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ABSTRACT. In this first article of a series dealing with the geometry of Quan-
tum Mechanics, we introduce the Riemann-Cartan-Wey] (RCW) geometries of
Quantum mechanics, for spin 0 systems as well as for systems of non-zero spin.
The central structure is given by a family of Laplacian (or D’Alembertian) oper-
ators on forms of arbitrary degree associated to the RCW geometries. We show
that they are conformally equivalent with the Laplacian operators introduced by
Witten in the topological quantum field theories. We show that the Laplacian
RCW operators yield a supersymmetric system, in the sense of Witten, and study
the relation between the RCW geometries and the symplectic structure of loop
space. The RCW family of Laplacians are the infinitesimal generators of diffusion
processes on non-degenerate space-time, of systems of arbitrary spin.

INTRODUCTION

There are several concurrent problems in mathematical physics which cannot
be considered as settled definitely.

One of them is the determination of the geometrical structures to account for
gravitation and the non-linear gauge theories. As it has become known recently,
the solutions of the monopole equations have a remarkable dependence on the sign
of the scalar curvature of the metric of the four-dimensional manifold; (Witten,
1994). This might appear as rather strange, taking in account that the non-linear



non — abelian gauge theories were primordially conceived to account for ”internal”
degrees of freedom.

The theory of gravitation admits extensions to Cartan geometries with tor-
sion, so that the metric structure appears as describing partially gravitation (Car-
tan and Einstein, 1979); moreover, the Cartan geometries appeared in the context
of the Poincaré group theory of the theory of gravitation; (Sciama, 1962; Hehl,
1976; Changgui & Dehnen, 1991).

The other problem is the formulation of quantum mechanics in terms of tra-
Jectories of Brownian processes and the establishment of correlations described by
the quantum potential; (Bohm, Bohm and Vigier, 1952 and 1953, Holland, 1994).

It is remarkably that both problems are connected through the Cartan ge-
ometries, specifically those which have a torsion tensor which reduces to its trace,
@ . further described as a trivial Weyl 1-form: @ = dIny, with ¥ a posi-
tive scalar field defined on space-time. We called these geometries as RCW (for
- Riemann-Cartan-Weyl) geometries. As was showed in (Rapoport, 1991), the Weyl
trace-torsion 1-form accounts for the average displacement of the most general
diffusion process on space-time, while the metric describes the covariance of these
processes. Both together, i.e. first and second moments of the probability density
of the processes, determine all higher moments of themn. Yet, what is peculiar of
this description, that there exists a single geometrical laplacian operator which
incorporates these two moments, and thus, determines all the statistical profiles
of the diffusions. This operator, which is the infinitesimal generator of the diffu-
sians, and is the most general invariant second-order elliptic operator on a smooth
manifold (when one assumes conservation of probability), is the laplacian opera-
tor associated to the RCW geometry; ( Rapoport 1995). Yet, this operator does
not only determine the probability density of the diffusions, yet its path integral
representation through the Onsager-Machlup lagrangian, and ultimately the clas-
sical smooth approximations which with maximal probability realize the diffusions
(Rapoport, 1995 a, b). One finds out that these realizations are deviations of the
geodesic flow due tc the Weyl torsion, vet this does not conflict with the principle
of equivalence, since the diffusions represents an interacting ensemble {Rapoport,
1995 b).

In this article, we shall introduce the RCW geometries and their associated



laplacian operators, not just on spin 0 systems, still defined on differential forms
of arbitrary degree. It was observed by Witten, that geometrical laplacians on
forms of arbitrary degree, are basic examples of supersymmetric systems, in which
forms of odd (even) degree are fermions (bosons). We shall see that the RCW
Japlacian on forms are conformally conjugate to Witten’s deformed laplacian in the
topological quantum field theories (TQFTY); (Witten, 1982). This is quite striking
on regards of TQFT, since in this theory the field 4 is rather a functional on the
infinite dimensional loop space, not just the solution of the conformal invariant
equation on space-time, as it turns to be in the present theory; (Rapoport, 1995).
Yet, we shall see that the role of the RCW geometry is essential to the definition
of the general symplectic structure on loop space, which as is well known already
in the Riemanrian case, is the key to the obtention of exact representations of the
trace of the Riemannian heat kernels, and ultimately leads to a direct proof of the
Atiyah-Singer index theorem; (Atiyah, 1985).

We would like to close this introduction with the description of the origin of
the method which yields Cartan’s geometry the universality to describe classical

spinning test-particle systems (Rapoport and Sternberg, 1984) as well as interact-
Ing quantum ensembles undergoing diffusions generated by the RCW laplacian.

In Cartan’s approach to Classical Mechanics, as explained in (Rapoport and
Sternberg, 1984) we start with a little group # embedded as a closed subgroup in
a bigger group G such that the homogeneous space G/H has the same dimension
as the configuration manifold A . Here, H and G are respectively the Lorentz
and Poincaré group, and M is space-time, or still, we can take de Sitter group
O(1,4) instead of the Poincaré group and then M is a de Sitter space-time. It
15 the soldering form which infinitesimally identifies both spaces. Of course, Car-
tan was thinking in dynamical systems with classical (i.e. smooth) trajectories.
The whole point of our theory seen from Cartan’s conception is its applicability
to quantum fluctuations with continuous but non-differentiable Brownian paths.
Instead of copying classical dynamical systems on homogeneous space to space-
time, the quantum counterpart of Cartan’s method is the copying through a RCW
connection on space-time of a standard Wiener process. Yet, to deal with Brow-
nian paths, Cartan’s calculus on manifolds is obviously unapplicable and instead
one has to apply the Ité stochastic calculus, or still, the Stratonovich calculus

which obeys the same rules for derivatives that the classical calculus in R", thus



establishing a stochastic calculus which sets the stochastic extension of Cartan’s
method. The relation between classical and quantum motions is established, as
already described above, by the Onsager-Machlup lagrangian representation of the
transition density of the RCW diffusion. The classical system appears thus as the
most probable approximation of the quantum diffusion. This establishes the uni-

versality of Cartan’s method in describing also the relation between quantum and
classical motions.

This article is organized in the following way. We first introduce the Car-
tan soldering form and the Riemann-Cartan (RC) geometries, and particularly,
the RCW geometries which we introduce from the point of view of conformal
transformations. We then introduce the laplacian operators associated to the RC
geometries, and see that to obtain a one-to-one correspondance (in general dimen-
sion other than 2), between geometries and laplacians, we need to restrict the
theory to RCW geometries. We then generalize the laplacian to differential forms,
through the introduction of Dirichlet quadratic forms of differential forms of arbi-
trary degree, to further introduce Witten’s deformed laplacian. Later we see that
the RCW laplacians yield a supersymmetric system, which is conformally conju-
gate to Witten’s laplacian system. We finally discuss the symplectic structure of
loep space and its relation with the RCW geometries. Finally, as a preparation of
a forthcoming article on the stochastic extension of Cartan’s classical method, we
give a local description of Cartan’s classical method.

I. CARTAN CONNECTIONS AND RIEMANN-CARTAN-WEYL
STRUCTURES.

We shall follow here the presentation due Rapoport, 1991 and Rapoport &
Sternberg.

We recall some basic facts and definitions in order to establish notation. Let
G be a Lie group and M a differentiable manifold. A principal G-bundle over M
1s a manifold P on which G acts freely on the right. and such that the quotient
of this G action is M . Thus we have a smoothmap 7: P — M and 7~ !(z) isa
G orbit for each z € M . We also assume that P is locally trivial in that about
each r there is a neighborhood U, such that #=!(U") is isomorphic to U x G
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(with the obvious definition of isoniorphism). We shall let R : P — P denote

right multiplication by a™!

Ro(p)=pa~', peP, aeC

so that R, gives a left action of G on P
Rey = Ra Ry .

Let F be some differentiable manifold on which G acts on the left. We can then
form the quotient of the product space P x F' by the G action; call it F(P). Let
7F : F(P) — M denote the bundle projection, and p: P x ' — F(P) denotes
the passage to the quoticnt. Then also F(P) is also fibered over M by

wr(p(p, 1)) = =(p) -

F(P) is called the associated bundle (to the G action on F and the principal
bundle P).

Let f: P — F be asmooth function satisfying

f(pa) = a™' f(p) (1.1)

Then
a(p, f(p)) = (pa™", af(p)) = (pa™', f(pa™?)) .

Hence p(p, f(p)) is independant of the choice of p € 7~1(z). In other words,
defines a section, s, of F(P);i.e. a map

s: M — F(P) Tos=1d
s(z) = p(p, f(p)) 7(p)=1 .

Conversely, given a section s we may define the function f by the preceding
equations and [ satisfies f(pa) = a~'f(p). Thus:

Lemma 1.1 We have an identification of the space of sections of F(P) with the
space of maps f: P — F satisfying f(pa) = a”f(p).

There are two especialy important cases of this construction.
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The first one: Suppose that /= G/H where H is a closed subgroup of G.
So F(P) is a bundle of homogeneous spaces. Let f: P — F satisfly the identity
of (1.1) and thus be equivalent to a section, s, of F(P). Consider

f7U(H)={pe P/f(p)=H € G/H} .
If pe f~1(H) then f(pa)=a 'H =H ifand onlyif a € H. Thus
J7HH) = Py

isan H sub-bundle of P, areduction of the principal G bundle to an # bundle.
Conversely, suppose that Py is an H sub-bundle of P. Then define f: P —
G/H by f(Py)=H andif

p = qa, g€ Py

then
fip)=a 'H .

This is wel! defined as can casily be checked and defines a function f satisfying
the condition (1.1). Thus: A section of the bundle (G/II)(P) is the same as a
reduction of P to an H bundle. Py . (1.2)

A second important case is where F is a vector space and the action of G is
lincar. Then F(P) is a vector bundle. In this case we can consider k-forms, Q,
on P with values in F . We can consider forms which are horizontal in the sense
that

1(£)Q2 = 0 for any vertical tangent vector §. (1.3)

where vertical means tangent to the fiber, and #(£) denotes the operator of inner
product with the vector field . We can also consider forms which are equivariant
in the sense that (here R, stands for the adjoint of the tangent extension of R,)

R:2=QodRy = af forall a e G . (1.4)

It is easy to check that (1.1) generalizes to:

Lemma 1.2 An f-valued k-form on P satisfying (1.3) and (1.4) is equivalent
to an F(P)-valued k-formon A . (1.3)



(The case k = 0 of (1.3) is then (1.1)).

We can combine the preceding two cases. Suppose that we are given a section
s of (G/H)(P), so we get a reduced bundle, Py . We can consider the vector
bundle associated to the adjoint action of H on g/h, the homogeneuos space
given by the Lie algebras g and h of G and H respectively. This vector bundle
can be identified with the bundle of vertical tangent vectors to (G/H)(P) along
the section s. Indeed, we can consider (G/H)(P) as the bundle associated to
Py relative to the H action on G/H . On the principal bundle Py the section
s corresponds to the identically constant fuction f = H. At the point H we
have an identification of T(G/H) with g/h. This identification is consistant
with the H action. Thus we may identify (g/h)(Py) with the bundle of vertical
tangent vectors to (G/H)(P) along s. Now suppose that © : TP — g/h 1s a
1-form which satisfies (1.3) and (1.4) relative to the group H . Then © can be
thought as a 1-form on M with values in (g/h)(Py). Thus: Let s be a section
of (G/H)(P) and Py the corresponding reduced bundle. Let © be a 1-form on
Py with values in g/h which satisfies (1.3) and (1.4) relative to the group H.
Then:

O can be regarded asa 1-formon M with values in the bundle of vertical tangent
vectors to (G/H)(P) along s. (1.06)

In the particular case that dimG/H = dim M , we can further demand that
the 1-form © on M give an isomorphism between TM and the bundle of vertical
tangent vectors. This is the method conceived by Cartan. The form © 1s called
a soldering form (or “soudage”, in French).

For example, suppose that H = O(V') is the orthogonal group of a vector
space with a non-degenerate scalar product and G = H & V' (semi-direct sum).
Then G/H = V. A soldering form © then gives an identification of TM with
1'(Py) . In particular. this puts a (pseudo or) Riemannian metric on A/ and also
allows us to identifv Py with the bundle of orthogonal frames. Similarly, if’ we
take H = GI(V) then a soldering form © allows us to identify Py with the
bundle of all linear frames on M .

Conversely, let Py denote the bundle of frames of a differentiable manifold
M, where H = GI(R"*), n = dimM . then Py carries a canonical 1-form
© values in R" . and © satisfies (1.2) and (1.3). Namely, © is the so-called
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"structure form” defined by

O(f) = p(dm,§) E€TPy

p:T,(p)M—ar P E Py .

Of course, we can enlarge the bundle Py to a G-bundle P; = G(Py) and then
we are back in the situation described above. '

Let P be a vector bundle with structure group G. For each € € ¢, the Lie
algebra of G, let £ denote the corresponding vector field on P given by the
right action of G on P . Recall that a connection on Pg can be described as a
g-valued 1-form wg on Pg which satisfies

~

(lw=¢ E€9g, (1.7)

and
Rlw = Ad,wg . (1.8)

The horizontal space of a connection wg at a point p € Pg consists of all
tangent vectors at p which are annihilated by wg | 1.e., those which satisfy

(W)wg =0 . (1.9)

Any curve on M lifts to a unique horizontal curve on Pg (one whose tangents
are everywhere horizontal) once a lift at one point has been specified. This is the
notion of parallel transport along a curve. We shall give a more detailed description
of the horizontal space in the last section of this article.

Now suppose we are in the following situation: we have a reduction of FPg
to an H bundle, Py , and we are given a connection, wg on Pg. Then the
restriction of wg to Py defines a g-valued 1-form on Py which satisfies (1.7)
with £ € It and (1.8) with ¢ € H. As h is an invariant subspace of g, we can
define the form

© = restriction of wg to Py)/h

asa g/h valued 1-formon Py satisfving the conditions of vanishing on all vertical
vector fields and of being equivariant with respect 1o the action of H .
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If the group H is reductive -or more generallly, if h has an H invariant
complement, n in g- we can decompose

g=hodn

w|Py =wy + 0

where we have identified n with g/h. Here wy is an h-valued 1-form and ©

is an n-valued 1-form. The form wy satisfies all the conditions for a connection
on Py . Thus:

Lemma 1.3: If the group H is reductive, then the restriction of wg to Py
determines an n-valued 1-form © on Py and a connection wy on Py . The
1-form © is horizontal and equivariant relative to H . {1.10)

It is important to note that the horizontal subspaces for the connections wg
and wy will differ, in general, at points of Py . However, given wy and ©, one
can reconstruct wg along Py and hence on all of P; . Thus the data wy, ©
on Py is equivalent to a connection wg .

In particular if dimG/H = dim M we can consider the condition that © be
a soldering form. If this case holds, then wg is known as a Cartan connection.
If G 1s the affine group then a Cartan connection is called an affine connection.

Let £ be a vector spacc on which G acts. We will let A*(F) denote the
space of k-formson A7 with valuesin F(P). In particular, we can identify A%(F)
with the space of sections of F(P), a space which we also denote by I(P). A
connection « on P defines a covariant derivative

VY AR(F) — AR
Vell=dQ —-w-Q.
One also defines the curvature 2-form of the connection w by
curv(w) = Vow = dw — 1/200 .o .

For the case of a reduced bundle Py with a reductive group H . the restriction
of the curv (wg) to Py is given by

dup +dO - 1/2fwy + 0wy — )
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=dwy — 1/2[wy,wyl+dO -0 .w—1/2[wy,wy)
= curv(wy ) + V.0 - 1/2[0,0] .

In particular, for the case of an affine connection [n,n] = 0, so that the last term
vanishes. The term

VO =dO —wy -0

ia-known as the torsion 2-form of the connection wy . In the Levi-Civita theory
of{ connections, the torsion entered for describing the non-closure of an infinitesi-
mal parallelogram formed by parallel transport of infinitesimal vectors; the non-
commutativity of the transport enters into the Chrisioffel symbols. The torsion
tensor, in local coordinates, is given by the skew-symmetric components of the
Christoffel symbols. But in the Cartan theory the torsion enters as a (transla-
tional) component of the curvature. In condensed matter physics, it plays the role
of a dislocation density; (Kleinert, 1989).

We shall assume from now on, otherwise stated. that all geometrical structures
are infinitely differentiable, and that space-time A/ has dimension equal to 4.
This second condition is unessential.

We shall be mainly interested in the sequel in G being the Poincaré group and
H the Lorentz group, so that G/H as an homogeneous space can be identified
with R'3, or still H = O(R*) and G = H & R* (on what follows. we shall
write undistinctingly the degenerate and non-degenerate cases). Then © is an
R*(Pyr)-valued soldering 1-form on M | and wy 1s an h(Py)-valued connection
}-form on M . We then obtain a Riemannian metric on A (or Lorentzian). Then,
for any r € M, O(z) can be thought as a I-form on M with values in T: A1,
due to the canonical isomorphism between R*(Py) and TM . Then, given a local
coordinate system (z%) on M, where a = 1,....4. we get a local coordinate
system (22.8/8z%) on TM . Locally, © takes the form

O(z) = (04(z) dz”) . (1.11)
with inverse ¢20/0r%, a = 0,1,...,3 representing the indices of an anholonomic
basis in R*; thus

0% = 6¢, and ,0%e2 = & . (1.12)
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If (gs5) denotes a metric on R1 | suv Euclidean or Minkowski, the local expression
for the metric that © putson M, is

9ap = 91020} , (1.13)

which then has the same signature of that of (gqs) -

If we have a Lorentz (or, orthogonal) linear connection on M, wyg = (wﬁb),

then wfl

is skew-symmetric in a, b. Now, since locally any clement in h takes the
form uAv, where u and v belongto V(= R*, or R1®), then w¥ defines a con-
nection 1-form on M with values in A2V ~ A2TM, GH = (wgP) = (w“fﬁegef),

with associated TM -valued torsion 2-form
T = 1/2Tg,dz° Adz” (1.14)
with coefficients given by the torsion tensor defined by
Tg, = (07'V,0)5, = e2V.0 = ¢g (a,eg] - wgheg)) , (1.15)

where (wj,) denotes the Christoffel coefficients of the connection form wH in-
duced by the isomorphism V x V" = V" »x V" induced by g, so that wy, = wig..

Thus, the Christoffel coeficients of the connection 1-form & are given by
g, = c2OhwE, + €50,04 (1.16)

Sy is known in Poincare gauge theory as the space-tirne linear connection.

If we assume that w¥ is compatible with the metricon V ,i.e. V400 =0,

H

then @ is compatible with the space-time metric, 1.e.

Ve, 905 =0 (1.17)

WHH

Thus, lengths of vector fields are preserved under parallel transport.This means
that © has reduced the bundle of linear frames to the orthogonal bundle.

What is essential to the connection on M defined by (1.16), is its non- sym-
metric character, i.e. it has a non-zero torsion tensor

TS, =1/2(T%, - T¢,). (1.18)
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This geometry is called the Riemann-Cartan (RC) structure.

Let us introduce a conformal structure on the tangent space of M . For this we
shall follow Einstein’s last work (Einstein and Kauffman, 1955; Obukhov, 1982),
which lifts Einstein’s original criticism to Weyl’s abelian (and historically first)
gauge theory of 1918. ’

We define the Weyl transformation on the soldering form
W (0F) = ve | (1.19)

swthat W (eg) = (1/¢)cg ., and a Weyl transformation on I' (which by abuse of
notation we denote by W as well as for the other derived transformations)

W (r3,) = T4, (1.20)
then we can derive the following transformation on the metric on M
w (ga,{i) = t"zgaﬁ, and, W (go'g) = y’)'Qg"B (1'2])

These are the well known conformal transformations of the metric on A . In the
above definitions. v 1s a function defined on M with values on R¥.

The Riemann-Cartan structure, under the above transformations becomes

W(I‘g“) =T3, +650,inv (1.22)
with torsion tensor
TS, +1/2(650,Ine — (‘E(’)glnt"') ) (1.23)

This shows that only the trace of the torsion tensor is conformally transformed,
i.e. the l1-form Q = Qudr* = Tg,dr* of the original connection is transformed
as W(Q)=Q+ 3/2dinv.

There are various interesting instances of the transformation (1.22). Firstly.
if the original connection space-time connection coefficients are torsionless. and
given by the Levi-Civita coefficients determined by a space-time metric g. we
have introduced torsion associated to the conformal field v on a purely Rieman-
nian geometry. More general is the case in which the original torsion reduces to the
trace-component given by a non-exact one-form. (. which we may interpretate
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as an electromagnetic potential willi non-trivial field. Then, the above confor-
mal transformations induce a gauge transformation so that @ is transformed to
Q + 3/2diny. The final case we want to consider is the one in which the orig-
inal space-time connection has non-zero torsion yet such that its trace vanishes
completely. In this case, the original space-time connection is associated to the
rotational degrees of freedom of the Dirac-Hestenes spinor field ¥ which produce
a completely skew-symmetric torsion, while # is the scalar field that enters in the
canonical decomposition of ¥,

¥ = yezp(rsS)R,

where R(z) € Spin,(1,3) = SI(2,C) with the property that R(z)R(z)™! =
1d. For the details of this we refer to article of (Rapoport et al, 1994). The
identification of ¥ as a Schroedinger field was obtained from the field equations
for the geometries introduced by the transformation (1.22); (Rapoport, 1994 b).

Now, the connection defined by (1.22) is not metric compatible, yet the
modified connection given by (we normalize the 3/2 factor)

5 = {5} +2/3(650,In¢ — 95,97%0,1nv)) (1.24)

where {§,} arc the cocfficients of the Levi-Civita connection associated to g . is
a metric compatible connection. Then, Q = diny, the logarithmic differential of
the scale field ¢, is a Weyl one-form of a RC metric compatible structure. For any
metric, in account of the fact we have proved in (Rapoport, 1991) that ¥ is an
invariant probability density, then 2R 3Q, where Kp is Boltzmann’s constant,
can be thought as an entropy one-form.

The metric compatibility of these RC structures produced by the general
action of the conformal group, distinguishes them from the usual Weyl geometry
produced by the transformations on the space-time metric (1.21). In the latter, 1t
is the Weyl one-form which precisely expresses the lack of preservation of lengths
under parallel Wevl-transport. So the introduction of these structures solves a long
pending problem of compatibilisation of the RC structures with the local action
of the Weyl group.

Therefore, this geometry, which we shall call of Riemann-Cartan-Weyl (RCW,
for short) has no historicity problem which moved Einstein to reject Weyl's

13



attempt to construct the first gauge theory in which he associated the Weyl form
to the electromagnetic field , this in spite of @ not being a complex field (yct, a
non-obvious association).

It is of great importance that we should remark that our above constructions
can be carried out for the case of a general configuration space M of dimension
m, on taking instead of the Poincaré group, the group given by the semi-direct
sum O(m)+ R™ . This is of relevance for the formulation of quantum mechanics
for a system of n particles for which M is their configuration manifold (so that
m.= 4n in the relativistic case) and ¥ denotes their joint wave function, and is
vatid also for the Dirac-Hestenes spinor fields; see (Rapoport et al, 1994).

II. THE D’ALEMBERT AND WAVE OPERATORS OF THE RCW
STRUCTURES

In this section we shall construct the Laplacian operators associated to a RCW
geometries. As explained in the Introduction, the relevance of this follows from
the fact that these operators plays a central role in the formulation of quantum
mechanics as & theory of Brownian motion. as well as a Hilbert space operator
theory.

We shall study then. the D’Alembert -in the case ¢ 1s Lorentzian- or Laplacian
-in the Riemannian case- operator associated to the RC structures. (Of course, for
diffusion processes. we only consider the Riemanman case). The construction we
shall present is valid for both cases undistinctly. and from now on we shall simply
speak of Laplacian operators. Qur treatment differs from the original treatment
ziven by (Rapopori.1991) and follows (Rapoport 1994.1995). A competely differ-
ent derivation of this operator can be found as well in (Kleinert, 1991).

Henceforth. in this paragraph. the dimension of A will be arbitrary n. We
start with a RC connection described by an a-bitrary metric ¢ and an arbitrary
torsion tensor. Let Y denote its covariant derivative operator which we addi-
tionally assume 1o be compatible with ¢, 1.e. Vg = 0. Denote the Christoflel
coefficients of ¥ as T%_ : then.

D~

re. = {;} +1/2RK%,. (2.1)
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where the first term in (2.1) stanas for the Christoflel Levi-Civita coefficients of
the metric ¢, and

Kgy = Tgy + Siy + 535,

1s the cotorsion tensor, with

Sgy = 9" 98T},
Let us consider the Laplacian operator on functions associated to this Cartan
connection, defined -in extending the usual definition- by

H(V)[ = 1/2tr(V3)f = 1/2¢*PV, Vs, (2.2)

for any continuously differentiable function f on M, where V stands for the
covariant derivative operator with respect to I'. A straightforward computation
shows that that H(V) only depends in the trace of the torsion tensor and g:

H(V) =1/28, + ¢*2Qp0s, (2.3)

with @ = T:ﬁdzg , the trace-torston one-form, and
A, = tr((V9)?) = (detg)™ Vg%, ((dctg)”'“’gasc')[j) ,

the Laplace-Beltrami operator associated to the Levi-Civita connection V¢ . There-
fore, for t.hé Riemann-Cartan connection V¥V we have that, on smooth functions
defined on M 1 :

H(V)= Etr((V)")) =50+ Q. (2.3")

with @ the vector-field dual to the 1-form Q: Q(f) =< Q,grad f>). [ M —
R.

Notice that H(V) only depends on g and the trace-torsion of the connec-
tion V ; the other terms of the invariant decomposition of the torsion tensor of ¥
do not intervene in the Laplacian. Thus, to obtain a one-to-one correspondance
(in general dimension other than 2 when this is satisfied trivially) between Car-
tan connections and their Laplacian operators, we restrict ourselves to ¥ with
Christoffel symbols of the form

2
By = {;7} + En—:—ﬁ {‘53 Qy — 95 Q°}. (2.4)
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We have
H(V) = %tr((vg)z) +0 (2.5)

In the case that ¢ is Riemannian, then the expression (2.3) is the most gen-
eral invariant laplacian acting on functions defined on a smooth manifold asso-
ciated to a Markovian semigroup that preserves probability; (Rapoport, 1995 ¢).
This restriction, will allow us to establish a one-to-one correspondance between
Riemann-Cartan-Weyl connections (2.4) with Markovian diffusion processes.

We shall further assume in the following that @ reduces to the exact form:
@ = d In v:, where v is a real function on M . In this case, the RCW geometry is
determined by the Riemannian metric ¢ and the function ¢ . The corresponding
Laplacian, which we shall write from now on as H{g,v) is defined by its action
on function f: M — Ryg by

1
H(g.¥)f = 584f+ < grad Int: grad > (2.6)

The theory we shall construct is determined by this laplacian, which we shall
call the RCW laplacian.

III. RCW LAPLACIANS AND WITTEN'S DEFORMED LAPLACIAN
OF THE TOPOLOGICAL QUANTUM FIELD THEORIES

Let us assume in the following that we have a smooth n-dimensional orientable
compact manifold A/ provided with a Riemannian metric. g. We consider the
Hilbert space of square summable « of differential forms of degree ¢ on A, with
respect to vol, . We shall denote this space as L>¢ or still as L*Q9(M. voly).
The inner product is

<w,0>= / < Wz, @z > Vol,
A

[
i

where the integrand is given by the natural pairing between the components of

@by g@e¥sag, s, alternatively, we can write in

« and the conjugate tensor: g
a coordinate independent way: < w{r).o(z) > vol, = w(z) Axo(r). with  the

Hodge star operator. for any w,0 £ L9 [43].
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The de Rham-Kodaira operator on L9 is defined as
A= —(d+6)* = —(db + éd), (24)

where ¢ is the formal adjoint defined on L2:9+! of the exterior differential operator
d defined on L2%9:

<bpw>=< ¢, dw >,

for ¢ € L%} and w € L?9. In the case of ¢ = 0, this is the Laplace-Beltrami
operator on functions encountered before; in the general case we have in addition
of tr(V9)? the contribution of the Weitzenbock curvature term. Let us we are
given a C? positive function ¥ on M . We then have an induced smoooth density
p= 1})"’\'019 on M.

We introduce the Hilbert space L2:9? = L2Q9(M, p), of differential forms on
M of degree ¢, square integrable with respect to p, with inner product:

<onr>0= [ <erla)ala)> 0, (3.1)

for ¢1,00 € L*9#. We define the quadratic form ¢(¢) = % < ¢, >°, with ¢
on the Hilbert space given by the completion of the space of all smooth ¢-forms
under the L** inner product. In the case of exact one-forms, this is (twice)
the quadratic form introduced in correspondance with the Brownian processes
determined by H(g,v); (Rapoport 1991, 1994, 1995).

Consider the formal adjoint of d, which we shall denote as 6¥ defined on
L>9+1e as follows

<%0, b >P=< w,do >*, (3.2)

for any w € L*9* and ¢ € L®9*. Since d® = 0, we have
(¥ =0. (3.3)
For any smooth function f defined on M, and w a ¢-form:
6(fw) = fbw — igrad rw,
where iy 1s the interior product derivation on g-forms.
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We introduce the operator on L% :
A¥I = —(d + §¥)2, (3.4)

which still writes as

—(d8¥ + 6¥d).

Recalling the definition of the Lie-derivative operator Ly = dix + ixd, X a
smooth vector field on M , we finally have

A"U'q =AY+ 2Lgrad Int, (35)

Let us define now the deformed exterior differential operator mapping ¢-forms
in ¢ + 1-forms, by:
d¥ = ypdy~?, (3.6)

so that
d¥w =dw —dinv Aw.

We have that
(d“)? = 0. (3.7

This operator is the (7 = —1 version) of Witten's deformed differcntial (Wit-
ten, 1982). We introduce now the deformed co-differential operator as the formal
adjoint of d¥:

{dV) = v éu (3.8)

We introduce the Witten deformed Laplacian opcrator, defined as:
LY = —(d¥ +d¥")*, (3.9)
which can still be written as
—(d¥d*" +d¥"d).
We have the following relation between the two Laplacian operators:
AV =y Yy, (3.10)
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so that these two operators are conformally equivalent under conjugation by .
Note that A¥® = 2H(g,¥).

The key to the construction of Quantum Mechanics as a theory of diffusion
processes and a Hilbert space operator theory, rests on choosing the operators
3AY? as infinitesimal generators of Markovian semigroups [1], Pf,¢=0,...,n.
P? is the stochastic process with infinitesimal generator given by H(g, %), which
was constructed in (Rapoport, 1991, 1995). Yet, the construction of this family of
diffusion processes on differential forms of arbitrary degree, rests on the knowledge
of the data ¢ and ¥ which determine the RCW structure; these data are deter-
mined from a stochastic extension of the Einstein-Hilbert variational principle to
RC geometries; one proves that ¢ is a solution of the conformal invariant wave
equation; {Rapoport, 1995 a).

Thus, starting from the RCW geometry determined by the field equations, we
can construct a family of stochastic processes on forms of any degree. Remarkably,
the Laplacian introduced by Witten in topological quantum field theory, appears
to be related to a wave function which satisfies the field equations and produces
the torsion of the RCW geometry.

We would like to note finally that from the fact that (d¥)2 = 0, we can define
a deformed de Rham complex: Hi(M,R) as Ker(d¥ : A — A*1)/Ran(d" :
A?7P — A?) . Yet. since Ner(d¥) = vher(d), and Ran(d¥) = ¥'Ran(d), we ob-
tain that HY(M,R)= HY(M.R).forany ¢=0,...,n. Now, by Hodge'theorem:
dimH (M, R) = dim{Rer(A?)). which by the above construction is clearly equal
to dim(KNer{L¥9)): by (3.10) we conclude that

dim(HY(M, R)) = dim(KerA¥?). (35)

This identification, which we shall not use in this article, is fundamental to the
formulation of the ergodic studies of the flows; indeed, if the first Betti number
of M, biy(M)=dim(H'(M.R)) # 0, then it can be proved that the flows corre-
sponding to RCW geometries with infinitesimal generators given by .l_,H(g, Y} is
{moment) unstable; (Rapoport, 1993, b, ¢).
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IV. RCW GEOMETRIES AND SUPERSYMMETRIC SYSTEMS

That Laplacian operators on smooth compact manifolds are examples of su-
persymmetric systems was a profound observation due to Witten; (Witten, 1982).

One starts with a Hamiltonean H on a Hilbert space H, together with a

self-adjoint operator ) and a bounded self-adjoint operator P both defined on
H, such that

H=Q*>0,P’=1, and {Q,P})=QP+PQ=0.

Then, the triple {H, P,Q} is said to be a supersymmetric system, or still, to have
supersymmetry. Since P is self-adjoint and P? = 1, then P has for eigenvalues
1 and —1. Denote

errm = {¢ €H, Pé= “‘?}

and
Huos = {¢ € H, Po = ¢},

which are called the fermionic and bosonic states, respectively. Then, @ : Hierm —
Hypos and @ : Hyos — Hperm , or 1n other words, ¢ maps fermionic states into
bosonic states and viceversa.

In the present theory, we take for Hilbert space H = e;‘=0L3'q-", and the
Hamiltonean operator H is AY = %A + Lgrad in¢ as an operator on forms of
arbitrary degree, where A, = —(dé + 6d)? . Now we take Q = i(d + &¥) and P
is defined on H by its restriction to ¢-forms: P|L*9* = (=1)9, g = 0.....n.
L.e., the operator of multiplication by (—1)¢. Then. it is easily seen that {H.P.Q}
is a supersymmetric system. Thus, in this setting, fermionic (bosonic) states are
given by odd (even) forms.

Yet we would like to remark that the quantization of gravitation suggested in
the above sections by taking %A""" , with ¢ = 0,....n {or infinitesimal generators
of diffusion processes processes -corresponding to fermions and bosons - determined
by solving the heat kerne! of each Markovian family P4, 0 < ¢ < n, depends on
the knowldege of ¢ and ¥'. Thus, the knowledge of the RCW geometry determines

the quantumn theory for bosons and fermions alike.
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V. RCW GEOMETRIES AND THE SYMPLECTIC STRUCTURE OF
LOOP SPACE

It may seem rather strange that in the present theory, in contrast with TQFT,
¥ is defined on space-time M instead of being a functional on loop space, i.e. the
infinite dimensional manifold Q@ = {¢ : S* — M, ¢ € C*}. In this description, M
can be recovered as the constant loops of Q. This infinite dimensional setting is
the one considered in the topological quantum field theories, and different choices
of ¥ yield the supersymmetric ¢ models, the supersymmetric ¢* theory, etc.;
Witlen 1982. Yet, it is too be remarked that the RCW geometries are connected
to the symplectic structure on Q, in a way we shall describe in the following.

Let us fix ¢ € Q2. Then, the tangent space to Q at ¢, T.Q can be identified
with the space of sections of the pull-back vector bundle ¢*(TA7) of TM to S!
by @. The metric g on M defines a metric ., on ¢*(TM), and hence we have
an inner product on T4 (s),52) = zl_ﬂfs’ 51.¢52 . Thus, T, has a pre-Hilbert
structure.

Next, we introduce a general Riemann-Cartan connection, ¥ on M . This
induces a connection on ¢*(TAf), and hence a covariant derivative operator ¥
which acts on sections of é¢*(TAf) by evaluation on the vector field -&f’; of S,

Now we can define a skew-symmetric bilinear form on 7.8 :

, 1 .
UJ(O) = —-4— / ('\"'cr,s].‘,s-_: - VéSQ.OSI). (61)
T Jst

Varying ¢ € 2. we obtain a differential 2-form on Q. As first noted by Atiyah
{Atiyah, 1983), dw equals ( _7‘;) the integral over §' of the skew-symmetric com-
ponent of the torsion tensor; for the details, see (Bowick & Rajeev, 1987).

Therefore, for a RCW geometry, w is a closed 2-form on €. Yet, « is not
properly a symplectic form since it vanishes at those o for which ¥V, has a 0
eigenvalue, i.e. on any tangent vector which is covariantly constant along é. In
the case of a purely Riemannian geometry, i.e. v = 1 this "symplectic” setting
has been applied to obtain an exact computation of the trace of the heat kernel of
274, and to the direct obtention of the Ativah- Singer index theorem: (Ativah,
1985). 1t would be interesting to check if this constructions can be carried out for
the trace of the heat kernel of H(g.v").
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We close this section with the observation that the 2-form of (6.1), is related
to the zero modes of string theory, (Bowick & Rajeev, 1987); the relevance of RC
geometries to string theory was assesed in (Scherk and Schwarz; 1974).

VI. THE CARTAN CLASSICAL COPYING METHOD

As afinal section of this first part of the article. we wish to describe the Cartan

classical copying method as a preparation for its stochastic extension; (Rapoport,
1995 d).

For this, we need to study in further detail the structure of horizontal vector
fields on the bundie of orthogonal frames, Py, which we shall do next.

The total space of Py is described as the space of all pairs r = (z,€) where

r € M and e = [e},...,€q] is an orthonormal frame at z, i.e. the vectors
e1,...,en are a basis for T M satisfying the condition

%ef = 7.1

guﬁeaeb - Uab: ( " )

where 7 = (n4) is the Minkowski metric in the case g is Lorentzian (or the
Euclidean metric in the Riemannian case); as we already saw,

C:cf = g“’e ) (7.2)

Every vector field L on M induces a vector field, Z, on Py, defined as
follows. If f is a smooth function on Py , then Lf is given by

(Zf)(r) = %f((exp tL)x,(exp tL).e};y =0

where r = (z,e) and (exp tL). : Te M — Tiexp r11=M s the tangent mapping to
exp tL, so that (exp tL).(e) = [(exp 1L).e1,....(exp tL).en]. Here, we recall,
exp tL is the local diffeomorphism z — z(t,z) of M defined by the flow of the
differential equation

a
d; = a%(z,t), where L =a%(z)0,
z(0,z)=1=z.
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Ifin Py we have a Cartan connectizn V with coefficients (I'§) which is compati-
ble with g, we can describe the horizontal sub-bundle of Py
: at each r € Py as,

H, = {X is a vector field on Py : X = A%(z)d, — I'j, (z)e] AP(2)0/0el} .

H, is clearly a subspace of T,(Py) which is clearly independant of the choice
of local coordinates (z*,e%) on Py . We recall that the horizontal lift, E, of a
vector £ € T M , is uniquely determined by w.(g) =§ and w(e) =z.

Given a vector field X on M, the horizontal lift X | is the unique vector
field of such that X, is the horizontal lift of X(w(r)), forall r € Py . In alocal
coordinate system (z%,e%),if X = X*(z)d, , then

X = X0y~ I X% 9 (7.3)

“ By

Let © : [0,00) — M be a smooth curve on M ; then the horizontal lift,
(:), of O, i1s the unique curve on Py such that d(:j/dt(t) is horizontal and for
any ¢ > 0, we have that. W(é(l)) = ©(1). Clearly. if r = (z,¢) is given where
r = O(0), then a horizontal lift © of © starting at r exists and is unique.
Indeed ©(1) = (O(1), [e1(t), ..., €n(t)]), where eq(t) € To(yM is obtained from
€o by parallel transport along © through V. foreach a=1,....n; there cxists a
unique vector field Za on Py such that (Z,,)r 1s the horizontal lift of ¢, € T+ M,

for every r = (z,¢) and a=1,...,n. In local coordinates as above,

0

Lo=¢20,—T5,cle] 5ot (7.4)
The set {Zl, ey Z,,} is called the system of horizontal vector fields, or still basic

vector fields.

We are finally ready to introduce to the Cartan classical copying method. Let
M be a manifold provided with a Cartan connection ¥ compatible with a metric
g on M . The Cartan connection enables us to roll M along a curve (¢) on R"
(where n is the dimension of M ) to obtain a curve ©(f) on M as the trace of
the curve v. An important comment is here in order: 4 is arbitrary, i.e. it can be

i

the trajectory of an arbitrary dynamical system. The second and most important
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1s the fact that the method we shall present works because the tangent space at
every point is identical to the quotient of the affine group of H (H direct sum
with translations) with H , so that we can place a Cartan connection vV on Py .
To precise this, let r = (z,¢) € Py and 7 : [0,20) — R" be a smooth curve.
Define © : [0,00) — Py , where O(t) = (8(1), (1)) by

(Copying equation) %?—(t) = ea(t)%(t) (7.5)
{Parallel transport) \?d@,d,,a(t) =0 (7.6)
for every a == 1,...,n, with the initial conditions

O0)=z, e0)=c¢ (7.7)

Equations (7.6) and (7.7) have the componentwise form

dea o d‘:'a -~
de® - def
o (1) = 1'%, (O(1))ed (1) = (1) (7.7')

dt dt

which themselves are the componentwise expression of the single equation

de ~ o~ dy . ~
T“) = Lu(@“))'&‘“) (7.8)

and the initial condition for © is
0(0)=r (7.9)

where Za is the system of horizontal vector fields on Py . The solution curve
©(t) = =(B(t)) depends on the initial frame at z: we shall denote it by ©(t) =
O(t,r,v). with r = (z.e). It follows easily that ©(t. Ar,7) = O(t. 1. Av) for any
t €10,00) and A € H . where the curve A~ is defined by (AY)(t) = A1) .
Thus we have completed the formulation of the Cartan copying method for
classical curves. i.c. for smooth curves. We shall cal! this instance of the Cartan

method as the classical Cartan copying method.
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The striking point is that one can generalize this mecthod to the copying
of Brownian motions in R™ . Yet, it is more striking still, that to construct
Quantum Mechanics as a theory of diffusions, one does not start with an arbitrary
continuous stochastic process on R" , but the most simple elementary case of an
homogeneous isotropic process, the Wiener process whose transition probability
15 the standard Gaussian density on R™. The diffusion process on M becomes
completely determined by by the RCW connection given by only the trace part
of the torsion of V. Yet to carry over this construction to the stochastic case,
we are lacking one point: the substitution of the usual rules of calculus (more
specifically a chain rule) for smooth functions taken along smooth curves, for rules
that are appliable in the case that the curves are sample paths of Wiener processes,
which are continuous non-differentiable (furthermore, they are fractals). This shall
be presented in a forthcoming article, together with the formulation of quantum
mechanics as Dirichlet forms associated to the RCW Laplacians.

CONCLUSIONS

We have constructed the RCW geometries and their associated laplacian op-
erators in view of the construction of quantum mechanics as diffusion processes
as Markovian semigroups having these laplacians as infinitesimal gencrators. Yet,
in this article we have not presented the field equations for the RCW geometries,
which are essentially related to the solution of a Dirichlet problem for the con-
formal invariant wave equat:on in the canonical Hilbert space determined by the
volume form. Thus, the quantization of gravitation envisaged in this program
appears to be related to the usual quantization scheme through the heat kernel
expans: ‘n through Riemannien invariants: (Fulling, Birell and Davies).

Yet, what matters centrally in this quantization, and has been unoticed by
all authors, is that from the field equations for the RCW geometry, the quantum
potential i1s found to be non other that x]_z the metric scalar curvature!. which
has assimilated the dependence of the quantum system on the square root of the
invariant density 4. In fact, one proves thai the explicit dependence of the
quantum system on the RCW geometry shows up while working in the Hilbert
space L*(¥7voly). where vol, is the canonical volume density associated to the
25

“-



metric ¢, and ;Z)zvolg is the invariant density of the quantum difTusion. Yet, by
conformal transformation to the canonical Hilbert space L?(voly) , the heat kernel
representation of the diffusion in the RCW Hilbert space, goes to the heat kernel
representation for the conformal invariant wave operator on the canonical Hilbert
space; (Rapoport, 1995 ¢). Thus, in the L*(3?vol,) Milbert space the role of
torsion is essential, while in the Hilbert space L?(vol,), the role of torsion is lost
due to the identity of the quantum potential with 5 R(9), R(g) the metric scalar
curvature. This settles the question as to the Riemannian or Cartanian character
of the geometry of quantum mechanics and gravitation. It seems that Anandan
(Anandan, 1988) was the first author to point out that London description of
quantum mechanics is related to the Weyl geometry, yet that this does not rule
out a possible need of incorporating torsion into quantum mechanics.

As closing remarks, we would like to point out that the present theory leads
to the formulation of the ergodicity studies of the diffusion processes generated
by the RCW geometries. The striking fact that allows for such a formulation, is
that the flows of the diffusion processes generated by the RCW geometries, are
diffeomorphisms of space-time, in spite that they arise from a non-differentiable
dyvnamics. As a resultant of this, the evolution of densities governed by a quan-
tum Perron-Frobenius semigroup, leads to the fact that the tensor product of the
Wiener measure with the Born invariant measure of the diffusions, u"?volg . vields
an equilibrium measure for the RCW diffusions; (Rapoport, 1995 ¢).
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