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Abstract

It is shown that the universal R-matrix in the tensor product of two irreducible
representation spaces of the quantum superalgebra. Uz(osp(1|2)) can be expressed by
Clebsch-Gordan coefficients. Racah sum rule satisfied by U;(0sp(1]2)) Racah coeffi-
cients and 6-j symbols is derived from the properties of the universal R-matrix in
the tensor product of three representation spaces. Considering the tensor product of
four irreducible representations, it is shown that Biedenharn-Elliott identity holds for
Uq(0sp(1]2)) Racah coefficients and 6-j symbols. A recursion relation for U,(osp(1|2))
6-j symbols is derived from Biedenharn-Elliott identity.

PACS.02.20 - Group Theory
PACS.11.30P - Supersymmetry

W

[
=
[=]
[¢]
—
o}
©©
-3

Preprint CPTMB 97-05

*On leave of absence from Institute of Theoretical Physics, University of Wroclaw, Poland

TUnité Associée au CNRS, URA 1537
*Postal address: 19, rue du Solarium, 33174 Gradignan, Cedex

SwyF3s

1



I. Introduction

In three previous papers, Ref.[1], [2], [3], we have studied the properties of irreducible rep-
resentations of the quantum superalgebra U,{osp(1|2)). It was shown that it is possible to
construct Racah-Wigner calculus for this quantum superalgebra, in a completely similar way
as in the classical algebra su(2) [4] and the quantum algebra Uy(su(2)) [5], [6], [7] cases. In
this paper, in order to complete our study of the representations of this simple quantum su-
peralgebra, we shall consider the properties of its universal R-matrix in the tensor product
of irreducible representations.

The universal R-matrix for Uy(0sp(1]2)) has been derived and its basic properties have
been exhibited in Ref.(8]. It was also considered in the construction of vertex model solutions
of the graded Yang-Baxter equation in Ref.[9]. In the present paper we study the properties of
the universal R-matrix in the tensor product of two irreducible U, (0sp(1|2)) representations.
We give explicit formulas for the matrix representation of the universal R-matrix in different
bases of the tensor product of representations. In particular we show that matrix elements
of the universal R-matrix in the reduced basis of the tensor product of two representations
can be expressed with Uy(0sp(1]2)) Clebsch-Gordan coefficients (denoted s¢-CGc). Analytic
expressions for sq-CGc of any tensor product of irreducible representations are known [1],
(10], [11], therefore the matrix representation of the universal R-matrix can be calculated
for any tensor product.

In Ref.[2], we have defined and studied properties of Racah coefficients (denoted sqRc)
and 6-j symbols (denoted sg6-7) for the quantum superalgebra U,(osp(1|2)). In particular,
it was shown that, as in the classical case, s¢6-7 symbols satisfy not only the usual tetrahe-
dral symmetry but present also an additional symmetry of Regge type. Another property
satisfied by sqRc and s¢6-j symbols is the pseudo-orthogonality relation. This relation can
be considered as an algebraic relation satisfied by sqRc and sg6-j symbols. It is known
that in the classical Racah-Wigner calculus for su(2) or U,(su(2)), Racah coefficients and
6-j symbols satisfy, besides orthogonality relations, other algebraic relations namely Racah
sum rule and Biedenharn-Elliott identity. These algebraic identities have been extented to
the corresponding features of the superalgebra osp(1|2), Ref.[12]. In this paper we extend
Racah sum rule and Biedenharn-Elliott identity for sqRc and sg6-j symbols. In both cases,
the structure of these relations is completely similar to the correponding classical ones, the
only difference concerns the phases which are more complicated in the case of U,(0sp(1]2)).
As in the classical cases, we also derive from the Biedenharn-Elliott identity, a three-term
recurrence relation between s¢6-7 symbols.

This paper is organized in the following way: in section II we study the properties of the
universal R-matrix in the tensor product of irreducible representations of U,(0sp(1|2)). In
section III, considering the tensor product of three U,(0osp(1]2)) representations, we derive
Racah sum rule for sgRc and sg6-j symbols and we derive a simple algebraic identity fol-
lowing from the sum rule. Finally, in section IV, we prove Biedenharn-Elliott identity for
5g6-7 symbols and the three-term recurrence relation.




II. Properties of the universal R-matrix in the irre-
ducible representations of the quantum superalgebra

Uyg(osp(1]2))
A. The U,(osp(1]2)) universal R-matrix
The quantum superalgebra U,(0sp(1|2)) is generated by 4 elements: 1, H (even) and vy

(odd) with the following (anti)commutation relations
sh (nH)
sh(2n) "’

[H,ve] = :izivi, e, v-]4 = - (2.1)

where the deformation parameter 7 is real and ¢ = e~7 (we choose n > 0 so that g <1).
The quantum superalgebra U,(osp(1]2)) is a Hopf algebra with the following coproduct A?
and antipode S

Alvy) = 12 ®¢7 + ¢ 7 Qus, (2.2)
ANH) = H®1+1QH, AYl) = 1®1, (2.3)
S(Hy=-H  S(vs) = —q*tu. (2.4)
One can consider another coalgebra structure and antipode defined by
A%s) = v:@¢ T +¢" @y,
S'(H) = —H  S'(vi) = ~—q72vs.

which, together with relations (2.1), define another Hopf algebra structure that we denote
Uz(osp(1]2)). Both Hopf algebra structures are related by

Uy(osp(1]2)) = Up-1(0sp(1]2)). (2.7)

It is known [8] that it exists a canonical element R? € U,(osp(1]2)) ® Uq(osp(i]2)), called
the universal R-matrix, that defines a similarity relation between A’? and AY :

RIAT = AR, (2.8)
This universal R-matrix is :
k(-1 (1 + q_l k
R = g9 (—1)fq s (m—w)(qwk ® (¢v- )%, (2.9)

and it satisfies the following relations :

RMR™ - (A®id)R? = R1%3, (2.10)
RMRM? = (id® A)R? = R, (2.11)



where the indices 4,5 = 1,2,3, 4§ # j, in R% show the embeding of R? = > T ® 1l into
the tensor product Uy(osp(1]2)) ® U,(0sp(1]2)) ® U, 4(0sp(1]2)). The above relations imply
Yang-Baxter equation for the universal R-matrix

Rq12Rq13Rq23 — Rq23Rq13qu2. (212)

In the following we will consider the properties of the universal R-matrix in the tensor
product of irreducible representations of the quantum superalgebra U,(0sp(1]2)).

B. The U;(osp(1|2)) finite dimensional representations

A representation of a quantum superalgebra U, ¢(0sp(1]2)) in a finite dimensional graded
space V' is a homomorphism T': Uy(osp(1]2)) — L(V,V) of the associative graded algebra
Uy(osp(1]2)) into the associative graded algebra L(V, V) of linear operators in V', such that

sh (nT(H))

[T(H),T(ve)] = = sh (2n)

T(Ui)7 [T(U+)vT(U—)]+ = - (213)

1
2
Let us recall the main results concerning these representations, Ref.[1]. Any finite dimen-
sional grade star representation of U,(osp(1|2)) is characterized by four parameters : the
highest weight [ (a non negative integer), the parity A of the highest weight vector in the
representation space and the signature parameters v, = 0,1 of the Hermitean form in the
representation space V. The parity A and the signature ¢ define the class ¢ = 0,1 of the
grade star representation by the relation € = A+¢p+1 (mod 2) . The irreducible representa-
tion space of highest weight [, V = V!()\) is a graded vector space of dimension 2! + 1 with
basis €4 (), where —I < m < [, the parameter A = 0,1 is the parity of the highest weight
vector e{(A) and deg(e!,(A\)) =l —m+ A (mod?2). The vectors el4(\) are constructed from
the vector €{()) in a standard way so they depend on ¢ via the normalisation factor. The
vectors e4()\) are pseudo-orthogonal with respect to an Hermitian form in the representa-
tion space, denoted (, ), and their normalization is determined by the signature parameters

o,

(el

m

(A, €2 (N) = (=1)P=m g, (2.14)

"The operators T'(vs) and T(H) act on the basis €/4()) in the following way :
T(H)ed() = % en(n),
T )el(h) = ()" /I=mll+m+ 1y €,,()), (2.15)
T(v-)ei(N) = \/ {l +mill—=m+ 1y el 1 (Y),

where the symbol [n] is the graded quantum symbol defined by

n] = , (2.16)




cosh(2
and v = 511?1((2_47)))' Note that although the symbol [n] is not invariant under the exchange
q = q~', the relations (2.15) are invariant with respect to this substitution. Furthermore, it

follows from the explicit formulas for e4()), Ref. [11] that

e

(V) =€l (), (2.17)

thus both quantum algebras U;(osp(1|2)) and U,-1(0sp(1]2)) define the same basis in the
representation space V'(\). In the next subsection, we shall see that this is no more true
when we consider tensor product of representation spaces.

C. Tensor product of representations and the 7-matrix

In the following, the representation 7" of class € which acts in the representation space V()
is denoted by T*. The generators v+ and H are represented in the tensor product of two
irreducible representations of the same class, T'* ® T% by the operators

v8(1,2) = (Th@T%)(Alve)) = Th(ve) ® ¢7 W 4 ¢ THH) @ Th(y,), (2.18)

H®(1,2) = (T" @ T?)(A(H)) = THH)® T(1) +Th(1) ® T(H). (2.19)

The tensor product T" ® T%is simply reducible. The standard basis €222(A;) ® el28()\;)
and reduced basis e (l1, s, A) of the representation space V'*(\) ® V%2();) are related by
Clebsch-Gordan coefficients in the following way :

e (Il ) = ) (himihy, hmadafim)g el (A) ® e22(Ag), (2.20)

my,ma

or equivalently,
Z(“l)(l—m)L(hth lamada|lmA)g e (I, 1y, A) = (=1)E™Bm)eh ()) @ €22 ()y),

Il,m

(2.21)
where my +mg =m , L =1, + [y + [ and [ is an integer satisfying the conditions

”1-—[2[ §l§11+12, /\:L+/\1+A2 (mod2) (222)

Both bases el}?(A\1) ® e222(A;) and €¥4(l3, 15, A) are orthogonal but not positive definite, i.e.,
we have

(eﬁ,‘g (/\1) ® 62'3(/\2), eirl:,i(/\l) R ei:;(,\ﬂ) = (_1)(11—m1+)\1)(lz—m2+)\2)5m1m,15m2m,2’ (223)
(€9 (ly, 12, A, b2 (11, 1o, N)) = 6ur Sy (— 1)L, (2.24)

where
=L+ +¢ (mod2), o=(L+ )\ +L++v; (mod2),  (2.25)
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We may consider also another reduced basis built with the basis /4~ () :

en (1) = > (imady, mpdellmd)g €2 (\) ® €227 (), (2.26)
my,mg
= D (hmudy, amadallmA) g1 €hI(Ar) ® €22 (), (2.27)
my,mg .

where the second line is deduced from Eq.(2.17). This basis is normalized in the same way
(2.24) as the basis €X4(ly,3, ), but the two reduced bases are different because we have in

general
(limaAr, lemaAgflmA)g-1 # (Limy Ay, lama Ag|lmA),. (2.28)

Thus, there exist an automorphism 7%(l, l) of the space V" (A,) ® V2(\,) that relates both
bases :
Tq(ll, lg)(ef,g(ll, 12, /\)) = eﬁﬁ_l (ll, 12, /\)

Using the orthogonality relations (2.20), (2.21), one can show that this operator has the
following matrix form in the basis e/4(1;, I3, \) :

(T80, D)l = (=)0 57 ()t

myms

X (llml /\1, lgmz/\gulm//\’>q(llm1 /\1, lgmg/\2|lm/\)q—1. (229)

From this expression it follows that [77(l;,ly)]™! = T qﬂl(ll, l2). Note also that the matrix
T%(l;,1y) is diagonal in the indices m’,m but it is not diagonal in the indices I')I. The
symmetries of Clebsch-Gordan coefficients imply the following properties for the matrix

elements [79(11, 12)] s 1
[T, )]y = (—1) e+t +lm)(E+D) {T‘fl(ll, 12)]11 i (2.30)
TR, = (Y D (o ), (2.31)
[Tq(lg, ll)][/ml L= (_1)(21+12+A1+A2)(l'+1)(_1)%1(1—1)-5-%1/(1/_1) {Tq—l(ll, lz)] '(2.32)
’ U'm? im

D. The permutation operator r and the universal R-matrix

We shall now consider the tensor product of the previous irreducible representations in
reverse order, namely 7% ® T"1. For this we introduce the permutation operator 7 acting in
any graded tensor product space as follows

T(a ®b) = (—1)%e@ el (p g q), (2.33)

Therefore, for the quantum superalgebra U,(0sp(1]2)) we have
TAYve) = AT (v) = RIAY(vi)(RY), (2.34)

1

TAYH) = AY (H)= RAYH)(R)™, (2.35)
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which means that the action of the operator 7 for the coproduct of generators of U, (0sp(1|2))
coincides with the action of the universal R-matrix. The action of the operator 7 in the tensor
product of representations Tt ® T reverse the order of the tensor product and we have

T(eﬁ,g‘{(/\l) ® eﬁfg(x\g)) = (-1)(“‘ml“l)(’rmﬁ*?)efﬁg(/\2) ® el,}g(/\l), - (2.36)

and
Tudih, ) 7 = U?iq_l(lz,h), (2.37)
T H®(, 1) 771 = H® (I, ). (2.38)

Using the following symmetry property of Clebsch-Gordan coefficients [1]

(lyma Ay, lzmz/\gllm/\)q — (._1)(ll—m1+/\1)(l2—m2+)\2)(_ 1)(ll+lz+1)(>\1+/\2)+/\1/\2

x (1) 3=l l=b) () Ao Lmg AylimA) -1, (2.39)
one can check that the action of 7 on the reduced basis reads
T(em(l,lo, A)) = (—1){rhrtElitlartita) (_ysitb=hihitla=i=Dele™ ) ) ) (2.40)

Thus the operator 7 that relates the bases €/4(I;, 13, \) and €/ "(ly, 11, A) is a representation
isomorphism :

7 (T @ T) (Ug(osp(1]2))) — (T2 @ T") (U1 (0sp(1]2))) - (2.41)

The operator R? in the representation T% ® T* will be denoted R¥(l;,l,) = R%(1,2). In
such a representation its action is

RY(1,2) v¥9(ly, 1p) RI(1,2)™" = 27 '(Iy, 1), (2.42)
RY(1,2) H®(1y,15) RY(1,2)"" = H®T (i}, 1y). (2.43)

Since R4(1,2) does not exchange the two spaces, in this case the action of the operator 7
does not coincide with the action of R(1,2).

D.1. Matrix elements of R?(1,2) in the tensor product basis

Using relations (2.15) one can show that, in the standard basis ! ();)®€/22(\), the operator
R4(1,2) has the following matrix form

-1\k
_ _l)k()\1+1)+—§-k(k-1) 1k(3k+1) %k(nl—ng)—f-(nl-{»-k)(ng—k)(]‘+q )
myma,ning ( q q (k]!

RY(1,2)]
(2.44)

1
3
) 5m1 N1 +k6m2 ne—k-

[l = n] [l + g + K] Iz + na]! [l2 — o + K!
([ll + nl}' {ll —n; — k]' [12 - TLQ]’ [lg + ng — k]l



For the simplest case when [} =y =1, R%(1,2)m,ms.nne Das the following form

g 0 0 0 0 0O O 0 O
01 0 a0 O0 0 00O
00 ¢ 0 b0 e 00
00 0 100 0 00O
RUL D] mmanm, =] 0 0 0 0 1 0 ¢ 00 |, (2.45)
00 0 00 1 0 40 '
00 0 0 0 0 gt 00
00 60 00 O0 0 10
00 0 00 0 0 0 g¢q
where
a=d=(-1)"(q—q!), c=b=g%a, e= (=DM (1 + ¢ Ya. (2.46)

When A, = 0, this matrix coincides with the corresponding matrix given in Ref. 8].

D.2. Matrix elements of R%(1,2) and R? '(1,2) in the reduced bases

Relations (2.42), (2.43) suggest that the vector e/ '(ly,l5, \) is proportional to the vector
R(1,2)€!4 (11,12, ). In the appendix we prove that indeed we have

R(1,2)el (I, la, \) = q3t0+D-tlitD=hlat)la™ 1 1 Ay, (2.47)

From this relation it follows that

1

[RY(1,2)]"' = RT'(1,2). (2.48)

Furthermore, formula (2.47) allows one to calculate the matrix elements of the operators
R(1,2) and Rq_l(l, 2) in the reduced bases €/4(ly, 13, ) and ef?fl(ll, l2, A). Let us introduce
the following notation:
R? (RZ™") is the matrix of the operator R(1,2) ( R¥7'(1,2)) in the basis e (ly, 1y, N),
R? (R? ) is the matrix of the operator R%(1,2) ( R?7'(1,2)) in the basis ™" (i1, Iy, \),
and let D? be a diagonal matrix of the form

(DY) — %(U(H—U_ll(ll+1)_12(12+1))6l,1’6m,m’- (2.49)

m'm! =
Using relation (2.47) and the orthogonality relations (2.20), (2.21) for sq-CGc, one can derive
the following matrix relations :

1

RI=79D¢ RO =D9 79, (2.50)

1

RI=D79 RS =79 'prt (2.51)



where 77 is the matrix given by the formula (2.29). In particular, for the first relation we
have

RY, = q%((l(l+1)—11(11+1)—l2(lz+1))(_1)(11+tz+z')(z'-m') (2.52)

m’im

x > (=1)mmmma) (1m A lamap AU N ) g (lima Ay, lymaAgfimA) -1

mima

i.e., the matrix elements of the operator R%(1,2) can be expressed in terms of sqg-CGe.
The values of the sq-CGc for arbitrary tensor product of irreducible representations can
be calculated from the analytical expression given in Ref.[2], [10], [11], therefore the matrix
elements of R(1,2) in any tensor product of irreducible representations can be deduced from
formula (2.52). For example, calculating the values of corresponding s¢-CGe for [; =y = 1,
we get from formula (2.52)

g %a 0 0 0 0 0 g 0 0
0 g% 0 0 0 g O 0 0
0 0 g 0 0 0 0 0 O
0 0 0 g% 0 0 0 —qd O
Ry 1m = 0 0 0 0 ¢ O 0 0 0 I, (2.53)
0 -q7'd 0 0 0 g O 0 0
-q % 0 0 0 0 0 g 0 O
0 0 0 ¢g'd 0 0 0 g O
0 0 0 0 0 O 0 0 ¢
where
3 _ 2 2
(S B S (il i Sk SR L it R
*—q+l ¢ +1 @+ 12 —q+1) g2 +1

From expressions (2.42), (2.43), (2.47), it follows that the operator RI(1,2) yields an iso-
morphism of two represntations

RI(1,2) : (T" ® T') (Uyosp(1]2)) — (T @ T?) (U1 (0sp(1[2)).  (2.55)

E. The operator RY

Finally, in the following we will use the operator R? that is a composition of the operators
T and R?
RT=r71o0oRI (2.56)

Properties of the operators 7 and R, in particular Yang-Baxter equation (2.12) satisfied by
R?, implies that R? satisfies the following relation

(R? ® id) (id ® RY) (R ®id) = (id ® R?) (R @ id) (id ® RY). (2.57)



Further, from relations (2.10), we get the relations

(R1®id) (id ® RY) = r(12,3)R"'?? = RI123, (2.58)
(id®R9) (R'®id) = 7(1,23) R = RALB (2.59)

where
7(12,3) = (r ®id)(id(®7),  7(1,23) = (id ® 7)(r ® id). (2.60)

In the tensor product T%* ® T'2 the operator R is represented by the operator
R(1,2) = T0o RY1,2)
and formulas (2.58), (2.59) take the form
(R(1,3) ®1d(2)) (id(1) ® RY(2,3)) = R"%3(12, 3), (2.61)

(2d(2) ® R(1,3)) (RU(1,2) ®14d(3)) = R¥™(1,23). (2.62)

Using relations (2.40), (2.47) we derive immediately the action of R?(1,2) on the reduced
basis

Rq(lyQ)C%UI;ZQ,/\) — (__1)(ll+lz+l+A1)(21+lz+l+Az)(_1)%(l1+12—1)(11+lz—l—1)

x qrlED=hlt =ttt la (g, g 8y (2.63)

and its action on the operators v3(l1, l,), H®?(11, ly) reads

RY(1,2) v¥(l, 1o) RI(1,2)7F = v9(ly, 1), (2.64)
R(1,2) H®(l, 1) RY(1,2)! = H® (I, I,), (2.65)

where
R(1,2)" = RT'(1,2) o 1. (2.66)

The operator R9(1,2) defines then an isomorphism of representations
RI(1,2) : (T4 ® T) (Uy(0sp(1|2)) — (T @ T*) (Uy(osp(1[2)).  (267)

The universal R-matrix is the appropriate tool for obtaining numerous relations between
Racah coeflicients and sg6-7 symbols. In the following section we shall first use it to derive
Racah sum rule for s¢6-;7 symbols.
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III. Racah sum rule for the sq — 65 symbols.

In order to derive Racah sum rule, we will consider the action of the operator R? on the
reduced bases of the tensor product of three irreducible representations of the same class
T @ T ® T'.The operators H,v. are represented in this tensor product by

v8(1,2,3) = (Th9T?eT9)((A®id)A(v)), (3.1)
H®(1,2,3) = (T"®T*xT")((A®id)A(H)). (3.2)

The reduction of the tensor product V1 (\) ® V2(\;) ® V’3(\3) of representation spaces can
be done, as in the classical case, in two different schemes :

T'Cc (T T2 ®T4), T'c (Th ® (T @ Th)). (3.3)

The bases €/4(ly, 123, A) and e/4(l5, 13, A) corresponding to these reduction schemes are or-
thogonal and normalized in the following way

(€ (la, 13, A) , erd(lhg, I3, A)) = (=1)p2al-misvnes 5, 6 Ougly, = Gugmitiymy,  (3.4)

(ei%(ll, l23, /\) s e,l'::]/(ll, ’23, A)) = (_1)<p1_23(l—m)+W1,23 5[[’ 5mm’ 5[23153 = g”23m,lll/23ml, s (35)
where
w13 = Pra3a=L+ A+ A+ @3 (mod 2), (3.6)

3
Y = (h+b+h)L+1)+ M +X+@)L+D AN+ 9 (mod2), (3.7)

i< i=1
3
Yros = (+l+bs)(L+1)+ M +A+@)L+ D XA+ 9 (mod2), (3.8)
i< i=1
with .
L=bh+b+l+l, A=) (M+L)+1 (3.9)

i=1

The sqRacah Coefficients U*(ly, ly, 3,1, l12, l23, ) of the quantum superalgebra U,(osp(1|2))
are defined, in the standard way, as the coefficients that relate reduced bases in two different
reduction schemes [2]

eﬁi(h?) l31 A) = Z(_l)(12+13+123)(£+1) Us(ll1 12> 13) la ll?a l237 Q) eigl(ll, l237 /\)7 (310)

la3

or equivalently

ef'g(lla l23) A) = Z(_1)(’11+12+112)(£+1)U8(ll1 l27 l3) Z) l12’ l23a Q)ei‘?x(ll% l3a )\) (311)

l12
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We have the following relation between sqRc and sg6-j symbols [2]

Us(li, 12,13, 1, lhg, las, q) = (_1)(/\2+1)(12+l+lzs+112)(_1)(11+12+13)U+1) (—1)halhtizst])

><(—1)“’3(“2*’3*”(—1)5(%2\/[2112+1H2123+1]{ st lu} |
q

I3 1 lo

(3.12)

Let us consider the matrix Wym im of the operator id(1) ® R9(3,2) in the bases e/4(l15, 3, \)

and elq(lm, 12, /\)

Wemt im = Gty 1y (€08 (L, I3, A) 9d(1) ® RI(3, 2)eld (Lua, Iy, A) )
Using relations (2.20),(3.10),(2.63), one obtains

1d(1) ® RI(3, 2) A, la, A)
— Z (_1>(l1+13+l12+123)(5+1)(_1)(12+13+123+z\2)(lz+l3+123+/\3)

12,123

X(__1)%(124-13—123)(12-%-13—123 1) _2{laa(laz+1)~la(la+1)~la(l3+1)]

q2
X Us(lla 131 l23 lv 1131 1231 Q) Us(lla 127 l37 la l12) 1231 Q) 6151([127 13: /\)

Therefore, the matrix Wy, ;m has the form

Wi im = Z(_ 1)(11+13+l12+123)(£+1) (_ 1)(12+13+123+r\2)(l2+13+123+z\3)

la3
x(_1)%(12+13_123)(12+13—123—1) q2[123(123+1) l2(la+1)~13(13+1))

XU (I, 13, 02,1, lz, b, q) US(Uy, b, U5, 8, 112, Lo3, @) 81t 16mt m-

It is diagonal and it does not depend on m.
On the other hand we have

id(1) ® RY3,2)el(lys, 1, A)

= ([R(1,2)]7 ®14d(3)) (RY(1,2) ®1d(3)) (id(1) ® RY(3,2)) e (lig, Iz, A),

(— ]_)(12+l13+l+/\2)(12+l13+l+/\13) (-1) L(la+liz—)(Ia+l13—1-1)

><q'zl'[l(H'1)—12(12+1)—113(113+1)]([’RQ(L 2)]—1 ® id(3)) 6%(12, L, /\),

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

where we have used relations (2.61), (2.63). Applying further relations (2.20), (3.10), (2.63),

we find that

([’Rq(l, 2)]‘1 ® id(3))e£‘fl(12, l13, /\) — Z(_l)(l1+l2+l12)(ﬁ+l)(_1)(11+l2+lu+f\1)(lx+lz+l1z+A2)

li2
X( 1) Ll +io— 112)(11+l2~l12‘-1)q—%[l12(l12+1) L(l+1)—la(la+1)]
xU*(lg, 11, 13,0, lia, 13, @) €9 (Lg, U5, A).
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Substitution of this relation into (3.16) and of the resulting formula into relation (3.13) yields
another expression for the matrix Wy im

VVl’m',lm — (_1)(12+123+[+A2)(12+113+l+/\13) (__1)(11+lg+112+/\1)(l1+l2+112+/\2) (_1)(ll+12+112)(£+1)

X(__1)%(l2+113—1)(12+113——l—~1) (_1)%(ll+l2—l12)(l1+12—112—1) q%[l(l+1)~lz(l2+1)——113(113+1)]

x g~ lhalharD)=h(hr )b+ 1) U(ly, 1, 13,1, lhg, lis, q) 1 16t m- (3.19)

Comparison of this expression with relation (3.15) furnishes Racah sum rule for U, (0sp(1|2))
Racah coefficients :

Z(_ 1)(l2+ls+l23)([—+1) (_ 1)(12+ls+l23+z\2)(12+13+123+>\3) (_ 1) %(lz+l3—123)(12+13—123—1)

l23
x g#tellaat D=lallar =lalat DI 1751y 4o 1y 1 1y, lys, q) U*(ly, Iy, Is, L, Lia, las, )

_ (__1)(1’2+l'23+l+z\2)(£+/\1+/\3) (_1)(11+lz+112+/\1)(11+12+112+/\2) (_1)%(!2+113—l)(12+113—l—1)
x (_1):i;(ll+lg—l12)(ll+12—-112—l) q%[l(l+1)+l1(11+1)—112(112+1)—113(l13+1)] Us(lg, l1’ 13’ l, 112, 1137 q)

(3.20)

Substituting in this expression relation (3.12) that relates sqRacah coefficients and sg6-;
symbols, we derive Racah sum rule satisfied by the latter :

Z(_ 1)(11+12+l13+l23)(5+1)+ﬁl (— 1)(12+la+l23)123+(l1+12+112)112+(l1+la+l13)113 (—1) £letl)

{23
X(_1)%(12+13—l23)(l2+13—123—1) (_1)-12-(11+l2—112)(11+l2—112—1) (_1)%(12+113—l)(12+113—l—1)

x qilla(laa+ Dtlia(liz+ 1) s (s +1)] [2123+1]{ 51 la b }5{ o I3 s }3
3

Ul J Nl Ul f,
= QAU DL+l 1)+l (la+1)] o I 1y 0 (3.21)
I 1 I3

Using the orthogonality relation for the sg6-; symbols

Z(_1)<11+zg+m)(c+1) 200 + 1] [2123+1]{ h llg b } { 51 l; l,12 }
3
q

13 123 23
l12

’
23’

one can rewrite the Racah sum rule (3.21) in the following form
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_1\8 ,~3les(les+1)+l1a(lia+1)+l13(l13+1)] b L ho ’ L I3 I3 ’
Z( 1)% g7z [2113'*'1]{1 I . ly 1 ,

™ 3 hs las
= g DL G+l 1) +la(te1)] Loly b ° (3.23)
I3 | Iy . k ‘

where the phase argument © is

1
0 = 5(52‘."13—123)“2'{-[3—[23—1)+ (l1+lg—112)(l1+l2—l12—1)

I I

1
+‘§(12 + 1z — l)(lz +ly3—1 - 1) + Eﬁ(ﬁ + 1) + L1+ (lg + I3+ 123)l23
+(l 4+l + lo)lg + (I + I3 + l13) 5. (3.24)
In the limit ¢ — 1 this formula becomes Racah sum rule for the 6-; symbols for the super-

algebra osp(1]2) and it takes the form given in Ref.[12].
If lj =0and l; = I3, I3 =, then Racah sum rule (3.23) leads to the summation formula

8
Z(_1)(11+13)(113+l'13)+l’13q~%[113(113+1)+l’13(l'13+1)] (2013 + 1 { l ;3 5/13 _ q_%[11(11+1)+13(13+1)]
T ll 3 i .
L3

(3.25)

IV. Biedenharn-Elliott identity for the quantum su-
peralgebra U,(osp(1]2))

The tensor product 7% @ T2 ® T® ® T% of four irreducible representations of the same
class can be reduced into irreducible representations according to one of the following five

reduction schemes :
(Th @ T?) @ T* ® T“,

(4.1)
T4 @ (T2 @ T?)] ® T, (4.2)
Th @ [(Th @ T®) @ T4, (4.3)
Th @ [T? ® (T ® T)], (4.4)
(Th @ T?) ® (T? @ T“) (4.5)

Biedenharn-Elliott identity is concerned with the relation between the schemes (4.1) and
(4.4). One can go from one to the other either by the chain

(4.1) — (4.2) — (4.3) — (4.4), (4.6)

or by the chain
(4.1) > (4.5) — (4.4). (4.7)
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each step involving sqRacah coefficients. Since the overall matrices that connect the two
reduction schemes, (4.1) and (4.4), must be independent of the chain, there must exist a
relation between combinations of products of three sqRacah coefficients for the firrst chain
and combinations of products of two sqRacah coefficients for the second chain. This is
precisely the Biedenharn-Elliott identity. Writing down the equality of corresponding matrix
elements, Biedenharn-Elliott identity for sgRacah coefficients reads

E (_ 1) (la+l3+lo3)(la+i3+lg+iazq+1) (_1)(11+12+l12)(l1+lz+ls+1123+1) (__1)(11+123+l123)(11+123+l4+l+1)

{23

Us(ly, la, 03, sy iz, Las, @) UP(h, las, s, 1, Lios, loaa, ) UP (U2, s, s, losg, Lo, l34, @)
- (_1)(11+l2+112)(lx+lz+134+l+1)(_1)(112+13+l123)(112+13+l4+1+1)

U(l12,13.1a, 1, Loz, Iaa, @) UP(ly, Lo, lsa, U, 112, l23a, @) (4.8)

For sq6-7 symbols it is rewritten as
bl e }S{ L log lioa }s{ b I3 g )’
—1)® [2lp3 + 1
Z( )7 (2 ]{13 hos g J oLl 0 losa f | la loss lsa [,

lis
112 13 l123 ’ ll l? 112 ’
- , 4.9
{54113441341523401 (4.9)

where the phase argument © is given by

1
e = 5 (Z 11) (Z l; — 1) + 123(1 -+ l12 + 134) + (l4 + 1234)(13 ++ 1123 + 134)

all all
+(13 + g + llgg)(l3 +lh+l+1l+ l34) + (ll + 1l + 112)(11 +la+ly+ e+ 1+ 1234)
+lo + g + 1+ l34 + 1193 + lyaa. (4.10)

Similarly as in the cases of su(2) and wug(su(2)) three-term recurrence relation for sg6-
J)symbols follows from the Biedenharn-Elliott identity (4.9). Putting ! = 1 into this identity
and using the known analytical expressions of the sg¢6-j symbols with one argument equal
to 1 (see the table in Ref.[3]) we derive a recurrence relation that can be written, after a
change in the notation,

b 3 3 8
A{gdfi1}+3{‘c’2;}+c{‘;zfil}=o, (4.11)

q q q

where
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A = ()RR +2(a+d+f+1a—d+ flla+d— f+1][—a+d+ f]
xb+c+ f+1)b—c+ flb+c— f+1][-b+c+ f)F, (4.12)

B = (=1)"*2f +1)(la—d+ flla+d - f]+ (=) [—a+d+ flla+d+ f +2)
x(b+c—fllb—c+ fl+ (=1 [—b+c+ flb+c+ f+2)
+(=1)¥2f)2f + 1)2F + 2(le +c— d]le — ¢ + d]

+(-1) e+ c+dlle+c+d+2), (4.13)
C = (=)™ 22flla+d+f+2a—d+f+1ja+d— fll~a+d+ f+1]
xb+ec+ f+2b—c+f+1b+c— fl-b+c+ f+1))3, (4.14)

and

U = (a+b+e)la+b+c+d)+(d+e+c)b+rd+e+ f)
+a+d+ flla+c+e+ f)+c+d. (4.15)
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Appendix

A Action of the universal R-matrix on the reduced
basis €X(ly, 1y, \)

In this appendix we prove the relation (2.47). For this, we recall that the vector /(1 [y, \)
can be expressed in the form (ref.[1])

1

(1, lg, ) = —————PH2(1,2) el(\) ® 2% (M), Al
(N(lma)) Iy 1 =, \12)y . ( )
where .
L+m]l my)? —m
FAr(1,2) = ([21[]!;'1-]r»~¢]!7 ' )> v, 1) PR (L, 2), (A2)
P®(1,2) = (T @ T')(A(PY)) Zcr N (wB(1,2)), (A.3)
=0

and P is the projection operator on the highest weight vector of weight . The coefficients

¢-(1) are of the form
20 +1]!

) = : :
() 2L+ r+1r)ly (A4)
The value of the normalisation factor N(I,m,q) is given by the formula
1 - i 20 + 1]124,]!
N l, ’ — A5 (h+Ha=)(li+l—1-1) [ ) A5
(hm.g) =g 4+l + 1+ +1+1]! (4.5)
From relations (2.42) and (A.2, A.3) it follows that
RY(1,2) P®(1,2) R"'(1,2) = P!9°®(1,2),
and one deduces successively the relations
RY(1,2) €4(ly,Ip,A) = (N(I,m,q))"% R(1,2) PF(1,2) R '(1,2)
x RY(1, 2) ' (A1) ® €29 (Aa), (A.6)
= (N(l,m,q))” 3 ght=h) Pfgz—l®(1a 2) llq(/\ ) ® e 5, (A2), (A7)
1
N(l,m,q71)\? I (1~1y) lg~1
—_ i [, 12, A). :
() ot e, (A8)
The norm ratio 2™ s caleulated from the definition (A.5 , and one gets finally the
N(l,m,q)
action of the universal R-matrix on the reduced basis e!4(l;, 15, A) :
Rl 1n) €9(1y, Iy, ) = gzl D-hlr Dbt} g™t g, 3y, (A.9)
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