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1 Introduction

1.1 Motivation

The present work continues our study

damped nonlinear Schrédinger equation

W+, +

Originally proposed as an amplitude
density-wave materials in the presence

bf stationary localized solutions of the AC-driven,

DIWPY = iy ¥ — he'T. (1)

equation for small-amplitude breathers in charge-
f an applied AC field [1], this equation reappeared

later in a variety of contexts. Among these are breathers in long Josephson junctions [2] and

ferromagnetic chains with an applied mi
[4, 5]. More recently, Eq.(1) was used t

crowave field {3], and solitons in the rf-driven plasma
describe temporal and spatial soliton propagation

in a single-mode fiber ring cavity in the

It was demonstrated by a simple sen
may bind together to form bound stat
made on the basis of the adiabatic equ
theory [9]. Subsequently, these bound sq
of the full time-dependent NLS equati

presence of an input forcing beam [6].

iphenomenological argument that solitons of Eq.(1)
es {7, 8]. Independently, a similar prediction was
htions of the Inverse Scattering-based perturbation
litons were observed in direct numerical simulations
on (1) [9, 8]. However, the above results are only

valid for small h and v, and either do

U _) exhibited by Eq.(1) or focus on th

collective coordinate approach to the so
drawback is that it is only applicable t
that our results presented below are no

not discriminate between the two solitons (¥, and
e stable soliton (¥_) only. The applicability of the
iton dynamics is not unquestionable either; its main
widely separated solitons. It is fitting to note here
always in agreement with the collective coordinate

predictions.

[t is the aim of the present work fo study bound states in more detail, and without
assuming the smallness of & and 7. Since for ¥ # 0 the system (1) is not conservative, it is
not obvious how one could define the binding energy. For this reason we avoid using the term
“hound state” and refer to these objects as “collective states”, “multisoliton complexes™ or

simply “multisoliton solutions”. By doi
multisoliton complexes are not necessa
bound states. We will study a variety
complex W(__)); ¥, with ¥ (denoted

This paper has grown out of our att
publication [10]. Those open problems
for large v (v > 1/2). Consequently,
strongly damped equations, ¥ > 1/2.
damping in future publications.

The paper is organized as follows.
preliminaries: in Sec.1.2 we give explici
in Sec.1.3 introduce the bifurcation me
is devoted to the bifurcation of the ¥_|
paper [10]. For the case of the weak da
as asymptotic series in the vicinity of t
asymptotic analysis serves to confirm

3§
he upper boundary of their domain of existence. The

ng this we are trying to emphasize the fact that the
rily stable, a property that would be imperative for
of soliton associations: W_ with ¥_ (we denote this
Yirnh Ot Yiay Yieomy, Yooy, Yo ete

empts to tie up several loose ends left in our previous
concerned the domain of existence of the W_ soliton

n the present article we concentrate on the case of
We are planning to return to the case of the weak

The next two subsections contain some technical
formulas for the background flat-locked solution and
asure that will be used throughout the paper. Sec.2
soliton, the problem carried over from the previous
ping, 7 < 1/2, we construct the ¥, and ¥_ solitons

the numerical conclusions of {10}, namely that the




W, solution merges with the flat background while the W_ goes over to a finite amplitude
solution decaying as a power law. Proceeding to the strong damping, v > 1/2, we report a
new phenomenon: instead of becoming a power-law decaying function, the W_ soliton turns
into a new branch of three-soliton solutions. This branch appears to be not unique: a host, of
other localized solutions is presented in Sec.4. Before that we describe a simple variational
formalism (Sec.3) which is then used to identify different localized solutions as two- and
three-soliton complexes. Our key result is the bifurcation diagram Fig.5 illustrating liuks
and relationships hetween all soliton complexes obtained so far.

1.2 Flat Background

As in [10] we fix, without loss of generality, @ = | and make the transformation W(r.1) =
el t), reducing Eq.(1) to an autonomous equation

W+ Yup — Y+ 200" = —iyy — b (2)

The advantage is that we will be able to deal with time-independent. solutions instead of
periodic ones. The time-independent solutions of Eq.(2) satisfy

Yaw — W 42

' = iy — b (3)

this is the equation that we are going to study in this paper. We first recall briefly some facts
about the flat-locked (or continuous- wave) solutions to Eq.(1), i.e. homogeneous solutions of
Eq.(3). Tt is convenient to decompose g as iy = /Poexp (0} : then

2

tanf = ——— 0 <0<y,
1 —2pp
and py is a root of the following cubic equation:
4pg —Apg + (1 +5%)po = h* = 0. (4)

Approximate [5, L1] and numerical [12] solutions of Eq.(4) are available for small A and
7. The analysis for general k and 5 is presented in our previous publication [10]. Although
we did not write out explicit formulas for the roots, we identified regions of characteristic
behaviour of the roots on the (h,+)-plane, and gave analytic expressions for boundaries
between these regions. In fact, explicit solutions can be casily found in reference books; we
list them here since they prove useful in calculations.

An explicit formula for the rocts is written in terms of coefficients of the associated
icomplete cubic equation,

v+ Py +Q=0,

where y = py — 1/3, and the coeflicients are given hy

and



The number of real (positive) roots varies with & and 4. Two characteristic regions of v can
be identified as follows.

First, when v < 1/v/3, the coefficieni, P is negative, and Eq.{(4) may have three or one
real positive root, depending on how h compares with h, and h_, where

hy = hy(®)
1/2
R IACET o ©

If £ 15 greater than hy or smaller than A_, the discriminant of Eq.(4),

o= {(5) (&)}

is negative and the equation has only one real root:

1 P\ 1

pO:—~2<—-——) 5

3 3 sin 2«

3 1/3 .

= — < —
tan o <tan 2) (|a| < 4) ,

2 ( P\ x

1 = e | — < —
sin 3 0 ( 3) (|/3| < 2) .

Here positive values of ¢, a and B correspond to b < h_ and
po < :]‘; - %m
Negative ), a and 3 pertain to & > hy and
po> 3+ 3T 37

If ¥ < 1/v/3 and h falls between h_ and h,, the discriminant (6) is positive and there

are three positive roots, 0 < p(ol) < p{f" < p(()s) :

1 P\'? a ¥
W _ 2 _of L =_Z
P =3 2( 3) cos(3 3),

where

and



where

Q/2
COSQ:_W 0<a<n).

It is not difficult to find the ranges of the above roots:

) S Q—
_ ]_:2<(])<_ .
3 3\[ 3 < py’ < p-(v);

p-(7) < P < pila);
1 1 —
pe(m) < < 3t g\/I— 392,
where

1 1 .
Pt(”Y):gigvl -3y . (7]

In the second region, when v > 1/4/3 , the cocfficient P is positive, discriminant negative
and we only have one real (positive) root:

1 p 12
po = 3~ 2 ?> cot 2a,

173 r
tan o = (tan -—) (|a| < Z> s

tan 3 = é (? " ('ﬂ] < g) .

This completes the description of the flat solutions of Eq.(3).

where

o

and

1.3 Bifurcation measure

In order to describe transformations and bifurcations of solutions to Eq.(3) quantitatively, we
need a real-vatued functional which would represent solutions as points in R, [n our previous
publication [10] we used the value

»(0)]? as a bifurcation measure. The disadvantage of this
measure is that it is very sensitive to numerically-induced shifts of the solution as a whole:
wie) — (e — xy). Also it completely disregards the variation of the soliton’s shape away
from the point 2 = 0 while it is the soliton’s “wings” that change most significantly as new
solitons attach to the multisoliton state. For these and some other reasons which will become
clear below, we find it useful to replace the single-point measure by an integral characteristic
of solutions.
Using Fq.(2) it is straightforward to verify the following relation:

dlz
dt

h —_ h, —
2y / {\u'}" - é(n" + ) = o)t + ;Z(T#/'o + 1/’0)} dz,

+ 27k =

£



\Vh(‘l'l‘

= ol = Bl 4+ )

Iz‘:/ {lwe]*

— |l + o]t 4 hlavg + ) } de. C)

When 4 = 0, the quantity £ 1s conserved and represents the encrgy of the svstem. lu
this case it is a natural candidate for the bifurcation measure. We have found it useful to
retain £ Eq(9) as a bifurcation measure even in the case v # 0, when it is not conserved.
Although the meaning of this quantity is not so obvious now, we will still be referring to I
as CHergy.

When o is a time-independent solntion, we have dE/dt = 0 and Eq.(3) gives a useful
representation for the energy of static solutions:

- / {lot = G+ ) = ol '+
+_’z‘(w[) + En)} dr. ()

2  Bifurcation of the i)_ soliton

We start with returning to a question remained unanswered in our previous publication [10].
Ihere, we attempted to find. numerically, the upper boundary of the domain of existence of

the ¢y and ¢ solitons.

2.1 Types of the asymptotic decay

In order to find the upper boundary, it is useful to consider first the asymptotic regiou.
|&1 = o, The solitons decay to the value ¥y exponentially:

g (@) — hy ~ CPERIEL a0,
where pok > 0 and the complex exponent & = —p + ik satisfies [10]
(88112 = 1 — 4]y £ Vol — 2% (i

Both (x4),, are negative for certain {i%}? and henece there can be no solitons with these

asymptotic values. In the region v > l/\/i this happens for [y > /2 in the region
2

172 < 5 < 173 both &% ave negative fur 4/2 < [yo]? < p_ and for [i])* > pyctinally, in the

region v < 1/2 this situation takes place for il? > py. Next, when l0]? Bies between p
and py (where p_ and py are as in Eq.(7)), one root (#2); is positive and the other one (57},
negative. There can, in principle, exist solutions with such asymptotic values. However,
none were found [10]. Furthermore, flat solitions with p_ < o] < py are unstahle [10).
and hence these solitons would be of little interest. even if existed.

“There are two ranges of |ig|* where solitons can exist. The lirst one is Ji* < 5/2 (for
all 4). Nere both (#2);2 are complex yielding nonzero p and k. The solitons undergo an
oscillatory decay to the flat background, with the decay rate

. 1 — 4|y . O = [PV F 72 — 4]
3 R

= (12)



and the wavenumber of undulations

oo VR A

2p (13)

For 4 < 1/2 there is also another range: 5 /2 < hol* < p_. Here both x? are positive, and
solituns approach their asymptotic values monotonically (A = 0), with the decay exponent

pr= 1= Al — Al < 42 (I
The inequality Jwpl? < /2 can be rewritten as i < h.(v) where
ha(h) = (37 =2 4 /2%, i1%)

and now we can summarise our conclusions in terms of h and 70 Forsmall 404 < 1720 1he
'y and o solitons can only exist for & < by They exhibit two types of asymptotic decay:
monotonic for h. < h < hy and oscillatory for A < h,. The corresponding decay rates are
given by Eqs.{14) and (12). respectively. On the contrary. in the region 5 > 1/2 the decay
is always oscillatory. Here there can be no localized solutions above the value f — fra. For
ho < h,, the decay exponent is given by Eq.(12) and the wavenumber of the asymptotic
undulations by Eq.(13).

2.2 Weak damping, v < 1/2

Now we are prepared to discuss soliton transformations in the vicinity of the upper boundary.
Assume 7 is sinaller than 172 and fixed. As h increases to the value hy, where by (v) is given
by Eq.(5), the decay exponent p, Eq.(14), goes to zero. The fate of the two solitons, ¥, and
o_ turns out to be different.

The amplitude of the 1, soliton was observed Lo decrease while its characteristic width
was increasing and eventually the 1, was scen 1o merge with the flat solution: Ple) = gy
as I T hy. On the contrary, the soliton ¥_ retained a finite amplitude and remained well
localised in this limit (though the decay exponent p did tend to zero). We were able Lo
obtain this solution in a very near vicinity of the point hy. (More precisely, we were able
to find the oo with the asymptotic value |¢]? deviating not more than by 1073 from the
curve p_{y). In terms of &, this means that the npper boundary is given by hy () to within
the accuracy of order 107°.) This implies that as & — k., the soliton yr_ transforms into
a localised solution decaying as a power of r. (There is a very subtle question of whether

the w'_ exists arbitrarily close to b, . i.e whether this power-law decaying solution is actually
n

n.)

These numerical observations can be substantiated by constructing the solitons ¢, and
v- as asymptotic series for h — hy. Letting ¥(z) = yo(x)[1 + §x(x)], substituting into
eq.(2) and keeping up to quadratic terms in éx = u + v, yields

a2 2
L( ‘ ) - ( ) + 20 ( o ) (16)
” Ver FAT?

L~ 62 N
L= ( — =22 ) (17)

reached. This point is discussed in section

where the matrix



Assume that h approaches hy from below; then we can define a small parameter ¢ by

[of* = p—(7) = . (18)
Using (13), the matrix L reads
VAR iy T, e (60
~¥ P4 5V/1-37 < \o 2

= Lo+ € L. (19)

1

For h close enough to h, (more precisely, for h between h, and A} the deviation 8y(z)
decays as ¢P1%!, with the positive exponent p being given by Eq.(14). As [¢0]* T p-, p tends

to zero. Using (18), one finds
Pt = 6y/1 — 347 2
21 =372 — 1

that is, p ~ ¢. Consequently, we expand the small deviation §x as

(s )= (i )+ () + 2

where 2z = ex. Substituting into eq.(16) and equating the coefficient at the power €? to zero

yields
Lo ( ‘;i ) =0, (21)

L]

or, equivalently,

vi(z) = pua(z), (22)
where
1—4/1—392
IL = ——.
v

Next, at the order ¢! we get

uz \ _ &2 Uy 3u? + v}
w(0) = G mm) () o CLLT) .

This system of two linear algebraic equations is only solvable if the right-hand side is or-
thogonal to the vector (u;, —v;) in the sense of the R?-scalar product. {The vector (u1, —v1)
is the zero-eigenvalue eigenvector of the conjugate matrix Lg.) This condition gives

u
(1= 1)z =28 = g +20-(3 —#*)ui =0, (24)

where we have made use of (19) and (22). Since, as one can easily check, p is smaller than
1, the quantity

2(1 - 4*) _ .2

EET



is positive and we have two solutions of eq.(24) :

3 1
“’T VRS TR
2p- cosh®(z/zq)
3 1
uy =

T2 sinh®(z/2)"
These give rise to two different perturbations &y :

: 2
2p-  cosh®(ex/zy)

3(1 +ip) €

5™ = :
X 2p_ sinh*(ex/z)

+O(e").

The function §x* is bounded for all x and so this perturbation of the flat background
yields a true nonlinear solution valid for all z. As ¢ — 0, this solution merges with the flat
background and therefore, is nothing but the soliton .

The function §x~ grows indefinitely as « — 0; hence this perturbation gives only an
asymptotic approximation of the solution, valid for large || >> z5. The asymptotic series
(20) does not have to converge for all z. For those sufficiently large « where it does converge,
the asymptotic solution #g(1 4+ x~) should be identified with the ¥_ soliton. Sending ¢ — 0
for a fixed z, one gets
30+ i) 2

2p_ z?
Thus, when A tends to the value Ay, the ¢_ soliton should approach a finite-amplitude
solution with a power-law decay.

oy~ — — + O().

2.3 5 =0: explicit solution

As an illustration to the asymptotic and numerical analysis we consider the case v = 0. In
this case we have a pair of explicit solutions [13]:

2sinh® &
Iy - — af 1 — — zr]
V(o) QU( + 1 + cosh e cosh A.L‘) (25
where o is defined by the magnitude of the driver:
5 2
V2 cosh? a (26)

P = e,
(1 4 2 cosh® )3/
aud g and A are given by
1
lf/}U == |
2(1 + 2 cosh® )

V2 sinh

A = 2ysivha =/1 — 61/13, e (-

V14 2cosh? o

o
.t}



Let now b — hy = 1/2/27 or, equivalently, o — 0. In agreement with the predictions of
the asviptotic analysis, the ¢, soliton goes over to the flat solution while the «_ becomes
a rational function:

po(r) = = — 28
l (I)ﬂ\/G‘z.rw:{ (28)

These transformations are reflected by the behaviour of the energy. Substituting {2.3)
into cq.( 10}, the energy of the solitons ¢4 is given by

S sinha + %sinllzn — Jcosh?a

[i‘*‘ = I;‘ Al = — ) _)(”
o] V2 (1 + 2 cosh® o)3/2 (25

hE sh?
B =B = bty LT (30}

V2 4 2 cosh?a)¥?’

S
3 = arccos ( >
cosh o

Asho= by (00— 0). the energy of the @y tends 1o the energy of the flat solution (i.e. to
Zer0):

‘.\'Il(‘l‘(‘

B = Clhy = 0P 4 O ((hy = 1Y) (31)

with (7 = (16/5)2V/%3%/% = 6.934. On the contrary, the energy ol the - soliton tends 10
a finite valie which indicates that the - does not flatten out but approaches a localized
solution with a power-law decay:

I

h¥s
T ave

—dn(hy - b)Y+ O ((hy — )Y (32)

2.4 Strong damping, 7 > 1/2

The situation in the region 5 > 1/2 turus out to be more complicated. In this region the
decay rvate is given by Eq.(12); as we mentioned in subsection 2.1, it goes to zero as b — b
and fygl® — y/2. Similarly to the case 5 < 1/2, the ¢y soliton was observed to merge with
the flat solution liere. (We were able to tind the ¢y arbitrarily close to the value h = 5.3,
I was natural to expect the ¢ soliton to behave shmilarly to the 4 < 1/2 case as welll As
we have already mentioned. in the region v < 1/2 we were able to find the i~ soliton with
the asymptotic value [iho]? deviating from the curve p_(7) not more than by 10-%. On (he
contrary, when v > 1/2, the upper boundary was found to digress quite substantially from
gl® = /2. 1t has remained unclear in Ref.{10] what causes this digression and what finally
happens to the - soliton as /i increases.

L order to clarify the situation, we have designed a sixth-order numerical algorithin
based on the continuous analog of Newton's method and performed an accurate study of the
neighbourhood of the point A = h,. {For references and a brief review of the method, sce
[10].) Results of this study are preseuted in Figs.i-3. This more accurale analvsis revealed
that the rcason why we were not able to approach the point b = k. close cnough in Ref {10},
was the existence of a new turning point. At this point the ¢ branch turns into a new
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Fig.1 The bifurcation diagram of the one-soliton solution for v = 0.52. At the point h =
h. = 0.360843 (where |¢po]* = v/2 = 0.26) the soliton 1, detaches from the flat solution
(whose energy is zero.) The point Ay, = 0.3318065 is a turning point; at this point the o,
soliton transforms into the _ solution. The i)_ soliton ceases to exist for A > 0.3607921 or,
speaking in terms of the asymptotic values, for |1o|2 > 0.2544168. The question of what happens
for i between h = 0.3607921 and A. := 0.360843, was left open in the previous publication [10}.

2.10 7
2.05 3

2.00 3

Fodhis T o 3ebye h" (7 *ARRARSEA =N

a b

Fig.2 Bifurcation to a three-soliton complex for v = 0.52. Two parts of this figure show
a small neighbourhood of the point h,. The lower curve is the last segment of the 1)_ branch
from Fig.1. The solution corresponding to the upper curve is plotted in Fig.3. The part b is an
enlarged portion of the part a next to the turning point.
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q 2 1.00 2
IReYi4—+) 3 Im‘\l’(+—-+)
3 ¥=0.52
080 3 h=0.3465

] r=0.52
0.10

] h=0.3465
-0.10
-0.30 ] X X

30 e ™ o % 0.00 Jprrerrrrrprrees iy AN 5 R

Fig.3 Localised solutions corresponding to the three branches of the bifurcation diagram in
Figs. 1 and 2. a,b) 1, the lowest branch; c,d) ¥_, the middle branch; ef) a new branch into
which the 1_ branch turns at the point h = 0.3607921. It is quite obvious from the comparison
of the three sets of pictures that the last solution is a combination of “psi-minus” and two
“psi-pluses” . (Below we call this complex d’%+_+).) In these pictures, v = 0.52 and h = 0.3465.
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branch of localised solutions, see Fig.3 Solutions of this branch are nonlinear superpositions
of three solitons: ¥_ soliton in the middle and two ¥, solitons at its sides.

A more extensive search revealed the existence of a larger variety of multisoliton com-
plexes. The corresponding energies are plotted in Fig.5 below (Sec.d.) Before proceeding
to the description of the resulting bifurcation diagram, we introduce a simple variational
formalism which will allow us to identify its various branches.

3 Collective coordinate description

We now present a simple semiphenomenological argument for the existence of soliton com-
plexes, which would also allow to estimate their separation distances. It is convenient to
consider three-soliton configurations first; the two-soliton state will be obtainable as 4 sim-
ple particular case. We set up a trial function in the form of a linear combination

Wi 2) = by + Py + iy ~ 2ady, (33)

where

wy o= (a R z), vy = gu(e), vy = o — 2)

are three different or identical solitons sitting at the points x = —z,0 and 4z, respectively.

Here 2 is a positive value that is allowed to depend on time: 2 = z{t). We have to use a
bit awkward notation 941 in order to distingnish the linear combination of three solitons
[rom the genuine three-soliton solution: our notation for the latter would be 124

The damped driven NLS equation (1) follows from the stationary action principle 08 = 0,
where

s:/wMLwJJm (31)

and the Lagrangian

L=1T-F (35}
comprises the kinetie N
I= % / (vt — i) da (36
and “potential” term
E:/{Mm+WV4Mhhw+ﬁf
- PO Jiat" -+ B +0y) b dor, (37)
Substitating the Auvsalz (33) mto Eqs.(35)-(37), we obtain for the kinetic term

T =Ty + T+ T+ Ty + o, (3%)

. i f '(/u"l = — \ .
SRR I A S S (393
Iy 5* / { i by =yl —c Jd

whetre

12



T

T 1y

and

with

a(z) = / {oy = wg) oy 4 ) — e} da (-12)

I the above formmlas, oy =0 v 4+ 23 ey = op{eh and vy = gl — 2)0 The terms 1Y,

and Ty vanish because oy () and oo ave even functions. and T4 = 0 bhecanse oy and oy

approach the same valne oy at the phis and minus infinity,
We now have

where £ o e gdn (e )] s the functional (37) evaluated at the linear combination (33},

Varving the action (31) yields

sy = M

oz i ’ dz

= 0. EE

Fa.013) s of the form of a coustraint: it deserihes only stationary solution=. We conld have
casily made it dyvnamical just by adding one more time-dependent variable (the canonically
conjrigate momentum), but since we are only interested in stationary configurations, Eq.r13)
is qutite suHicient tor our purposes.

I the theee-soliton case, we confine vursclves to synometrie configurations and assime
that o) == da{e). Inovhis case the Ansatz (33} deseribes two identival solitons ¢ (which
can be either two 1 's or two ¢_'s) placed at the distance 2z from one another. and an
additional soliton vy, sitting symmetrically in between. The intermediate soliton can he of

the same variety as the two side ones (5

e gy) or of the diferent kind (g o4y

=

Notice that the function
I A AT e D I AT VR |

is even and so the term Ty + oy does nol necessarily have to he equal to zero.

The two-soliton case arises i we eliminate the middle soliton by letting o, () = g then
the quantity @ vanishes. In this case we do not need to assiune that v(0) = cg(e0): o and
iy can stand for any combination of &, and - solitons. The Euler-Lagrange equation (133)
reduces simply to

dr
d=

This is almost the same variational principle as the one emploved in {7, 8] (sec also [1H
The only difference is thal we are using the total energy (37) while the anthors of [7. 5]

0. -t

13



U st 0.17

06e6

~ T ——c
\\/ ,
-0.3e-3

Fig.4 The energy of the two-soliton linear combination ¥_v_ = P{x +z)+ ¢_(x —

Z)—tq, as a function of the intersoliton separation, 2z. The energies of the other two-soliton
linear combinations, 1,10y and v'_v,, as well as of four symmetric three-soliton superpositions
(vruy vy ooy vy and y_v, o_) look qualitatively similar.
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Fig.5 The bifurcation diagram featuring single-soliton, two-soliton and symmetric three-
soliton solutions. 1. Notice that the branch 1,[)(3_+), departing from the triple turning point as a
solid line, becomes dashed as it continues to the right. This is meant to indicate that we had
to relax the residual of the numerical scheme as we advanced in the direction of larger k.. We
were unable to compute the solution at the dashed section with the residual § less than ~ 1078
~-107%. 2. The branch ¢(2+_+) (solid curve into which the branch 1_ turns near the value b = h.)
terminates at A & 0.3465; we were unable to advance it further to the left. This solid curve
partially conceals the branch 1/)?+_+) (second dashed curve from the bottom). The latter starts
at about the same point as the curve ¢(2+_+) but extends all way to the quartic turning point
where it turns into the 1/)(3_+_). For those h where the complex ¢;"+_+) exists, the energies of the
two orbits, 1/)(2+_+) and 1/)?+_+), are graphically indistinguishible.
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utilised only the interaction term [ {¢]*dr. For small h and ~ this difference is unessential.
but for larger values of these parameters there can be quantitative deviations.

For small h and v the solitons can be approximated by explicit formulas. In this case.
assiming a wide separation between the two solitons the integral (37) can be o
analytically {7, 8] and the equation (44} has a sequence of roots

aluated

two-soliton orbits™), =
(‘)n— 1), n=1,2.3 .. {(15)

where k& 1s the soliton’s asymptotic wavenumber:

P(a) = thy ~ TTERRE 5 | — oo.

The above expression applies uniformly to all three two-soliton lincar combinations (4

o
o and Yo

fy) Although ¢q.(45) was derived for small h and ~ only, the general at
gument behind this result is more gseneral. [t simply states that when two solitons arc
widely separated, the first soliton is anly affected by the fail of the second one, and sinee the
tails have undulations, the potential of interaction exhibits alternating minima and maxima
[7. 8]. Consequently, eq.(45) with k defined by Lq.(12)-(13) can be used as an estimate for
the two-soliton orbits for not only very small A and ~.

4 Multisoliton bifurcation diagram

Using the numerically precomputed solitons ¥»_ and ¢, we have evaluated the effective
potential of interaction Uy = E + v for all three two-soliton and all four syinmetric three
soliton combinations. The potential is shown, as a function of the inter-soliton separation
=, in Figd. This particular fignre corresponds to the ¢r_v_ linear combination: however, for
all other two and three-soliton combinaiions the potential looks qualitatively similar. The
potential of the solitou-seliton interaction is attractive at short distances, and then intervals
of attraction and repulsion alternate. As in the previous section, the consecntive points of
extrema are denoted by z,: 2 is a maximuni, z; a minimam and so on. A reservation that
we have to make here is that it is only lor sufficiently large mtersoliton separatious that the
cnergy Ueg of the above linear combinations yields the true potential of the soliton-soliton
imteraction.

The positions of the first three extrema obtained o this way, are given in Table | (second
column}. In the first column of this table we give the genuine values of the inter-soliton
separation, i.e. the separations exhibited by the numerical solutions of Eq.(3). (Notice that
in the two-soliton case, the separation distance hetween the solitons is 2z not z.) Finally,
the third column contains the separation distances as obtained by the approximate forinula

{45).

4.1 Two-soliton complexes

Numerically we were able to find five different two-soliton complexes: four synunetric and
one asymmetric.  First of all, as depicted in Fig.5, two distinet two-1o, soliton solutions
detach from the flat solution at A = A These two complexes are only different in their
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intersoliton separation distances (Fig.6). For the driver's strength £ = 0.35 (which will be
used as a veference value throughout the paper). the corresponding separations are 2z, = 7.60
and 2z = 28.00. By comparing to the predictions of the variational analysis (which gives
22y =795, 22 = 18.20 and 2z = 28.45, see Table 1) one of these solutions can be identificd
with the lirst orbit (we denote it lf'('++:) and the other with the fthird. to be denoted L'LH.
Surprisingly. we were not able to find. numerically. the

(Henee the notation. z; and 2.
two-r°_ soliton complex with the solitons sitting at the second orbit.

Both numerically found two-4, soliton solutions are plotted in Fig.6. For the sake of
comparizon, we plot the lincar combination wy(e + 2} + vy (e — )= for = = o and =y
in the same picture. In plotting these lincar combinations we take oy and =4 to he equal
to their vumerically observed values. and not the maxima of the corresponding two-soliton
imteraction potential,

As the driving streugtl, A, is decreased down 1o Ay = 0.3318065 (which coinecides with
the threshold value for the one-soliton solution), the U':(3++) complex tarns into the solution

-y For our reference value of A, A 0.35. the observed
intersoiiton separation is 225 & 26.20 while the variational method gives 2, = 23.6(.

LIy =

which can be interpreted as ¢

The threshold driving strength for the lowest orbit, i,r'(l++). lies signiticanthy higher: b, =
1336837, Stunilarly to the higher orlit, the solution 1;'('H) transforms into the complex
1,"('7 oy For o= 0.35, the variationallv-predicted and numerically observed separations for
this solation. are, respeciively, 2z = 4.85 and 22, & 5.60.

Both “double-g .7 complexes are shown in Fig.7. On the same picture we plut the
corresponding Hnear combinations v for exactly the same values of the separation.

Finally, we also obtained the asyinmetric two-soliton solution. gy This complex
“lives™ at the thivd orbit and detaches from the corresponding L";‘,ﬁ) and ) _y solutions at
their merging point, o = hge = 03318065, At the reference point h = 0.3

. the complex
[ has the orbital distance 225 22 25075 whereas the potential of interaction has its third
(-+) 3 I

maxinum at 2z, = 15. This solution is presented in Fig.8. The lincar superposition
v s also shown Tor the sake of compatison.

Here we should mention a compntational problem encountered in obtaining this aevm-
metvie sobation. For small i close (o the turning point we were able to compitte it with the
residual & ~ 10750 However, as we moved in vhe direction of greater o, the couvergence of
o numerical algorithin deteriorated and we had (o relax the residual. o particvlar, the
portion of the asynunctric braneh plotted by the dashed line in i
the residual & ~ 107% 107%, The separation value
with the residnal 8 = 0.5 < 10°%.

was computed with

= 28,075 in Table 1. was obtatned

We also have to mention here tha' we were not able to find the asymmetric solntion
lHving o the first {or second) orhit.

4.2  Three-soliton complexes

We now proceed to three-soliton associetions. Two distinet “three- .7 solutions detach from
the flat backgronnd at the point b = b, {see Fig.5). The birst solation has = = 7,15, and.
comparing to the first maxinmnn of the potential fgg (which les w2 = 79251 we identily
itwith the dirstorbit. Fhe other soluton has = & 280 whereas the thivd extrermm of 1,

isat oy 28250 Consequently, this sohition can be interpreted as the third wmibir,
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Fig.6 The v, ) solutions (solid line). a,b: the first orbit, ¥/, ; c,d: the third orbit, Vg

For comparison, we also show the linear superposition 1, ¢, for the same value of the separation
(dashed line). (On c,d the dashed and solid line are undistinguishable).
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Fig.7 The ¢__) complexes. a,b: the first orbit, ‘Z’E--)? c,d: the third orbit, 1[;?__). For
comparison, we also show the linear superposition 1 _1.. for the same value of the separation
(dashed line).
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Fig.8 The 1/)?_+ solution. On the same picture we tried to plot the linear combination ¢_1p,
for the same value of the separation, but the two curves appear to be graphically indistinguishable.
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Fig.9 a,b: The 1/:(1+++) complex; c,d: the 1/)"(3+++)

the linear superposition v, ¢, 1, for the same values of the separation (dashed line).

solution. For comparison, we aiso show
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Decreasing b from 7 = h, to the threshold value by, = 0.3318065. the third orbit goes
over to the '9‘:54,,) solution {the uppermost curve in the bifurcation diagram Fig.5). At
f=0.35 the separation distance between the central and the side solitous. is 24 &~ 26.175.
which is in a reasonable agreement with the third extremum of Usg: z3 = 25.575. Fig. 10
displays this solution as well as another 1 ___, complex, to be described further on.

At the turning point Ay, = 0.3318065 two more three-soliton branches are tangent to the
4;';’7_ - r:*k‘+++) curve. One of these is the l;/".(’+;+. complex which has = 25.05. The fact
(}+—+
the variational estimate which gives z3 = 27.50 for the corresponding linear combination.

that this solution can be identified with the complex 1 ) follows from the comparison with
and froni the graphical comparison of the two conligurations, Fig.11.

We have already encountered a collective state of the soliton #1_ and two solitons vy in
sec.2isee Figd el However solitous constituting that complex had the separation distance
r & LLSO which is close to the second extremum of the corresponding interaction potential.,

=17 Consequently, the multisoliton solution discussed in Sec.2 should be identificd
as the Y complex (e the St‘(‘(?n(l ()]‘I).It). . . A
For those b where the second orbit was found. its energy is practically equal to the energy

3
(+=+)°
1Mg.5.) However the two orbits are different in their respective domains of existence: we

of the corresponding third orbit, 4 (For this reason the two curves merge into one in
were unable to continue the brauch 11"{+_+] to the left of the value h ~ 0.3465 whercas the
complex "";‘k-»ﬂ exists all way to the the turning point Ay, = 0.3318065 (see Fig.5).

At ihe tirning point by, the 1;"(’*7#) solution l"ral.]sf()rms i.nto Ill(‘AL‘-?i+7) T
2y 2 28,75, with the variational estimate giving = = 27.50. The

complex. The

latter collective state has
corresponding profiles are plotted in Fig.12.

The above four three-soliton collective states “live™ at the third orbit. We have also
found the corresponding first-orbit. complexes, 1/‘8+++), 1,’\(1777). u"'+7+). and 1.""+7). The
'-"(lA,,,) branch (see Fig.10 a.b) is the second branch from the top in Fig.h. The numerically
vbserved solution has the separation = = 5.95 while the variational estimate is =, = 1.70.
At b = 00339644 it turns into the 1;'(‘
separalion s

gy Solution. plotted in Fig. 12 ab. The observed

2z 8.80 while the variational estimate 1s 2, = 7.15.

2
The L’*C++H branch (see Fig.9 a,b) detaches from the flat solution: it has 7, & 7.15. with
the variational estimate being =, = 7.92%. At the point £}, = 0.341612 it turus into another
three-soliton first-orbit complex which deserves a special connment.
The solution in question has a shape similar to an ice-cream cone (fig. 13.) 1t ix not quite

1

obvions whether this solution should be identified with the ! or '1,"'(‘“») complexes.

(+-+)

[ order to make the accurate identification, we compare the numerically found “ice-cream

cone” solution with the linear combinations v g yry (Fig 13 ab) and w_w_o_ (Fig 13 c.d).

Graphically, the v vy, scems to provide a better approximation. This indicates that the
1 ¥, +Y + I

“lee-cream cone” should be ideutified with the o

01 . e e L Toatt . \
bty complex. z\nutAh( rindication comes
-orbit complexes. Since the v_ soliton is
1 1 -
(+++ -t
/L'L#_ )< l'f"Ah,). This relation between the energies of the numerically obtained first orbits
is achicved ouly il the “ice-cream cone™ 1s identified with the s

from the relation between the energies of the fir

“more energetic” than ¥y, it is natural to expect the energies to relate as |/ <

N
iy
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5 Concluding remarks and open problems

U A striking feature of the bifurcation diagram Fig.h is almost the total absence of second-
arbit complexes predicted by the variational approach. For example. the potential of inter-
action of two ¢_ solitons has two maxima. at 2z; = L85 and 223 = 25.60. respectively. and
a minimum in between, at 2z, = 15.35 {see Table 1). However. despite all our attempts.
we did not succeed in obtaining the complex L"(z - by means of our Newtonian iterative
algorithim. A shimilar situation occurred for most of the second-orbit complexes: the ouly
exeeption was the z/v(‘)+7+) solution.

A natural question is, therefore, whether these second orbits are really suppressed by
some exclusion principle or is this stimply a consequence of a deficiency of our numerical
scheme. In order to check on this, direct numerical simudations of the full time-dependent
NLS (2) were carried out, with the initial condition in the form of two v solitons at the
distance of approximately 225 (rom each other. The formation of the stable bound state
I.'(z___' was indeed observed in these simulations [15]. (It is worth noting here that the L‘('Li)
complex had also been observed for stronger dampings, 4 = 0.6. See [8].) Thus we still
need to understand what prevents this and other second-orbit complexes from the mumnerical
detection within the stationary NLS equation (3).

2. 1t is interesting to compare the soliton separations as predicted by the perturbative
formula (45) with positions of the extrema of the potential Uy obtained by the calculation

of the energy ol two- and three-soliton linear combinations, and with the actnal separations

of solitons 1 the numertcally found multisoliton complexes. (That is. to compare the third.
second and fivst columus in Tables I and 2.) As it could have been expected, the percentage
error in the approximate results decreases as one proceeds from lower to higher orbits and
the lincar combination approximation Hecomes more adequate.

There is a very good agreement between the perturbative values (15) and positions of

extremaof Ly for complexes made up of yr_ solitons only (#-_y and v __)). The agreement
ix worse for complexes involving solitens .. For example, the perturbative value for the
third orbit is An/(2k) = 25.601 while the Tull variational results {or the (,f o "'(‘+,+,

and l*'f+++) complexes are 25.575, 27.50 and 28.425, respectively. The deterioration of the
agreement for complexes involving ¥, 1s due to a weaker localization of the v solitons in
the neighbouwrhood of the point h = A,.

Finally, we need to mention that for the complexes of the vo_ solitons sitting on the tirst
orbits (i and zﬁ(tf‘)), the perturbative formula (45) gives a somewhat more acenrate
result, than the full variational approach. (See Tables T and 2.) The nature of this phe-
nomenon has remaiued unclear. One possible explanation could be that the relation (15)
between the asymptotic wavenumber and separation distance is deeper than the explicit
perturbative expression for the soliton which was used in its derivation.

3. We mentioned several other computational problems that we faced and that are still
awaiting their resolution. These include the continuation of the asymmetric L'?,H solution
in the direction of higher £ and the continnation of the y’v'(i‘“ branch towards smaller h.

4. With a single exception of the 1"/':(3~+) complex, we did not discuss asymmetric (wo and
three-soliton collective states. We expect asymnietric branches to detach from symmetrie
complexes at all five turning points. For example, the l/‘['_++) and 1,‘";’77“ brauches should
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Table |

F 2z | 2z | wf2k | 2z | 2z | 3772k 2z, 2z, | 5 /2k |
| num. ; var. nuin. var. numni. var.
Lirgeay || 760 [7.95 1 5.120 1820 | 15.361 | 28.00 | 28.45 | 25.601
1“(,_, 5.60 [ 485 [5.120 - 11535 1 15361 || 26,200 | 25.60 | 25.601
S - 1790 15020 [ - [1720 [ 15361 | 28.0757 | 27.45 | 25.601
Table 2
2y N n/2k 3 z 3n/2k 2 4 A2k
nuarmn. var. num. var. numnt. var.
Cipgsy | 745 | 7.925 [ 5.120 - IX.075 | 15.361 || 28.007 | 28.425 | 25.601
Vieey I 5.95 1470 |5.120 - 15.325 [ 15.361 || 26.175 | 25.575 | 25.601
vigog) 0502 16925 [ 5120 || 14.807] 17.275 | 15.361 || 25.05 | 27.50 | 95.601
|4 | 880 1715 [5.120 - 17.275 [ 15361 || 2875 | 27.50 | 25.601

Table 1 and 2. The intersoliton separations for the two- and three-soliton collective states.
In each of the three cases, 21, =, and z, the first column is the separation distance for the numer-
ically obtained solution and the second column is its variational approximation. For comparison
we also produce the corresponding prediction of the perturbative formula (45) with k given by
Eq.(13). In both tables h = .35; all calculations were done on the interval (=100, 100) using
a sixth-order iterative algorithm with the step Az = 0.025 and residual value & ~ 105, The
exception is *) where the residual was § = 0.5 x 10~%,
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cmerge from the quartic turning point. where t.’v:(‘+++), i/"‘(]+_+j. l,"fw+_.. and u'?_ - solutions
meet,

5. The bilnrcation diagram Fig.5 is incomplete without understanding of how all mul-
tisoliton hranches are connected. We have demonstrated, numerically, that the ¢ _ solution
coutinues as the 1/'3*_“ complex. It is natural to expect more mergers between various pairs
(or gronps) of branches in a neighhonrhood of the point h = h.. We speculate that the pro-
cess ol proliferation of soliton complexes always occurs via the “addition™ of low-encrgetic.
small-aniplitude v solitons in the vicinity of A.. Details of this transformation are still 1o
he ('l;il'i{i(‘(].

fi. When compiling the existence chert for the ac-driven damped NLS equation. we have
identified twa characteristic regions of ¥ values, 5 < 1/2 and 4 > 172 [10]. In the latter region
(which the present paper was devoted to), solitons have oscillatory tails and this gives rise
to an oscillatory potential of interaction, whose extrema correspond to stationary collective
states. As we have already mentioned. the proliferation of maltisoliton states occurs via
the attachment of low-energetic, small-amplitude vy solitons near the value of # where the
ey soliton merges with the flat solution. (This point corresponds to the upper boundary
of the domain of existence of the ) In the former region. neither vy nor - solitons
have oscillatory tails in the viciity of the merger point  vet multisoliton complexes were
observed in computer simuations for 4 < 172 [9]. It would therefore be interesting to lind
out what s the mechanism of their proliferation in that region.

7. Another open guestion is the multisoliton states” stability and lifetime. The variational
Lwo-particle approximation yiclds a sequence of equilibrinm soliton separations, the lirst one
corresponding to a maximum in their interaction potential g, second to a minimum, and
so on. Consequently, one could expeet that at least for small dampings. the tirst and third
orbits will bewustable while the second one will have a finite lifetime due to dissipative Tosses
[8]. Nowever, direct numerical simulations do not always support this intuitively appealing
idea. A suitable counterexample comes from the work of Wabnitz [9] who examined the case
of 4 = 0360 and /o= 0.231 [n this case the soliton’s asymptotic value is Juo]* = 0.061.
the asyinptotic wavenumber & = 0,190 and the perturbative results (15) for the lirst two
extrema of Ugr (the maximum and minimum, respectively), are 227 = 8.26 and 2z, = 21.75.
On the other haud, the simulations of Rell[9] vevealed a stable stationary soliton doablet
with the separation distance 22 & & Coutrary to what one could have expected from the fact
that this boumd state is stable, it obvionsly corresponds to the marinrun of the imteraction
it should be identified with the ’/"(I,,,] camplex.)

8. The fact that some of the maltisoliton states may prove to he unstable. does not mean

potential {1

they wonld play no role in the soliton dynamics. Numerical sinmilations indicate that some
temporally-prriodie solitons have a spatial structure similar to the fivst-orbit two and three
soliton complexes 116, 17} and so the sol ton collective states may happen 1o provide a hetter
starting point for the perturbative or variational constraction of time-dependent solutions,
Another reason to keep an eve on the unstable states comes from the fact that they will e
visited by chaotic attractors. Multihun p structures were indeed observed in sinmilations of
chaotic vegimes in the damped driven sine-Gordon and NLS equations {11, 16, 17}
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their support and assistance with rescarch resaurces. Special thanks are 1o No Alexeeva who

27



plotted Fig.4 for us. This research was supported by the FRD of South Africa. the University
Research Council of the University of Ctape Town. The work of the second author was also
supported in part by the Russian Foundation for Basic Research (Grant #97-01-01040).

References

il

2]

9

[10]
(11]

D.J. Kaup and AL (. Newell,| Phys. Rev. B18 (1478), 5162

J.C. Eilbeck, P.S. Lomdahl, aid A.C. Newell. Phys. Lett. A 87,1 (1981): .S, Lomdahl
and M.R. Samuelson, Phys. Rev. A 34. 664 (1986);

G. Wysin and A.R. Bishop, Journ. Magnetism and Magnetic Materials 54-57. 1132
(19%6)

K. Nozaki and N. Bekki, Phys. Rev. Lett. 50 (1983), 1226; Phys. Leti. 102A (1981},
383: . Phys. Soc. Jpn. 54 (1985), 2363

K. Nozaki and N. Bekki, Physica D 21, 381 (1986)

L.A. Lugiato aud R. Lefever, Phys. Rev.Lett. 58, 2209 (1987); M. Haelterman, S. Trillo,
and 5. Wabnitz, Opt.Lett. 17, 745 (1992); Opt. Commun. 91, 401 (1992).

B. A. Malomed, Phys. Rev. Ad4 (1991), 6954; Phys.Rev. E 47, 2874 (1993)

. Cai, A, R. Bishop, N. Grenhech-Jensen, B. A. Malomed, Phys.Rev. £ 49, 1677
(1994)

S.Wabnitz, Opt.Lett. 18, 601 (1993)
[.V. Barashenkov, and Yu.S. Smirnov, Phys.Rev. E 54, 5707 (1996)

AL R. Bishop, M. G Forest, D. W. McLaughlin, and E. A. Overman, Physica [) 23,
293 (1986)

G. Terrones, D.W. McLaughlin, E.A. Overman, A.J. Pearlstein, STAM J. Appl. Math.
50, 791 (1990)

1.V, Barashenkov, M.M.Bogdan, and 1. Zhanlav. In Nonlinear World: IV International
Workshop on Nonlinear and Turbuleni Processes in Physics. Kicv, 9-22 October 1989.
V.G Bar’yakhtar et.al., eds. World Sci., Singapore (1990), p.3

V.1, Karpman and S.5. .‘3‘0[0\"&@7 Physica D) 3, 487 (1981}

N.V. Alexeeva, L.V, Barashenkov, and Yu.S. Smirnov, submitted for publication along
with the present paper.

K. tL Spatschek, H. Pietsch, E; W. Laedke and Th. Eickermann. In: Singular Behaviour
and Nonlinear Dynamiecs. T. Bountis and St. Puevimatikos, eds. World Sci., Singapore
(1989)

| M. Bondila, 1.V. Barashenkov'and M.M. Bogdan, Physica D 87, (1995), 314.

Receiveh by Publishing Department
" on April 2, 1997.

28



)

bapawerkos U.B., Cmupuos 10.C. ES5-97-111
KonnekTHBHBIE COCTOAHUS CONUTOHOB HEIMHEHHOIO YpaBHEHMA
IIpeanHrepa ¢ BHELIHe# HAKAYKOH K OMCCHMALMEH

Hsyyenn GudypkauMi AOKaMM30BaHHBIX CTaUMOHADHLIX PELICHMI HETHHEHHOIO
ypasuenns LlpennHrepa ¢ BHeWIHeH HAKAYKOW W AMCCHNALHE

Y HY +2|¥ P =iy R D
XX

8 obnactu Gonbunx Y (Y>1/2). das kaxaoit nmapel A K Y UMEIOTCA JABAa COBMECTHO
cywectBywumx coautona ¥y u - W.. C yBesnuueHHEM MOLIHOCTH Haxkauku A
1py (PUKCHPOBAHHOM 3HAYEHHH NapameTpa Y cONHTOH P+ cnuBaetcs ¢ nockum (oHo-
BbiM peilleHHeM, a ‘Y- ofpa3yeT cTauuoHapHOE KOMNEKTHBHOE COCTOSHHE C ABYMS
«ncu-nmocamu»: Wo — Wi _ 4. Takxe nonydeHs! ApyrHe CTalUMOHApHblE pememm,
M OHM HIEHTH(PHUHPOBAHBI KaK MYNBTHCOTHTOHHBIE KOMIUIEKCH Wi+ +), Y- o), W(- +),
Y(- - -3, ¥(- + - n T.0. CoOTBETCTBYIOLINE PACCTOAHHS MEXKIY COTUTOHAMM CPABHHBAIOTCS
¢ PAaCCTOAHHAMM, [OJIYYEHHBIMH NIPH UCTIONBIOBAHHH BapPHALIMOHHOHN aniPOKCHMALIHH,

PaGora BbinonHena B J1aGopaTopuu BHIMMC/IMTENbHOM TEXHHKH H aBTOMATH3ALIMH
OMSIN.

TpenpuaT O6BeIMHEHHOTO HHCTHTYTA SAEPHBIX HCCTcnoBanuit. Jybua, 1997

Barashenkov L.V., Smirnov Yu.S. ES5-97-111
Collective States of Externally Driven, Damped Nonlinear Schridinger
Solitons

We study blfurcatlons of localized stationary solitons of the extemally driven,
damped nonlmear Schrodinger equation

iV Y +2|¥E =iy —ne

in the region of large v (y> 1/2) For each palr of h and v, there are two coexisting
solitons, W+ and ¥-. As the driver’s strength h increases for the fixed y, the W soliton
merges with the flat background while the ¥ forms a stationary collective state with two
«psi-pluses»: ¥- — W+ - +). We obtain other stationary solutions and identify them
as multisoliton complexex ¥+ +), W o), ¥ (- +), ¥(~--), (- + - etc. The corresponding
intersoliton separations are compared to predictions ‘of a variational approximation.

The investigation has been performed at the Laboratory of Computmg Techniques
and Automation, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1997 )
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