDictionary
Iterator<K,V> Iterator<K,V>

Hash table iterator RWTPtrHashTable RWODTRefHashTablelterator<T>
Iterator<T>

Vector, ordered RWTPtrOrderedVector<T> | RWTRefOrderedVector<T>

Vector, plain RWTPtrVector<T> RWTRefVector<T>

Vector, sorted RWTPtrSortedVector<T> RWTRefSortedVector<T>

In addition to these naming differences, which are clearly an impediment to converting
transient applications to persistent ones, there are a number of functional differences
between the two versions of Tools.h++, that are too detailed to list here. Suffice it say that
it is not possible to migrate a transient application that makes heavy use of Tools.h++ to be
persistent in a completely transparent manner.

Version 2.0 of the ODMG standard will include a subset of the STL containers. As a long-
term strategy, it is clear that STL-based container libraries should be used, and
standardisation in this area will help to minimise the changes that are required.

4.3.1 Porting Tools.h++ to ObjectStore

A discussion of some of the important issues related to porting container libraries to an
ODBMS can be found in a Rogue Wave paper, available via

* http://www.roguewave.com/products/tools_os/ostorept.html.

4.4 Use of an ODBMS with OpenlInventor

Open Inventor, from Silicon Graphics, is an object-oriented toolkit for developing
interactive, 3D graphics applications. It also defines a standard file format for exchanging
3D data among applications. Open Inventor also serves as the basis for the Virtual Reality
Modeling Language (VRML) standard.

Open Inventor applications, such as IRIS Explorer, may be used transparently with an
ODBMS. To store persistent Open Inventor classes in an ODBMS, rather than in Open
Inventor files, requires subclassing of the Open Inventor classes, inheriting from d_Object,
as usual.

18

Impact of Using an ODBMS on 3™ Party Class Libraries

Open Inventor scene graphs can be stored in machine-independent (SGI-format, i.e. big-
endian, Unix line-end for ASCII files) Open Inventor binary or ASCII files.

The possibility of storing Open Inventor scene graphs is clearly an interesting one, although
producing and maintaining a fully persistent-capable Open Inventor toolkit is clearly a
daunting task. Nevertheless, we have made some preliminary studies to understand the
implications of such a toolkit and have passed the suggestion back to Silicon Graphics.

4.5 Use of Objectivity/DB with IRIS Explorer

IRIS Explorer is a toolkit for data visualisation. It is a modular system - users can select
from a wide range of modules supplied with the package, public domain modules written at
various user sites, or generate their own modules. These modules are then linked together
graphically, to provide the required functionality.

IRIS Explorer comes with a number of modules to read industry-standard file formats, and
a simple module to read formatted or unformatted files according to a user-provided
description. Data read from the appropriate source is then passed to another module, such
as a histogramming module.

At the time of writing, IRIS Explorer does not come with a module to read from an
ODBMS, and so a small module was built to access an Objectivity/DB database, browse
the objects in that database, select objects and then pass the selected data onto further
modules.

In the current prototype, objects are exchanged between different modules by passing the
64-bit Objectivity OID (in fact, shared memory is used for passing the OID, unless the
modules are run on different machines, in which case TCP sockets are used), and the
database provides concurrency control between the different modules.

In the current version of IRIS Explorer, each module corresponds to a separate process. As
Objectivity/DB currently uses a separate cache for each client, this implies a small
overhead when passing objects between different modules. A future version of IRIS
Explorer may use threads rather than processes for the different modules, which would
circumvent this problem. In the meantime, we are discussing with Objectivity the
possibility of a shared client cache, as is implemented in some other ODBMSs, such as
Versant.

19

Object Databases and their Impact on HEP Computing

3. Design Hints for the Development of Persistent-
Capable Applications

We present below a list of guidelines and recommendations for writing persistent-capable
applications, based on the experience in NA45, GEANT-4, BaBar and other projects.
These recommendations are presented as a series of guidelines and examples, where
appropriate. T

The guidelines have been grouped into three main categories.

e Consequences of the ODMG object model,

* Consequences of the incomplete ODMG implementation by the current Objectivity/DB
release,
¢ Guidelines to simplify switching between different releases of Objectivity/DB.

5.1 ODMG Object Model

5.1.1 Persistent Objects Should Inherit from the &_Object base class

As described in section 3.2 on page 7, this base class provides the functionality needed to
make an object persistent-capable.

5.1.2 Use of d_Ref<T> Smart Pointer

References to persistent objects are implemented using the d_Ref<T> template.

¢ d_Ref objects can be used as transient variables or as embedded part of persistent
objects (associations).

¢ A shortcut d_Ref_Any is provided for references to any persistent object.

¢ The shortcuts HepDatabase and HepContainer are provided for references to data
bases and containers.

20

Design Hints for the Development of Persistent-Capable Applications

// example:

class Track : public d_Object {
public:

d_Double phi;

d_Double theta;

HepRef (Hit) hit[]; // use of HepRef as association
// more definitions

}i

void foo()

{

// use a transient d_Ref to point to a new persistent Track
d_Ref (Track) tr = new Track;

// access simple attributes
tr->phi = 0;
tr->theta = 0;

// associate a new persistent hit with the track
tr->add_hit (new Hit);

}

HepRefs will support to switch between Objectivity ooRef/ooHandle types to the
ODMG compliant d_Ref templates. For the current version of objectivity they will
be based on the ooHandle(T) macro. Starting from version 4 of objectivity we will
use the d_Ref<T> template.

HepRefs will support to switch to a “transient only” mode for developing code on
“persistent” objects without having access/ having to link to the database.

Only a subset of the d_Ref methods is supported by the TransRef smart pointer
class:

operator* : dereferencing the smart pointer

operator -> : accessing a data member or method through
a pointer

operator == (int) : comparison with NULL

operator != (int) : comparison with NULL

TransRefs do not provide a conversion operator to a pointer to a base class.

5.1.3 ODMG Fixed Length Types

In heterogeneous environments an ODMG compliant ODBMS may only provide a portable
access to the following types with fixed value range are used. The C++ language defines
for build in types a minimal value range rather than a fixed range. Therefore, persistent
objects should contain only data members of ODMG defined fixed length base types or
compounds these types.

21

Object Databases and their Impact on HEP Computing

Type Name Range Description
d_Float 32bit | IEEE Std 754-1985
d_Double 64 bit | IEEE Std 754-1985
d_Short 16 bit | signed integer
d_Ushort 16 bit | unsigned integer
d_Long 32 bit | signed integer
d_Ulong 32 bit | unsigned integer
d_Char 8bit | ASCII
d_Octet 8 bit | no interpretation
d_Boolean Oor 1 | defines false(0) and true(1)

Table 1: ODMG fixed length types

Type Name Description
d_String variable length string of characters
d_Date date
d_Time time
d_Timestamp date and time
d_Interval duration in time

Table 2: non-atomic ODMG types

5.1.4 Avoid Transient Memory References as Part of Persistent Objects

Raw C++ pointers or references which are embedded in persistent objects will become
invalid when reloaded from the database. These pointers must be revalidated by the
application before use, e.g. using the d_activate() and d_deactivate() methods defined by
the ODMG”.

5.2 Objectivity/DB Implementation

5.2.1 Persistent Capable Objects Cannot Contain Other Persistent Capable Objects

Persistent capable objects, i.e. those that inherit from d_Object, cannot contain other
objects which are also persistent capable. As a work-around, inheritance from d_Object can
be added at the leaf class level, as shown below.

3 These methods are not yet implemented in the current version of Objectivity/DB, but have been requested for a future release.

22

Design Hints for the Development of Persistent-Capable Applications

// define a persistent track class
class Track : public d_Object {
public:

d_Double phi;

d_Double theta;
// more definitions

Y

// this will *NOT* work: Vertex is persistent and contains
// persistent capable Tracks
class Vertex : public d_Object {
public:
Track first;
Track second;
// more definitions

};

Attempting to embed one persistent-capable object in another

/!

define a transient track class
class Track {
public:
d_Double phi;
d_Double theta;
// more definitions

}i

// define a persistent track
class PersistentTrack : public d_Object, public Track {
}s

// no problem now: Vertex is persistent and contains simple
// transient Tracks
class Vertex : public d_Object {
public:
Track first;
Track second;
// more definitions

}:

Adding persistence at the leaf class level

5.2.2 Objectivity/DB References and Transient Objects

The smart pointer types implemented in the current versions of Objectivity /DB
(ooHandle/ooRef/d_Ref) are not yet capable of referencing true transient objects that have
been allocated on the normal program heap. It is therefore currently not possible to write
code that can be called either with persistent or transient objects as arguments. Where such
polymorphic behaviour is needed, transient objects may be simulated by creating persistent
objects in a special database container which is deleted at the end of each transaction.

The HepODBMS package contains utility methods to implement this pseudo transient
objects.

23

Object Databases and their Impact on HEP Computing

5.2.3 Avoid Creating Persistent and Transient Objects of the Same Class

Consider adding persistency through multiple inheritance on a separate leaf class, as shown
in section 5.2.1 on page 22.

5.2.4 Passing of Persistent References and C++ Pointers

Avoid converting persistent references (HepRefs) to C++ pointers and then passing them to
a method or subroutine. We have seen problems of dereferenced pointers “from persistent
references becoming invalid because the Ref destructor is called too early and the object
has been removed from the DB cache. A simple way to prevent this is to pass the Ref(T)
directly to subroutines.

bar (Track *t)
{

cout << “phi=" << t->phi << endl;

}

foo ()

{

HepRef (Track) tr = HepNew (Track) ;
tr->phi = 0;

bar(tr); // implicit conversion to Track *

}

5.2.5 Initialisation of Persistent References from C++ Pointers

Persistent references (HepRefs) should not be initialised from C++ pointers other than
those obtained from a persistent new.

// example:
void foo (Track *outerTrack)
{
HepRef (Track) myTrack = outerTrack;

. more code which uses myTrack

}

e This example will not give any compiler warnings or errors

e The only exception of this rule is the initialisation from a HepNew operator.

//
// example :

//
HepRef (Track) newTrack = HepNew (Track) ;

24

Design Hints for the Development of Persistent-Capable Applications

5.2.6 Default Constructors of Embedded Classes

Default constructors of classes embedded in persistent capable classes should not have
global side effects. Objectivity/DB creates one object of each persistent class known to an
application to register it with the Objectivity/DB runtime system. This means that all
constructors of embedded objects will be called before the first statement of main() is
executed.

5.3 The HepODBMS Portability Layer

The HepODBMS package is intended to provide an ODMG-compliant coding style using
the current, incomplete, ODMG implementations. In a limited way, the package also allows
ODMG-compliant applications to be run in a fully transient mode, i.e. without access to an
ODBMS at all. The latter has proven to be useful during the development of algorithms
which do not need database access or on systems for which a ODBMS implementation
does not yet exist.

Currently the package is still in early beta stage and has only been applied to RD45 internal
porting projects. Nevertheless our positive experience with this package shows that an
additional software layer between database and user code adds an important degree of
freedom that helps isolating user code from database vendor and database version specific
features and porting transient code to the database.

The functionality of the HepODBMS prototype package is described in more detail below.

5.3.1 Support for a Consistent Type Naming Scheme

The implementation of the ODMG base classes and templates is controlled by the database
vendors. To have some additional independence of a vendor or a release of a database we
suggest to introduce an additional naming layer on top of the ODMG classes. This will
allow to respond centrally on problems or deficiencies of a particular implementation.
Since this layer is typically implemented by typedef statements, it does not introduce any
performance drawbacks.

5.3.2 Support Classes to Implement Clustering and Locking Strategies

The class HepClusteringHint provides a simple way to implement a consistent clustering
strategy for a persistent class without introducing large code changes. See section 3.2.3 for
more details. At the same time, this class may also be used to implement lock-free writing
from multiple parallel processes into a single database.

5.3.3 Use of the HepHintDeclare, HepHintInit and HepHintSet Macros

¢ HepHintDeclare - declare a clustering hint member (as a class variable) within a
class definition

¢ HepHintInit(class) - allocate the class variable and initialise it. Should appear once
per program.

25

Object Databases and their Impact on HEP Computing

e HepHintSet(class,location) - Set the clustering hint for the class to a new location
(e.g. another container or another object).

// in Track.ddl
class Track : public d_Object{
public:
HepHintDeclare; // declare a clustering hint for the track class
}:
// in Track.C

HepHintInit (Track); // initialise the clustering hint outside all
functions or methods

// in main.C

void DbApp: :DbInit () // define the clustering policy in one central
location
{
// create or open ReconstructedData data base from the federation
db (“ReconstructedData”) ; :

// all Track objects created by HepNew will reside in the Tracks
container
HepHintSet (Track, container (“Tracks”)) ;

// store all vertices together with the tracks
HepHintSet (Vertex,Track: :clusteringHint) ;

// switch to RawData data base for following classes

db (*RawData”) ;

// all Hits objects created by HepNew will reside in the Hit container
HepHintSet (Hit, container (“Hit”));

5.3.4 Use HepNew and HepDelete Instead of the C++ New and Delete Operators

The new operator as defined in the ODMG standard takes additional arguments for
clustering hints and type information. The HepNew macro allows these arguments to be
supplied in a compliant way but also to allow switching back to a transient only version
without code changes.

//

// example:

//

HepRef (Track) tr = HepNew(Track); // was: Track *tr = new Track;

HepDelete(tr); // was: delete tr;

HepNew/HepDelete will expand to a C++ new/delete if the data base is not available or
deselected by the C++ preprocessor. HepNew supplies the additional clustering
information for creating persistent objects clustered by class or close to another object.

26

Design Hints for the Development of Persistent-Capable Applications

5.3.5 Encapsulation of Database Session Control

There are a number of important functions related to database session control that are not
standardised by the ODMG. To maintain vendor independence, we therefore provide an
encapsulation of these functions in a database session class, which provides the following
functionality:

create or open a database by name,

to set the application locking behaviour: waiting time, access mode,
begin, abort and commit transactions,

creation and retrieval of database and container objects.

The HepODBMS package provides the HepDbApplication base class as an interface to
these services.

5.3.6 Support for Container Libraries

The parametrised types HepVector(T) and HepRefVector(T) provide variable length arrays
containing persistent capable objects or references to persistent objects. Both vector classes
can be used either as transient containers referencing persistent objects or as containers
embedded in persistent objects. The interface of theses vectors emulates the
RWValOrderedVector<T> and RWPtrOrderedVector<T> templates in order to simplify
the migration of code based on Tools.h++ to platforms which are not able to use the
Objectivity version of the Tools.h++ library, because of lack of template support in the
C++ compiler.

27

Object Databases and their Impact on HEP Computing

// in the TrackingDetector.ddl
declare (HepVector, Track) ;

class TrackingDetector : public d_Object {
public:

}:

// in the TrackList.ddl file
declare (HepRefVector, Track) ;

class TrackList : public d_Object {
private:

HepRefVector (Track) track; // the track list stores only
references to tracks

}:

// for example in the main.C file
#include “TrackList.h”

main()

{

// ... some init code

HepRef (TrackingDetector) tpc = HepNew (TrackingDetector);
HepRef (TrackList) selected HepNew (TrackList) ;

// £ill tpc with three tracks
tpc->itsTracks.append(HepNew(Track));
tpc->itsTracks.append(HepNew(Track));
tpc->itsTracks.append(HepNew(Track)):;
// access one of them
tpc->itsTrack(2].phi = 0;

// put tcp track 2 into selection list
selected->track([0] = tpc->itsTrack[2];

// loop over all tcp tracks
for (short t=0; t < tpcTracks.length(); t++)
cout << tpc->itsTrack(t] << endl;

// loop over all selected tracks
for (short s=0; s < selected.length(); s++)
cout << selected->track[t] << endl;

HepVector (Track) itsTrack; // the detector contains its tracks

28

Conclusions

6. Conclusions

We have investigated and reported on how the use of an ODMG- -compliant ODBMS for
the storage and management of HEP event data 1mpacts the object model, physical data
organisation, coding conventions and the use of 3 party class libraries. Although the use
of an ODBMS clearly has a number of implications, we have developed, together with
members of the user community, a series of conventions, guidelines and recommendations,
described in this report, which not only minimise the impact of using an ODBMS, but also
make concrete suggestions in a number of areas that can significantly increase the benefits
of using such technology. These recommendations will continue to be developed, as the
technology evolves, and made available through the Web.

29

7. Glossary

ADSM - A storage management product from IBM

AFS - the Andrew (distributed) filesystem)
CORBA- the Common Object Request Broker Architecture, from the OMG
CORE - Centrally Operated Risc Environment

DFS - the OSF/DCE distributed filesystem, based upon AFS

DMIG - the Data Management Interface Group

GB - 10° bytes

“Ta - O e

HPSS - High Performance Storage System - a high-end mass storage system developed by
a consortium consisting of end-user sites and commercial companies

KB - 2'° (1024) bytes - normally referred to as 10° bytes
IEEE - the Institute of Electrical and Electronics Engineers
MB - 10° bytes

MSS - a Mass Storage System

NFS - the Network Filesystem, developed by Sun
ODBMS - an Object Database Management System
ODMG - the Object Database Management Group, who develop standards of ODBMSes
OMG - the Object Management Group

OQL - the Object Query Language defined by the ODMG
ORB - an Object Request Broker

OSM - Open Storage Manager: a commercial MSS

PB - 10" bytes

SQL - Standard Query Language: the language used for issuing queries against (relational)
databases

SSSWG - the Storage System Standards Working Group

TB - 10" bytes

VLDB - Very Large Database

VLM - Very Large Memory

VMLDB - Very Many Large Databases

XBSA - the draft X/Open Backup Services Application Program Interface

30

8. References

[1] RDA45 - A Persistent Object Manager for HEP, LCRB Status Report, March 1996,
CERN/LHCC 96-15

(2] RD45 - A Persistent Object Manager for HEP, LCB Status Report, March 1997,
CERN/LHCC 97-6

[3] Object Databases and Mass Storage Systems: The Prognosis, the RD45 collaboration,
CERN/LHCC 96-17

[4] Object Databases and their Impact on Storage-Related Aspects of HEP Computing,
the RD45 collaboration, CERN/LHCC 97-7

[5] Object Database Features and HEP Data Management, the RD45 collaboration,
CERN/LHCC 97-8

[6] Using and Object Database and Mass Storage System for Physics Analysis, the RD45
collaboration, CERN/LHCC 97-9

[71 Where are Object Databases Heading? CERN/RD45/1996/4

[8] Why Objectivity/DB? CERN/RD45/1996/6

[9] Objectivity/DB Database Administration Issues. CERN/RD45/1996/7

[10] Object Data Management. R.G.G. Cattell, Addison Wesley, ISBN 0-201-54748-1
[11] DBMS Needs Assessment for Objects, Barry and Associates (release 3)

[12] The Object-Oriented Database System Manifesto M. Atkinson, F. Bancilhon, D.
DeWitt, K. Dittrich, D. Maier, and S. Zdonik. In Proceedings of the First International
Conference on Deductive and Object-Oriented Databases, pages 223-40, Kyoto,
Japan, December 1989.

[13] Object Oriented Databases: Technology, Applications and Products. Bindu R. Rao,
McGraw Hill, ISBN 0-07-051279-5

[14] Object Databases - The Essentials, Mary E. S. Loomis, Addison Wesley, ISBN 0-201-
56341-X

[15] An Evaluation of Object-Oriented Database Developments, Frank Manola, GTE
Laboratories Incorporated

[16] Modern Database Systems - The Object Model, Interoperability and Beyond, Won
Kim, Addison Wesley, ISBN 0-201-59098-0

[17] Objets et Bases de Donnees - le SGBD O,, Michel Adiba, Christine Collet, Hermes,
ISBN 2-86601-368-9

[18] Object Management Group. The Common Object Request Broker: Architecture and
Specification, Revision 1.1, OMG TC Document 91.12.1, 1991.

31

[19] Object Management Group. Persistent Object Service Specification, Revision 1.0,
OMG Document numbers 94-1-1 and 94-10-7.

[20] The Object Database Standard, ODMG-93, Edited by R.G.G.Cattell, ISBN 1-55860-
302-6, Morgan Kaufmann.

[21] ADAMO Reference Manual, CERN ECP

[22] HBOOK - Statistical Analysis and Histogramming Package - CERN Program Library
Long Writeup, Y250

[23] PAW - the Physics Analysis Workshop - CERN Program Library Long Writeup,
Q121

[24] ATLAS Computing Technical Proposal, CERN/LHCC 96-43
[25] CMS Computing Technical Proposal, CERN/LHCC 96-45

32

