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ABSTRACT - We present a geometrization of Relativistic Quantum Mechanics
(R.Q.M.) and a quantization of gravitation, in terms of the Ricmann-Cartan-Weyl
{RCW) geometries with Weyl-torsion and their associated diffusion processes.
We extend these diffusions of scalar fields to differential forms, and rclate the
RCW Laplacian with Witten's deformed Laplacian in the topological quantum
field theories. We prove that Bohm's relativistic quantum potential is -1-1-2- th-

of R(g) , the metric scalar curvature. We introduce the two Hilbert spaces of
quantum gravitation and relate the usual heat kernel for the conformal invariant
wave equation to the kernel of the RCW diffusion for spin 0 fields. We relate our
theory with Witten's formulation of supersymmetric quantum mechanics. We

discuss the relation between the RCW geometries and the symplectic structure
of loop space.

1. Introduction.

Since B. de Witt’s first proposal of quantization of the theory of gravitation

by the path-integral representation of the heat kernel {9}, a considerable progress
has been achieved in relating this quantization to diffusion processes [16]. This
program has lead to the Feynman path integral representation of the transition

density in terms of a classical lagrangian [14,16].

Yet, in this program the geometry associated to the diffusion processes and

the gravitational field, is considered to be Riemannian. The purpose of this ar-
ticle is to present a solution to the problem of establishing a link between rel-
ativistic quantumn mechanics and gravitation, by revealing that this geometry is
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non-Riemannian and given by a RCW (Riemann-Cartan-Weyl) geometry with
torsion -in addition to a Riemannian metric- given by the logarithmic differen-
tial of a scalar field [3]. Yet, the introduction of the torsion is essential to the
theory, since it introduces the mean velocity (an observable) of the generalized
Brownian processes which have continuous non-differentiable trajectories. The
object in terms of which we shall present the theory is the Laplacian operator
of the RCW structure, and its central role stems from the fact that it contains
both the 1/2-order approximation proper of Brownian motions (described by the
Laplace-Beltrami operator of the Riemannian metric), and the linear approxima-
tion introduced by the conjugate vector field to the trace-torsion 1-form given
by the Weyl exact 1-form, d In #; as it is well know, the first two moments of
a Markov probability measure described here by grad Iny and the Riemannian
metric g, determine all higher moments of the Markov measure, and thus all

the probabilistic features are completely determined by the metric and the Weyl
torsion one-form.

IE Diffusion Processes and Cartan Geometries
ILA. Cartan Laplacians and Markovian semigroups

In 1931 Schrodinger introduced in non-relativistic Q.M. the notion of tra-
Jectories described by the solutions of stochastic differential equations (s.d.eqts.)
associated to non-Markovian stochastic processes {1]. Such a probabilistic ap-
proach leads to the consideration of ensembles of trajectories and thus to the
problem of determining measures on trajectories, which is the genesis of Feynman

path integrals, or more properly, its Euclidean version with measures on Brownian
trajectories.

In this article, we shall deal instead with Markovian diffusion processes which
we shall construct in terms of certain Cartan connections on a smooth space-time
manifold. The central notion in the construction of Markovian diffusion processes
is the infinitesimal generator of the Markov semigroup, or what is the same, the
differential generator which defines the stochastic derivative. This is a second
order elliptic operator which we shall introduce in this section.

Let us consider for a start, a smooth n-dimensional manifold M , on which we
shall consider a second-order smooth differential operator L. On a local coordinate
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system, (%), =1,...,n, L is written as

L= %gap(z)aaap + B%(z)0q + ¢(x). (1).

From now on, we shall fix this coordinate system, and all local expressions shall
be written in it.

We wish to give an invariant description of L, i.e. a description independent
of the local coordinate system. This is an essential prerequisite of covariance.

For this, we shall introduce an arbitrary connection on M, whose covariant
derivative we shall denote as V. We remark here that V need not be the Levi-
Civita connection associated to g; we shall precise this below. Let (V) denote
the second-order part of L, and let us denote by Xo(V) the vector field on M
given by the first-order part of L. Finally, the zero-th order part of L is given by
L(1}, where 1 denotes the constant function on M equal to 1.

Then, for f: M — R of class C?, we have

o(V)(2) = gtrace(V21)(z) = 5(Ve)()) )

where the trace is taken in terms of g, and Vdf is thought as a section of
L(T*M,T"M). Also, Xo(V) =L - L(1) = (V). If T§, is the local representa-
tion for the Christoffel symbols of the connection, then the local representation of
(V) is:

1 - -

o(V)(z) = §9aﬁ(=)(3aap +To5(2)8y), (5)

and,
1

Xo(V)(z) = B*(z)8, — Egap(:)l‘lpa.,. (6)
If ¥ is the Levi-Civita connection associated to g, which we shall denote as V9,
then for any f: M — R of class C?:

1 " 1 1. 1

a(Vi)(df) = §tr((V”)'f) = Etr(V’df) = —§dlv grad f = §A,f.

Here, A, is the Levi-Civita laplacian operator on functions; locally,it is written
as

Ay = (detg) T 0,((detg) * g% 5p).
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We now take V to be a Riemann-Cartan connection [5], which we additionally
assume to be compatible with g, ie. Vg =0. Then ¢(V) = %tr(Vz). Let us

compute this. Denote the Christoffel coefficients of ¥V as ng ; then,

T3, = {;f} +1/2Kg,, (7)

where the first term in (7) stands for the Christoffel Levi-Civita coefficients of the
metric ¢, and

K§, = T3, + 53, + 5%,

is the cotorsion tensor, with Sgy = 9%Y98:T}, , and Iy, =T3, - I35 the skew-

symmetric torsion tensor Let us consider the Laplacian operator associated to this
Cartan connection {3], defined -in extending the usual definition- by

H(T) = 1/2¢°PV, Vs, (8)

where V stands for the covariant derivative operator with respect to T'; then,
o(V) = H(T). A straightforward computation shows that that H(T') only de-
pends in the trace of the torsion tensor and g¢:

H(T) = 1/284 + §°°Q40,, (9)

with Q = T}sdz? | the trace-torsion one-form.

Therefore, for the Riemann-Cartan connection V defined in (7), we have
that

o(V) = %tr(v"') = %/_\., +Q, (10)

with @ the vector-field conjugate to the 1-form Q: Q(f) =< Q,grad f >),
f :M — R. We further have:

- _ 1 aB) Y A
Xo(V)= B ~ 5 {aa}a" Q, (11
Therefore, the invariant decomposition of L is

—21—tr(V)+Xo(V)+L(1) = —;-Ag+b+L(1). (12)

—_ 1aﬁ Y
b=B 59 {aﬂ}a-,.
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Notice that (11) can be thought as arising from a gauge transformation: b —

b— Q, with b the 1-form conjugate to b: b(Y) =< b,Y >, for any vector field
Y on M.

If we take for a start V with Christoffe] symbols of the form

=g} + gy (65 @ 952 07) (13)

with 3 )
Q=0b, ie@=hb,
we have
Xo(V) =0
and 1 ) !
o(V) = 5tr(V?) = H(V) = (V) +Q = 50, +b.

Therefore,

L=0o(V)+L(1) = 5"((‘7”) ) +Q+ L(1). (12)

The restriction we have placed in ¥V to be as in (13), i.e. only the trace
component of the irreducible decomposition of the torsion tensor is taken, is due
to the fact that all other components of this tensor do not appear at all in the
laplacian of (the otherwise too general) V. In the particular case of dimension
2, this is automatically satisfied. In the case we actually have assumed that g is
Riemannian, the expression (12) is the most general invariant laplacian acting on
functions defined on a smooth manifold. This restriction, will allow us to establish
a one-to-one correspondance between Riemann-Cartan connections of the form
(12) with Markovian diffusion processes. These metric compatible connections
we shall call RCW geometries (short for Riemann-Cartan-Weyl), since the trace-
torsion is 2 Weyl 1-form [3]. Thus, these geometries do not have the historicity
problem which lead to Einstein’s rejection of the first gauge theory ever proposed
by Weyl.

We shall further assume in the following that Q reduces to the exact form:
Q :Q =dln ¥, where ¢ is a real function on M . In this case, the RCW
geometry i1s determined by the Riemannian metric ¢ and the function v . The
corresponding laplacian, which we shall write from now on as H (g, ¥) 1s defined
by its formal action on functions f: M — R by

H(g, ¥)f = %Agf+ < grad Iny, grad f > . (14)
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The theory we shall construct is determined by this laplacian, which we shall
call the RCW laplacian.

We are interested in Markovian semigroups {P,,7 > 0} with infinitesimal
generator given by H(g,y):

H(g,¥)f = str lim,_,o_P_":f;'_'_f

for f in the domain of H(g,); here, the limit is taken in the strong (operator)
sense [36]. We further assume that {P;,r > 0} preserves probability,i.e. P (1) =
I, for any 7 > 0; consequently, L(1) = 0, i.e. the zero-order ("potential”) term
of the operator L is identically zero.

The role of b = grad Iny the vector field conjugate to the trace-torsion 1-
form, is that of the drift (average velocity) of the continuous sample curves of
the diffusion processes associated to H (g9,¢). Therefore, the introduction of the
torsion is a most essential feature of the diffusion processes associated to {Pr, 72>
0}, since Brownian processes have continuous non-differentiable sample paths.
(Actually, they are fractals). We shall see further below that H(g,¥) is a negative
symmetric operator on a Hilbert space which has C§°(M) as a dense subspace of
definition of {P;, 7 > 0} which can formally be written as exp(tH(g,¥)), 7> 0.

We must remark that 7 is not to be confused with the relativistic time co-
ordinate of M ; it is to be thought as an internal time evolution parameter of
the: diffusion we shall describe below, as originally conceived by B. de Witt [9].

This time parameter is Liouville’s time in Prigogine’s theory of non-equilibrium
statistical mechanics [29)].

The transition density py(7,z,y) is determined as the fundamental solution
of the “heat” equation on the first variable z:

O H ). (15)

It will be very important for the following, to note that the semigroup {P; :
7 > 0} has a unique 7- independent invariant probability density p determined
as the fundamental weak solution (in the sense of the theory of generalized func-
tions) of the T-independent Fokker-Planck-Kolmogorov equation: H(g,¥)(p) =
0, where H(g,v)! = 1/24, — div,, is the adjoint of H(g,%). One readily proves
that p = ¢’-’volg ; this relativistic Born density can also be proved to be a relax-
ation density for the Markov process, since one can prove that py(r,z,y) tends
exponentially in 7, with z fixed on a compact set, to i (y).
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II.B Riemann-Cartan-Weyl Diffusions

By embedding M on R?, with d < 2n+1, we can obtain a section Y (at least
locally Lipschitz, or still, satisfying Sobolev regularity conditions) of L(R?, TM),
so that if Y* denotes the dual section of L(TM,R%), then for all z € M,

a(z) =Y (z)Y*(z).
Given an orthonormal basis {e;,i=1,..., n} of R?, we may define vector fields
Yi(z) = ¥ (2)(es).
Taking Y to be smooth, we can define the second-order differential operator
L3 = (V)2
For L asin (1) and Y locally of the form
Yi(z) = Y3 ()da,

then, lcecally
L} (2) = gapBabp + Y (2)05Y7 ()0,

If we take the vector field on M given by
XY (2) = U(z) - 5Y20,Y2(2)8,

with b= @, then

1
T2
This decomposition, while still invariant by diffeomorphisms of M, it depends
essentially on the choice of the "square root” ¥ of ¢ .

L=z13 +x7.

For an arbitrary Riemann-Cartan connection V as in (7), we consider its
associated Levi-Civita connection V¢ with the choice of ¥ sufficiently regular,
we have the following decomposition of L:

X = Xo(V) - S(V9.Y),

and

%L% =0a(V)+ S(V9,Y)
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their diffusion processes [23] and RCW laplacian operators [3]. The former cor-
respondances and their relation with the Dirichlet problem are the cornerstone
for the study of analytic estimates of heat kernels such as hypercontractivity and
ultracontractivity, which are important notions in constructive quantum field the-
ory [38]. We shall present below in a rather schematic way the above mentioned
correspondances.

We can associate with the diffusion process a Hamiltonean operator on the
Hilbert space L?(3%voly) [3]. With abuse of notation, let us denote still as H(g,¥)
the Friedrichs self-adjoint extension [38] of the infinitesimal generator (14) with
domain given by C§°(M). We can now define the inner product

<fif2>=1/2 / a(grad i, grad fz)y?vol,

By integration by parts, we obtain

< i, f2>P=~(f1,H(g,%)f2), (17)

where (.,.), denotes the weighted inner product in terms of p = ¥*vol, which
thus defines a Iilbert space which we denote as L?(y%voly). Let us consider
now the closed quadratic form, (the Dirichlet form) ¢ associated to < .,. >, ie.
o(f) =< /,f > [3.23]. We see from eqt. (19) that there is a unique Hamiltonean
operator which generates g, it is the self-adjoint operator —H(g,¥). Since the
quadratic form is positive, ¢(f) > 0 , for any f € L*(y%vol,), then H(g,v) is
a negative self-adjoint operator on L?(y?voly) and the semigroup exp(TH(g,v))
1s defined.

Let us see how this construction is related to the usual formulation of Quan-
tum Mechanics in terms of quadratic forms in L?(voly), which in the non- rela-
tivistic flat case has been elaborated by several authors [22,38].

Consider the mapping Cy, : L*(y2voly) — L*(voly) defined by multiplication
by . This maps takes C$°(M) into itself. For any f in C§°(M) we have

g ) =< vyl f >

= 1/2/{g(grad f,grad f) — 2g(grad f,grad In ) f + g(b,b)f:’}volg
= 1/2/{g(grad fograd f) + (divgb)f* + g(b,b)fz}voly
= [ Heg8g+ Vfvoly = (4, H)uauany,

9



with b = grad Iny and

H = CyoHlg,4)oC;' = =1/28,+V

where in the weak sense,

V = 1/2(div, b+ g(b,b)) = —A;TI/}, )
is the relativistic quantum potential. In the case of n = 3 and g the Eu-
chdean metric, we retrieve Bohm'’s potential in non-relativistic Quantum Mechan-

Then, we have proved that —H(g,v) is unitarily equivalent to the Hamil-
tonean operator H = —1/2A;+ V defined on L?(vol;) and ¥ is a generalized
groundstate cigenfunction of H with 0 eigenvalue. The non-linear dependence of
V' on the invariant density introduced by % introduces non-local (in the sense of
Einstein- Podolsky-Rosen) correlations on the quantum system; we recall that the
existance of instantaneous quantum correlations have been verified experimentally
by Aspect [39]. We shall see below that this dependence of V on ¥ is removed
due to conformal invariance. :

ITI. The Mean Curvature Extremal Principle

We shall assume that n = 4. We start with a general Riemann-Cartan
connection (I'3"), (where Greek letters denote space-time indices as until now, and
Latin letters denote anholonomic indices), and we introduce its scalar curvature

R(T) = e2ef R;3, (18)

where the €2 is a field of invertible tetrads with Jap = nabegeg, with 74 the
Euclidean metric, and R;g” is the curvature tensor of (I'2%) [5]. Definining the
following generalized conformal (Einstein) A transformations [6,4): i): (I'%}) is
invariant, and ii): ¢ is transformed into ¥~!e2; from them we get the usual
Weyl transformation on the metric: gop is transformed into ¥?gap while R(T)
is transformed into ¥~2R(T"). Since, by above, the scalar fields ¢ transform as
¥~ 1¢, we get that the functional

AT, 6,9) = / R(T)p*voly, (19)
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is conformal invariant. Notice that if ¢ gencrates a drift vector ficld b = grad Iné,
so that ¢*vol, is the unique invariant density of the corresponding diffusion pro-
cess, then (19) is the mean Riemann-Cartan scalar curvature. This the-
ory contains the Einstein-Cartan theory which is obtained by fixing the ¢ to be
positive constant [5], and consequently it contains the classical Einstein's theory,
retrieved for symmetric I'. Taking variations with respect to g we obtain that

Raﬁ(I‘) - I/QgQgR(F) = O, (20)

i.e. the Einstein-Cartan equations for I' in the vacuum, while by taking variations
with respect to T;’D, we obtain that

Tos =65 8y Ing — 6785 Ing, (21)

so that, up to normalization, Q = d Iné. Taking variations with respect to ¢
we get the teleparallelism: R(T') = 0; replacing (21) in (20) we get the field
equations

6
¢

with Gyus(g) the Einstein metric tensor, and

Gaﬁ(g) = Taﬁx (22)

a ‘ 1 (2 (2 B
Top = 0ad 036 — 1/29430,007 ¢ — E(Vavﬁo' — 9asfg07), (26)

minus the improved energy-momentum density of the renormalizable gauge theo-
ries [20]. Now, by taking the trace in (21) we finally get

(8, - R(3)$ =0, (23)

so that ¢ is a generalized groundstate of the conformal invariant wave operator
defined on L?(voly). Note that from (23) we conclude that the quantum potential
is 75R(g) which does not depend on the scalar field ¢ at all. Therefore, the
correlations on the quantum system are mediated by the metric scalar curvature!

Solving the conformal invariant wave equation with Dirichlet boundary con-
ditions we obtain a conformally conjugate Dirichlet form whose associated Hamil-
tonean operator is —H (g, %), and thus the Markovian semigroup determined by
1t can be reconstructed. Let us show this in detail.

Suppose that there exists a positive compact supported C2 function ¥ on
M such that

Hy = (D, - V)¢ =0,
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where V' denotes the operator of multiplication by AR(g), K = 1. Put X =

5
é‘zﬂ ; then, X is a continuous function. Consider the quadratic form on C'é(M),

the space of all compact supported C! functions on M , given by
1 -
QN = [P + 7 poly; 1 € Gy
Put A =9y~ 'f then

1 -
AN =5 [P+ TRy,
= %/(’d}llju,g + hzldd)l'—’ +92<¢ dh,du, > hw"}' Vhl’wi.’)volg

1 L] YI NV
= 5/(< dv, d(vh?) > +|dh|*y? + ¥ h*y*)vol,
which, by integration by parts of the first term, gives

= l»/(Idhlz + (f’ - /\')hz)tf")volg

)

3
“

1 2 o
= L—)/Idh['w’volg >0.

We have proved that @ is positive. Then, the form Qu(f) == Q(Cuf) =
Q(vf), defined on f € L2(u""’voly), equals to

%/;dh]'-’d-%ozg

1s positive, and its Hamiltonean operator, —H(g,v), is negative self-adjoint on
L2(df2volg) ; consequently, ezp(TH (g, ¥)) is a Markovian semigroup on L:’(v,."fzvolg ).
or in 1ts dense domain C°(M).

Therefore, starting from a positive compact supported solution of the equa-
tion (23), we have constructed the Markovian semigroup generated by the RCW
Laplacian H(g, ). Furthermore, one can reconstruct the Markovian semigroup
in L*(vol,) with generator ~-3H.
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We shall finally establish the relition between the heat kernel peont(7, ,y) of
the Markovian semigroup czp(§H) and the heat kernel py(r,z,y) of the RCW
semigroup. We have

exp(5 H (g, ¥))f(z) = w7 (2)ep(SH)(B1)(2)
= [ 57 @ peant(r, 2 000 Sl ()
so that we conclude that
pu(7,2,y) = ™ (2)$(¥)Peont (T, 7, )

Thus, we have linked the quantization in the two Hilbert spaces, the ground-
state Ililbert space L2(¥2voly), and L2(vol;). The former corresponds to the
RCW geometry, while the latter is the usual Hilbert space for the quantization
of the scalar field ¥ in terms of the Riemannian invariants of the manifold M
described in terms of g. We remark that the introduction of both spaces and
the unitary transformation between them, has allowed us to identify the quantum
potential, while working only in the usual Hilbert space would not have allowed for
this identification. Thus, in the L?(vol,) space we have found the Hamiltonean
operator obtained by B.de Witt in his pioneering work [9], and reencountered by
several researchers in quantum field theory in Riemannian geometries through the
HamiDew expansion of peont(7,z,z) [37]. Yet, our result is in disagreement with
the path integral representation of the classical action in a Riemann-Cartan geom-

etry due to Kleinert, in which he obtains twice the quantum potential (see, chap.
X, [34).

IV. Witten’s deformed laplacian and the RCW stochastic flows

Let us assume in the following that we have a smooth n-dimensional orientable
compact manifold M provided with a Riemannian metric, g. We consider the
Hilbert space of square summable w of differential forms of degree ¢ on M , with
respect to vol,. We shall denote this space as L*? or still as L*Q¢(M, vol,).
The inner product is

<w,¢>= / < w(z), é(z) > volg
M
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where the integrand is given by the natural pairing between the components of
w and the conjugate tensor: g*1#1 .g"vﬁ‘lq#pl,_,gq . alternatively, we can write in
a coordinate independent way: < w(z),d(z) > vol; = w(z) A *¢(z), with * the
Hodge star operator, for any w,¢ € L29 [45).

The de Rham-Kodaira operator on L2 is defined as
O = —(d+6) = —(dé + 6d), (24)

where § is the formal adjoint defined on L29+! of the exterior differential operator
d defined on L29:

<bd,w>=< ¢,dw >,

for ¢ € L*9%1 and w € L29. In the case of g = 0, this is the Laplace-Beltrami
operator on functions encountered before; in the general case we have in addition
of tr(V9)? the contribution of the Weitzenbock curvature term. Let us assume
that the real valued function on M ¥ is smooth and everywhere positive. We
then have an induced smoooth density p = ¥*vol, on M.

We introduce the Hilbert space L29* = L2Q9(M, p), of differential forms on
M of degree ¢, square integrable with respect to p, with inner product:

< 01,00 >F= / < 6)1(2),02(1:) > p, (25)
M

for ¢1,02 € L>9?. We define the quadratic form ¢(¢) = % < 9,6 >, with ¢ on
the Hilbert space given by the completion of the space of all smooth ¢-forms under
the 1> inner product. In the casc of exact one-forms, this is quadratic form in-
troduced in correspondance with the Brownian processes determined by H(g.v).
The Markovian semigroups we are intcrested are associated to the closed exten-
sion of ¢ with Hamiltoneans {or what is the same, with infinitesimal generators
[23]) which will be given by the Friedrichs self-adjoint extensions of the laplacian
operators we shall compute below.

Consider the formal adjoint of d, which we shall denote as &¥ defined on
L29+1e as follows

<&uo>=< w de >, (26)
for any w € L?9% and ¢ € L297 . Since d? = 0. we have
(6¥)* =0. (27)
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For any smooth function f defined on M, and w a g-form:

6(fw) = féw und igrad W/,

where ix is the interior product derivation on ¢-forms.

We introduce the operator on L9 :
AYA = ~(d+ 69)2, (28)
which still writes as
~(d6¥ + 6¥ d).
Recalling the definition of the Lie-derivative operator Ly = dix + ixd, X a
smooth vector field on M, we finally have

AV = A1 + 2Lgrad iny, (29)

Let us define now the deformed exterior differential operator mapping gq-forms
in ¢ + 1-forms, by:

d¥ = ydy~?!, (30)
so that
d¥w = dw — dlnv A w.
We have that
(d*)? = 0. (31)

This operator is the (7 = —1 version {46]) of Witten's deformed diflerential [33].
We introduce now the deformed co-differential operator as the formal adjoint of
dv .
(@) = v~ 6y (32)
We introduce the deformed Laplacian operator, as a particular case of Wit-
ten’s [33 ], defined as:

L9 = —(d + d*)" (3)
which can still be written as
~(d¥d¥" + d¥"d).
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We have the following relation between the two Laplacian operators:
AV — Y LYy (34)

so that these two operators are conformally equivalent under conjugation by o.
Note that A¥% = 2H(g, ¥). Note that (34) is the extension to forms of arbitrary
degree of the relation found for scalars in II.

Now consider the semigroups in L29# with infinitesimal generators given by
the self-adjoint extensions in C®AI(M) of —;-A’*‘”q = %A" + Lgrag n%; we shall
denote these semigroups as P?,q =0, .. .,n. Clearly, P? is the stochastic process
with infinitesimal generator given by H(g, ).

Thus, starting from the RCW geometry determined by the field equations, we
can construct a family of stochastic processes on forms of any degree. Remarkably,
the Laplacian introduced by Witten in topological quantum field theory, appears
to be related to a wave function which satisfies the field equations and produces
the torsion of the RCW geometry.

We would like to note finally that from the fact that (d¥)? = 0, we can definc
a deformed de Rham complex: HJ(M,R) as Ker(d% : A* — A%+!)/Ran(d¥ :
A1 — A%). Yet, since KNer(d) = vKer(d), and Ran(d¥) = yRan(d), we ob-
tain that Hz,(M'. R)= HI(Al.R), forany ¢=0,...,n. Now, by Hodge’theorem:
dimHI(M, R) = dim(Ker(A%)), which by the above construction is clearly equal
to dim(Ker(L¥9)): by (33) we conclude that

dim(HY(M, R)) = dim(K erA¥+9), (35)

This identification, which we shall not usc in this article, is fundamental to the
formulation of the ergodic studies of this theory; indeed, if the first Betti number
of M, by(M) = dim(H'(M,R)) # 0, then the solution flow of (16) 1s unstabile.
More precisely, it can be proved that the flow of solutions of eqt. (16) correspond-
ing to RCW geometries with ¢ a positive solution of the field equation, with g a
Riemannian metric with coefficients in C?, are (moment) unstable [25,33].

V. RCW Geometries and Supersymmetric Systems

In this section we shall elaborate briefly the relation between the family of
Laplacian operators A?%¥ associated to a RCW structure connection determined
by a Riemannian metric ¢ and a positive function ¢ satisfying the field equations
(23), and supersymmetric systems.
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this description, M can be recovered as the constant loops of Q. This infinite
dimensional setting is the one considered in the topological quantum field theories,
and different choices of yield the supersymmetric o models, the supersymmet-
ric ¢* theory, etc.. [33] Yet, it is too be remarked that the RCW geometries are

connected to the symplectic structure on 2, in a way we shall describe in the
following.

Let us fix ¢ € Q. Then, the tangent space to Q at ¢, TyQ can be identified
with the space of sections of the pull-back vector bundle 8" (TM) of TM to §!
by ¢. The metric ¢ on M defines a metric ¢ on ¢"(T'M), and hence we have
an inner product on TeQ2: (s1,80) = zfoSl 51.¢52. Thus, T,Q has a pre-Hilbert
structure.

Next, we introduce a general Riemann-Cartan connection, V on A . This
induces a connection on ¢*(TM), and hence a covariant derivative operator Vg,
which acts on sections of ¢*(TM) by evaluation on the vector field £ of St.
Now we can define a skew-symmetric bilinear form on T2

1
w(¢) = y L)(V¢Sl.¢82 — Vs2.451). (5.1)

Varying ¢ € Q, we obtain a differential 2-form on Q. As first noted by Ativah
[42], dw equals ( ;L) the integral over S' of the skew-syminetric component of
the torsion tensor

Therefore, for a RCW geometry, w is a closed 2-form on Q. Yet, w is not
properly a symplectic form since it vanishes at those ¢ for which V; has a 0
eigenvalue, i.e. on any tangent vector which is covariantly constant along ¢. In
the case of a purely Riemannian geometry, i.e. ¥ =1 this setting has been applied
to obtain an exact computation of the trace of the heat kernel of 274, and to the
direct obtention of the Atiyah- Singer index theorem [42]). It would be interesting
to check if this constructions can be carried out for the trace of the heat kernel of
H(g,v).

As a final remark, we point out that the 2-form (5.1) is related to the zero-
modes of string theory [43]; it was first observed by Scherk and Schwarz that the
zero modes of string theory lead to RC geometries (18].

VII. Conclusions

We have presented a geometrization of spin 0 R.Q.M. together with a quanti-
zation of gravitation in terms of the R.C.W. geometries with torsion of the " trivial”
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Weyl trace form. Yet, we have shown that this allows an extension to higher spin
diffusions and that the family of laplacians on forms of arbitrary degree generated
by the RCW geometry yields a supersymmetric system.

Our construction of the two Hilbert spaces has further allowed to identify the
relativistic quantum potential with 11—2R(g) , and thus it is seen that the quantum
correlations are mediated by the scalar curvature up to a constant which makes
the field equations in the Riemannian Hilbert space to be conformal invariant.

This has important effects on the classical realizations of the spin 0 quantum
motions. Indeed, one can think on determining on the smooth curves which with
highest probability realize the quantum motions. The solution of this problem is
related to the theory of large deviations in probability theory [44], and its solution
demands the introduction of the Onsager-Machlup lagrangian on the smooth most
probable realizations of the quantum motions. This lagrangian gives the path in-
tegral representation of the heat kernel {14,16]. Due to the identity of the quantum
potential with E%R(g) one obtains that the classical realizations of the quantum
system are given by a deviation of the geodesic flow due precisely to b = grad Iny
{4]. Yet, this does not conflict with the principle of equivalence since the quantum
system is an interacting system and not a system of test-particles. This contrasts
with the classical motions of spinless test particles submitted to a RCW geometry,
or still a geometry with more general torsion [2]: they follow the geodesic flow of
the metric in the RCW geometry uninfluenced by the torsion; only spin # 0 test
particles submitted to a metric plus torsion deviate from the geodesic flow due to
the coupling of the spin density to the Cartan curvature.

The characierization of the quantum potential as related to the metric scalar
curvature should, perhaps, not surprise us. There are other non-local phenomenae
in physics, such as the Aharonov-Bohm effect or still, Berry’s phase which are
related to (Yang-Mills) curvature [40]. Remarkable still is the fundamental role

that the metric scalar curvature plays in the existance of solutions of the monopole
equations in four manifolds [41].

Our theory allows for the formulation of the ergodicity properties of the gquan-
tum flows generated by the RCW geometries, extending the ergodic theory of clas-
sical dynamical systems [17]. The fundamental fact that allows for this extension
is that the quantum flows of (16) vield diffeomorphisms of space-time, in spite
that their sample curves are continuous non-differentiable. A direct consequence
of this is that there 1s a well determined invariant measure for the quantum flows
given by the product of the Born measure with the Wiener measure [25,35]. This
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factoriiation is such that the Born measure accounts for the self-interactions of
the quantum system consistently with the quantum potential description on the

Riemannian Hilbert space, while the Wiener measure points to the ”free” quantum
field measure.

Our theory is geometrically determined; this is -in our point of view- the core
idea of Stochastic Differential Geometry: Geometry determines Probability
(15,3]. It is remarkable that both the theories of Brownian motion and Relativ-
iy, that have provided in this theory for the synthesis of Quantum Mechanics
and the latter, through the RCW geometries of Stochastic Differential Geometry,
were the creation of Einstein, and thus his -separate- conceptions of geometrical

determinism and statistical physics for which he strongly advocated, have been
linked.

Yet there are historical antecedents of blending of geometry and probabilistic
structures. The causal theory of Quantum Mechanics due to de Broglie, Bohm
and Vigier [19,30] relies in a Hamilton-Jacobi theory for the y-field which is
taken to be complex, and thus it is intimately related with Symplectic-Geometry.
More recently and contemporarily {29}, in the formulation of statistical mechanics
far from equilibrium due to Prigogine and the Brussels-Austin groups’theory of
irreversibility and chaoticity [18b), we have a Hamiltonean function H on phase-
space, and the theory stems from the infinitesimal generator of the corresponding
Perron-Frobenius semigroup, which is the Liouville operator {H,.}, where {., .}
denotes the Poisson bracket defined by H. Thus, also this approach stems from
Symplectic Geometry [27], albeit in a seemingly trivial way. In Prigogine’s theory,
probability densities on phase-space satisfy an evolution equation as in eq.(6),
with the Liouville operator instead of H(g,v), i.e. a substitution of infinitesimal
generators and of phase space instead of configuration space.

A similar thesis to the one of the present article, that quantization is ge-
ometry has been presented for symplectic structures augmented by metrics on
phase-space [32]. Our theory instead has stemmed from Cartan geometries, yet
quite remarkably, these geometries provide for a more general and natural setting
for Symplectic Geometry [2,28] that the usual setting introduced from the flat
canonical 1-form of classical mechanics [27]: the canonically one-form of Classical
Mechanics is given by the soldering one-from on the bundle of linear frames, from
which the torsion is derived by taking the covariant derivative of the soldering
one-form.
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