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Our aim is to prove the following. Let i'* = .51959... denote the smallest positive
solution of 7 — K™ — tan _112_ = 0.

Theorem A. Let © be a surface with a complete C? Riemannian metric and
Gaussian curvature I\, and py € ¥2. Let R > 0. Suppose

(0.0) Iy = / |N|dA < ",
JB(pg,3H/2)

and that any simple loop of length < 3R based at py bounds a topological disc D C ¥
with

(0.1) / LKdA <.
D

Then there are constants ¢(I\y),C(L\y) > 0, depending only on Ky, and a home-
omorphism ® from the euclidean disc Dy := {x? + y* < R?} onto the metric ball
B(py,R) C ¥ such that

(0.2) A Ky)€ = n| < d(2(€), B(1)) < C(Ky)[E —n|

for all &, € Dp.
This yields a proof of the celebrated theorem of Toro:

Corollary B (Toro’s theorem). If U is @ domain in R? and f € W*2(U) then
the graph of f is a Lipschitz submanifold of R®.

Proof of corollary. Approximate f in W22 by a sequence f; of C* functions. Then
for every point wy € U there is a radius R > 0 such that

/ | det D2 £,| < K* /2.
Jito=sol<anyz)

It follows at once that the absolute curvature integral of the graph I'; of each f; sat-

isfies the bound (0.0) in the 3R/2 ball around p} = (xg, fi(zo)), and consequently
the bound (0.1) holds as well. Consider the sequence ®,,0 = 1,2, ... of biLipschitz
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coordinates for these graphs constructed by the Theorem. Since the intrinsic dis-
tance on I'; dominates the euclidean distance, as maps into R* this sequence is
uniformly Lipschitz. On the other hand. by results of Semmes [Se 1,2,3] (cf. also
[MS], 5.1.5, for a short simple proof, and [T1], 3.2), the euclidean distance also
dominates some positive multiple of the intrinsic distance, uniformly in ¢. In other
words, in the inequalities (0.2) for the sequence ®; the intrinsic distance d may be
replaced by the euclidean distance (if we change the constant ¢). By Arzela-Ascoli
there is a convergent subsequence ®; — ®g; by the uniformity of the biLipschitz
bounds for the ®;, this ®y is a biLipschitz parametrization of a neighborhood of
(z, f(z)) in the graph of f, O.

Of course, a very differcut proof of Toro’s theorem was given by {MS], who showed
that in fact the conformal parametrization of the graph of a W22 function is global
and biLipschitz (a third proof is given in [T2]). Our point lhere, however, is to show
that the simple existence of local hiLipschitz parameters follows essentially from the
much weaker coudition of a local bound on the absolute curvature integral, together
with the hypothesis that the intrinsic and extrinsic distances are comparable. As
such the proof above should be applicable to a variety of situations where the Gauss
curvature I{ of the grapli is a measure.

We also obtain immediately

Corollary C. If ¥ s a simply connected Riemannian surface with total absolute
curvature less than I\* then T is globally Lipschitz equivalent to the euclidean plane.

Observe that such a Lipschitz equivalence cannot in general be given by con-
formal parameters: for instance, if & is a cone then the conformal factor is 0 or
oo at the vertex, accordingly as the link of the vertex has length b > or < 27 (cf.
[Re], (7.8)). In this case the Gauss curvature is a Dirac mass 27 — b at the vertex.
Smoothing slightly a countable collection of such cones with absolutely summable
curvatures ), |27 — b;| < K™ and gluing the results together, it is easy to produce
Riemannian examples satisfying the hypothesis of Corollary C and of any desired
smoothness, where any global couformal parameters cannot be Lipschitz, nor have
Lipschitz inverse.

For the present we have made no attempt to relax the C* smoothness condition,
although the principal application clearly indicates the possibility of doing this
quite drastically. Furthermore we have not tried to distinguish between the effects
of positive and negative curvature, though it seems that the hypothesis of the
theorem could possibly be weakened in this way.

Acknowledgements. I would like to offer my sincere thanks to all of the staff
at the IHES, where this work was mainly done, and especially to Mme. M.-C.
Vergne for her lovely work on the figures. Thanks also to Nat Smale and Fred
Xavier for very helpful conversations.

§0. Notation. We will use |S] to refer to the length (or 1-dimensional Hausdorff
measure) of a set S.

We exploit the ambiguity of the term “curve” to use the same symbol for a curve
and (any of) its arclength parametrization(s).
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§1. Basic facts.

1.0. We will use polar coordinates on R%  Note that the enclidean distance
between points given in polar coordinates as (r.0),(s,1v) is bounded above and
below by positive constant multiples of auy EXPLession

d((r,8),(s,v)) = A

r— |+ Bmin{r,s}||6 — |

associated to any given positive constauts A, B. Here [|¢]] is the circular distance
from 0,
[|o]] = min |¢ — 27k|.
keZ

Recall that if M is a Riemanuian manifold and S ¢ M, then g € M is said to
be a critical point of the distance function ps = dist(S,.) iff there are minimizing
geodesic segments gy, ... ¢x from ¢ to S (i.e. g, starts at ¢. ends in S and |¢g;| = ps(q)
for each 7) and the convex Imll of {91(0),...,¢x(0)} contains 0 € T, M. Based on
this definition one speaks also of regular points, and of eritical and regular values
of ps. Henceforth we will consider only the case when S is a singleton {py}, and
abbreviate p := py,.y.

1.1. Lemma. Let & be a complete Riemannian surface with C? Riemannian
metric. If there are no critical values of p in the interval (0,7] then p™i(r) is a
simple closed curve.

Proof. The notion of critical point for p given above coincides with that of Clarke for
general Lipschitz functions, so the lenuna follows at once from his inverse function
theorem 7.11, [Cl], and the fact that the conclusion certainly holds if r is less than
the injectivity radius at py.

The following is basically a compendium of results of Hartman ([Ha]), adapted
to the situation at hand. The results of [Ha] refer to the distance to a given smooth
curve rather than to a point, but they apply here if we take the curve to be p ),
where € > 0 is smaller than the injectivity radius at Po-

By a geodesic loop based at py we mean a simple closed curve which is a geodesic
segment, both endpoints of which lie at py.

1.2. Lemma (Hartman). Let & be a connected surface with a complete Rie-
mannian metric of class C* and py € T. Suppose there are no geodesic loops of
length < 2s based at py and that © ¢ B(py,s). Then:

(1) Each p~'(t), t €(0,5], is a single stmple closed curve.

(2) There is N C [0,s], |N| = 0, such that if t € [0,5] — N then there are
finttely many points q1.....q1 € p~'(t) such that fgep ' (t)—{q,...,q}
then there is a unique minimizing geodesic segment between po and ¢, and
there are ezactly two minimizing segments between py and gi, 1 =1,...,k.
Furthermore p='(t)—{q,....,q} is a finite pairwise disjoint union of simple
C? arcs, and the angles between adjacent C'* pieces is bounded below by a
positive constant 6y > (), independent of t € [0,s] — N.

(3) Let g+ be minimizing geodesic segments of length ty, < s starting at py. Let
U C B(pu,ty) be one of the components of B(py,to) — (g4 U g-), and for
0 <t <typute,:=p Y #)NU. Then the length lci| ts absolutely continuous
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as a function of t € [0,s]. Ift € [0,s] — N, and the C'* pieces of p~'(t) are
bi,... by, with b; meeting b, in the point ¢; at an angle x;, i = 1,... .k
(taking indices mod k; see Figure 1.2), then

A.
dleq] ) ey
_(—/T = E—l / ky — E cot 5

biNc, qi Ecy -~
Here k; s the geodesic curvature of b;, with orientation induced from that
of p~1(t) as the boundary of B(py,1).

Proof of (1). We show that there are no critical values of p in (0, s). Assume the
contrary. Since all small positive values of p are regular we may find a smallest
such value T € (0, ), corresponding to the critical point ¢. ;From the definition of
critical points, either ¢ is a strict local maximum of p, or there are two minimizing
geodesics from py to ¢, with mutnally antipodal velocities at ¢. In the second case
the concatenation of the two geodesics is a geodesic loop of length 2d(pg, ¢) based
at po. Such a geodesic loop has length > 25, so d(py, ¢) > s. Therefore the critical
point ¢ must be of the former type. For t < T the curve p~!(#) is a single simple
closed curve. But as t T T, some compouent of p~1(#) converges to ¢, since g
is a strict local maximum. Thus ¢ is a global maximum and the entire surface
Y C B(py, s), contradicting the hypothesis.

The conclusion now follows from 1.1 and the fact that p71(#) i1s a C'? simple
closed curve for all small + > (.

Proof of (2). Except for the last assertion, this is contained in Lemma 3.2 and Prop.
6.1 of [Ha]. To prove the last assertion, assume the contrary. By compactness there
1s a convergent sequence of pomts ¢; — ¢, p(¢;) € (0,s] = N, p(q) € (0, s], such
that for each ¢ there are two distinet minimiziug geodesic segments g;k from pg to
¢;, making an angle v, at ¢;, with v, — 7. Taking a subsequence if necessary,
gl.i — g%, a pair of minimizing geodesics from py to ¢, making an angle of 7 at ¢.
In other words the concatenation of ¢ and ¢7 is a geodesic loop of length < 2s
based at pg, which is a contradiction.

Proof of (3). Referring to the remarks following equation (6.9) of [Ha), the absence
of geodesic loops of length < 2s nmplies that the function J defined in (6.10), op.
cit., 1s identically zero. A simple modification of Theorem 6.2, op. cit., now implies
that |¢,] is absolutely continuous for + € [0.s]. Owur formula for the derivative is
now a rewriting of equation (6.2), op. cit.

With respect to the representation of the level curves p=!(¢), t € (0,5s] — N as
a union of C? arcs in Lemma 1.2 (2).we refer to the points ¢1,...,qx € p~1(2),
t € (0,s] — N as the corners of p71(#), and to the other points of p~1(¢) as smooth
points. It 1s convenient to define the geodesic curvature measure &y by

I‘.

b= 30 [kt s
b L

i=1" G €U

for Borel sets U ¢ £. This is the appropriate quantity for applications of the
Gauss-Bonnet theorem. Note that the atoms of the curvature measure are all
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negative, corresponding to the fact that the corners ave all re-entrant. Let kti
denote the positive and negative parts of this measure (so &y = k7 — k7)) and put
|ke| := k¥ (#) + E7(#). The following is immediate from Lemma 1.2,

1.3. Lemma. With the assumptions of 1.2, suppose that

A <kf(er) € B,
ki (e) < C

for all't € (0,s] — N, where 4. B > 0 and 7 > C > 0. Then |c;| is a Lipschitz
function of t € [0, s], with

for a.e. t €10, s].

§2. Various lemmata. We assume henceforth that the hypotheses of Theorem
A are satisfied.

2.1. Lemma. There is no geodesic loop of length < 3R based at py.

Proof. This is a trivial cousequence of the Gauss-Bouuet theorem and the hypoth-

esis (0.1).

Thus 1.2 applies with s = 3R/2. As in 1.2, we denote by N the set of values in
(0,3R/2] at which the conclusion of 1.2(2) fails.

Let g+ € p71(#),0 < t < 3R/2,t ¢ N be smooth points, bounding an arc
¢ C p7U#), and let g1 be the minimizing geodesics from py to the ¢4. By the
angle subtended by ¢ we mean the angle at py between the g4 — more precisely,
the interior angle at py of the curve ¢ U gy U g—, considered as the boundary of the
unique domain C B(py.t) that 1t bouuds,

2.2 Lemma. For an open arc ¢ C p~'(t).0 < t < 3R/2t ¢ N, bounded by
smooth points, the total absolute curvature, the total positive curvature, and the
total negative curvature of ¢ satisfy

kel(c) = 8], |k (e) — 6], k] (c) < K.

b

where 8 is the angle subtended by c.

Proof. Subdivide ¢ arbitrarily into subares ¢y, ¢, ..., ¢, bounded by smmooth points,
and let g_ = ¢go,91,92,.-..¢n = g+ be the minimizing geodesics from py to the
endpoints, with everything ordered in the obvious way (see figure 2.2). Then e; :=
gi-1UgiUc;, i = 1,...,n are simple piecewise C* loops bounding mutually disjoint
domains D;, of total geodesic curvature 27 — 6; + k¢(¢;), where 8; is the angle
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between ¢;; and ¢; at py. Applying the Gauss-Bounet theorem,

n

g — Z [ki(e)] = Z(a, — |ke(ei)])

=1 i=1

<> 8 = k()]

=1
=;x/&ff|

I

= I\—U-

S /
Bipo,3R/2)

The conclusions now follow from a simple covering argument.

2.3 Proposition. Let g4 be minimizing geodesics from py of length ty, < 3R/2, let
U be a component of B(py.to) — (g+ U g—), and let 8 be the interior angle of U at
po (i.e.“the” angle between gy ). Put ¢y :=U Np~'(t), 0 <t < t,. Then the length
function |¢,| is Lipschitz, with

Iy dic Iy
9——2ta‘11-~—“<—]—’—|<9 =9

2 7 dt ~ 2
In particular, the length function \(t) := |p~'(#)]. 0 < t < 3R/2, satisfies
i IA
27 — 2tan =2 < 2 < 27 4 I

2 T dt
Proof. Apply 1.3 and 2.2.

Put i
A= g — Iy — tan % €(0,1).
2.4. Lemma. If0 <t <3R/2.t¢& N, then any open subarc ¢ C p~'(t) of length
le] <tA
has total absolute curvature
[kil(e) < % — Ivy — A.

Proof. Any such ¢ may be expressed as the uested union of a family of subarces all
bounded by smooth points of p7'(#). Approxunating in this way we may assume
that ¢ is itself bounded by smooth points. Put € for the angle subtended by c.
Using 2.2, 2.3 and the mean value theovem,

[lee|(e) <6+ Iy
Iy .
< et + 2tan —%Ll + I

¢ .
<A+ 2tan ———_)U + Ky
s .
- 5 - I\(] - A

The next leinma is key. For ¢;.qs € p~'(#) let us put dy(q, ¢2) for the length of
the smallest subarc of p~1(#) containing both ¢; and ¢,.
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2.5. Lemma. If 0 <t < R then, for every ¢;.q2 € p~ (1),

I \—()
4

dlqr.¢2) < (7 + AT ese Ad(qr. g2 ).

Proof. By continuity of the lengths [¢,] we may assume that ¢ ¢ N.

Suppose first that di(q;,¢) < tA. Let ¢ C p~1(t) be a subarc realizing this
distance, and s an arc length paraneter for ¢, 0 < s <lel, ¢«(0) = ¢1,¢(|e]) = ¢2. I
c(s) is a smooth point of p~1(#) then

d . ; )
(2.5.1) o dist (¢y, c(s)) = inf{é(s), v),
ds v
where v ranges over all velocity vectors at ¢(s) of minimizing geodesic segments
from ¢ to ¢(s).
We claim that all of these inner products are > sin A, For, let ¢ be such a
minimizing geodesic seguient, ¢(6) = ¢(s). Put

= wup{t < b g(t) € ¢}

(see figure 2.5(a)). If &' = & then ¢é(s) = ¢(6) and the relevant inner product
is 1. Otherwise, the union of ¢|[¢',é] with the portion ¢ of ¢ between ¢(é') and
g(8) forms a simple piecewise (2 loop C' lying within distance t 4 '—ZA— < %j of po;
since B(pg,3R/2) is simply counected (as follows from 2.1 and 1.2), C bounds a
topological disk D C B(py.3R/2). Let 6. v denote the interior angles of C' at the
junctions g(4'), ¢(&). By Gauss-Bonunet.

Bo(e') + / |y pp—
D

v < B+

s11~|<c'>+/ K|
S

< (o) + I
< 5 A

by 2.4, which establishes our claim.
Now we may integrate (2.5.1) to obtain

di{qr.q2) = |c| S esc Ad(qr, q2).

establishing the required bouwd a fortiors in this case. '
p N < (w4 Bo)t

In the complementary case, observe first that d(q1,¢2) <
=t and di(q1,q2) > tA,

by 2.3. It is therefore enough to show that if p(¢1) = plq2)
then

7l
2
t

d(q1,q2) 2 tAsinA.
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Supposing this to be false, choose sucl ¢, ¢z so that their distance is a minimum.
In particular, d(q;,q;) < t. Then de(qioqe) > tA, for the case d, = tA is covered
by the analysis of the first case above. In other words the solution (q1,¢2) of this
minimization problewm is interior. Let ¢ he a minimizing geodesic segment between
¢1 and g¢z; in particular, j¢| < t. If ¢; is a smooth point then ¢ must meet p~1(¢) in a
right angle at ¢;, while if ¢; is @ corner then ¢ must meet each tangent ray of p~1(t)
at ¢; in an angle no less thau Z. Tu particular, in either case some initial segment of
g near g¢; lies either entirely inside or eutively outside of the ball B(po,t). If insice,
then the tangent vector to ¢ at ¢; lies in the convex hull of the tangent rays at ¢; to
the minimizing geodesics gl»i from pg to ¢;. Since ¢ is minimizing, it cannot cross
the gft and so must pass through py — but this is absurd since lgl <t =d(po,q1).

Thus g must lie initially outside of B(py,#) near each ¢;. Since p~1(t) has only
re-entrant corners , each ¢; must be a smooth point of p~1(#), and there is a unique
geodesic segment from ¢; to py. Therefore ¢, gy, and ¢y piece together to form a
geodesic loop based at po. of length < 3t < 3R (see figure 2.5(b)). This contradicts
2.1, qed.

§3. The coordinates. Our basic impulse is to use geodesic normal coordinates
about py. However, the Lipschitz constauts of such coordinates arve controlled by
the geodesic curvature function. By means of the lemmata of 82 ubove, we are
able to bound only the geodesic curvature measure. Thus some modification is
necessary.

Referring to standard polar coordinates on the euclidean plane, we set the radial
coordinate of a point ¢ € B(py, R) ¢qual to the distance p(q) from py. For the
angular coordinate, we select an orientation of B(py, R) and let gy be any geodesic
segment of length > I from py. We orient cacl p71() as the boundary of B(po,1),
and for ¢ € p7(#), we set O(¢) equal to

27

Alt)
oriented subarce of p™'(#) counecting ¢o(#) to ¢ (recall that A(#) := o™ (#)]). (See
figure 3.)

Let @ := (p,0)7' : [0, R) x [0,27) — B(py. R) denote the inverse map. We must
show that the corresponding map {«? + y* < R*} — B(po, R) is biLipschitz, with
bounds of the form (0.2).

tines the length of the positively

3.1. Lemma. Let g:[0,1] — ¥ be a minimizing geodesic segment from py. Then
the composition O o g is locally Lipschitz on (0,1], with

d
—0 1
(H( o g(t)

I D) - \2
< ¢! (47.'(27.' — 2tan %)—'(27.' + ]\U)‘> .

Proof. Put p(t) for the length of the positively oriented subare of p=*(#) connecting
go(t) to g(t). Then Qog = 27 5. The estimate now follows at once from the quotient
rule and the bounds 2.3.

3.2. Lemma. For each 6 € [0,27), consider the curve
co(t) := P(1,0).
Then cy is Lipschitz, with constant

, 2 4+ I
Lip(cg) < ay 1= o —)—O + 1.
27
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where «v; is the coefficient of 7' in 3.1.

Proof. Given 0 < s <t < R, let ¢ he a minimizing geodesic from pgy to cg(t). By
3.1,

t— s
[©0g(s)~Oog(t) < aj—m.
Therefore
d(cg(s).cq(t)) <d(eg(s),g(s)) + dlg(s), co(t))
S ay (f o \)/\(%) + f s
27s
5 .
< <(.,[—_71+_f\o N 1) (= ).
27
qed.

3.3. Theorem.
azmin{r, s}[|0— ||+ aqlr—s] < A(B(r. ), D(s, 1)) < s mindr, s}[0—v||+aq]r—s|,

where a;, a3, a4, 5 > 0 are constants depending only on K.

Proof. Assume r < s.
For the second estimate,

d(®(r.0), (5. ")) < d(P(r.8), (1. 30)) + d(P(r, 1), (s,4))
27 + Iy
< ﬁl’lw — 0| + au(s — 1),
2n

by 3.2.

For the first estimate,

d:=d(®(r,8),D(s,9)) > d(P(r,0), P(r, 1)) — d(P(r, ), B(s,))

i
> Asind (7 + %)—ld,.(qm-.e), B(r, 1)) — agls — 1)

(by 2.5 and 3.2)

I Ar
“.)i)‘l %Hg — || = aa(s — 1)

= AsinA (7 +

> el = el = asls = 1)

7

by 2.3, where

Iy 21 — 2 tan L
ag = Asin A(7 + &)—1—.1—2—
2 27
Thus if
2 31 H— ;Y
(33.1) 2068 =l S ) L) =)

3
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then d > <&(r||6 — || + | — s]). Ou the other hand, if (3.3.1) fails, then

1 g
d>r—s| > =r —s) + =———||6 — ||
2hrmslz gl st gy e =l
This yields our estimate with
1 oo
(o= 111111{;, ?‘}
and (v Qg
vy = min{ ———o —‘1}

3(14+az) 3
With 1.0 this completes the proof of Theorem A.
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