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1 Introduction

1.1 Motivation

In the last fifteen years the role of low-dimensional spatially localised attractors in the nonlinear
partial differential equations has been widely appreciated, and a great depth of understanding
of their properties achieved. Especially well documented are the AC-driven damped sine-Gordon
system,

Grr — Qzz +5in g = —ag, + ['sin (wT),’ (1)

and its small-amplitude limit, the externally driven dimped nonlinear Schrédinger equation (NLS):
W+ Uop + 20020 = —iy ¥ — he', (2)

Both systems have numerous applications in a variety of fields, including long Josephson junctions,
easy-axis ferromagnets in microwave fields and an rf-driven plasma.

The first step in the analysis of the damped driven NLS solitons was made by Kaup and
-Newell [1]. Under the assumption that the damping and driving are weak, these authors developed
an Inverse Scattering-based adiabatic perturbation procedure to realise that solitons lock to the
frequency of the driver. For small h and v, there are two co-existing phase-locked solitons, one cor-
responding to focus and the other one to saddle of Kaup and Newell’s adiabatic equations (i.e. one
soliton is stable and the other one unstable against adiabatic perturbations of their amplitude and
phase.) This result remains valid for the sine-Gordon breather, whose small amplitude counterpart
the NLS soliton is (2].

Subsequent computer simulations of egs.(1) and (2) revealed a rich variety of spatially coher-
ent attractors, including temporally periodic and chaotic states [3]-{5]. A particularly important
observation was that even in chaotic regimes, the spatial structure of the field can be relatively
simple and described by only a few spatially localised solitonic modes. A special role of the soliton
(or soliton wave-train if periodic boundary conditions are implied) has therefore been reinforced
for the damped driven systems.

The bifurcations and routes to chaos in the dynamics of a single soliton were studied both
pumerically and analytically, mainly within perturbative and variational approaches [6]-(13]. One
of the main difficulties here is that soliton solutions are not available in closed form. (Here by soliton
we mean the NLS soliton, the sine-Gordon breather, and their wave-train counterparts). Particular
relevant for the present work is ref.[9] where the spectrum of linearised excitations was studied
in order to understand the soliton’s instability mechanism. Although providing an important
qualitative insight into the dynamics of eigenvalues: on the complex plane, the conclusions of [9]
were based on a heuristic ansatz for the solution (the phase was assumed to-be constant) and had
to be verified using the numerically-found soliton profiles [15].

In the undamped case (y = 0) the two coexisting soliton solutions can be found explicitly; the
stability problem is also more amenable to analytical study in this case. In particular, one can
prove that one of the solitons is always unstable for (all k, not necessarily small ones). As far as
the second soliton is concerned, it can loose its stability only via a Hopf bifurcation [14].

Terrones, McLaughlin, Overman and Pearlstein considered the full damped driven NLS equation
on-a finite interval {15]. They constructed z-periodic solutions perturbatively, as a power series
over small parameter multiplying the driver’s strength and dissipation coefficient; also they have
computed these solutions numerically. For small values of A and v two soliton wave-trains were
recovered corresponding to the saddle and focus of Kaup and Newell’s adiabatic equations. In
ref.[15] the spatial period was linked to the value of the dissipation coefficient; more precisely,
Terrones et al took L = 15.18 for v = 0.1000; L = 13.15 for v = 0.1333; L = 12.24 for v = 0.1538,
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and L = 10.73 for ¥ = 0.2000. For these values of L and v they solved numerically the linearised
eigenvalue problem and demonstrated the existence of the Hopf bifurcation.

An interesting phenomenon encountered in ref.[15] was the stability windows. Increasing the
driver's strength for the fixed dissipation coefficient, the eigenvalue of the linearised operator crosses
the imaginary axis into the right half of the complex plane (unstable region), then returns to the left
half, and then crosses into the unstable region again. There are three Hopf bifurcations, therefore,
and there is a certain region where the spatially periodic solution regains its stability.

In this paper we consider localised solutions of eq.(2) on the infinite interval, L — oco. We
obtain these solutions, solitons, numerically, and then analyse their stability. Qur main objective
is to construct the existence and stability chart on the (h,7y)-plane. This chart will serve as the
first step towards the complete attractor chart of eq.(2), similarly to the attractor chart for the
parametrically driven NLS,

Wy 4 Uap + 2020 = —ig ¥ — AT, ' 3)

which was constructed in refs.[16]-[17].

Although the solitons (i.e. solutions with ¥;{+00) = 0) and soliton wave-trains (for which
(e + L) = ¥(z)) may look qualitatively similar when plotted on a finite interval (~L/2,L/2),
their respective domains of existence are different. Stability of solutions is also very sensitive to the
interval length; in particular, we demonstrate that, increasing L, the stability windows of Terrones
et al, “close”. There are no windows of stability on the stability chart of solitons (L = o).

The paper is organised as follows. In sec.2 we consider the spatially homogeneous (flat) solution,
and analyse its stability. In the next section, sec.3, the upper and lower boundaries of existence
domains of two solitons are found numerically. Sec.4 deals with the stability of the solitons. We
show that one of the two solitons is always unstable, and describe the stability region of the other
one. The issue of stability windows is also addressed therein. Finally, in sec.5 our existence and
stability chart is compared with results of direct numerical simulations available in literature.

1.2 Relation to the sine-Gordon equation

Out of three parameters h,y and Q, only two are significant. Indeed, if ¥(z,?) is a solution of
eq.(2) corresponding to k,y and £, ¥(z,t) = k¥(kz,k?t) is the solution corresponding to R o=
k3h.Q = k2Q and 5 = k%y. Hence we may always fix e.g. 2 = 1 and retain only & and 7 as control
parameters [14, 15].

Next, the substitution ¥(z,t) = e*9(z,t) reduces eq.(2) to an autonomous equation

i+ Yoz — ¥ + 24P = ~iyp — b (4)

In this paper we will be always using the representation (4). On several occasions we will make
contact with results of Terrones et af [15]. These authors study the NLS equation but present their
conclusions for the externally driven sine-Gordon, eq.(1). The correspondence between eq.(1) and
(4) is established by the following formulas:

q(r,z) = 4eRe[ig)(t, x)e““‘”] + O(e¥); (5)
2

z=¢€z, 1= %—r; (6)

a=cly, I =4eh, (7

where ¢ is the detuning of the sine-Gordon driving frequency from unity:

©
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Eq.(6) implies that the sine-Gordon interval length, Lsg, and the NLS interval Lyps are related
as
Lyps = ¢lsq- 9

For example, results of ref.[15] obtained for w = 0.87,a = 0.04 and Lgg = 24 correspond to our
eq.(4) with v = 0.1538 and Lyps = 12.24.

2 Flat-locked solutions: existence and stability domains

2.1 Three branches of flat solutions

We start with the analysis of spatially homogeneous solutions {¥,, = 0) locked to the driver’s
frequency: ¥(z,t) = ype”. The complex amplitude o satisfies the algebraic equation

— g + 2|9p0| o = —iveo — k. (10)
The equation (10) was, of course, discussed before [7]; for the most detailed analysis see Terrones
et al [15]. We are nevertheless going to reconsider it here because we will need some facts about
flat-locked solution in our study of solitons. The main distinction from the work of Terrones et al
is that we will consider eq.(10) in the whole range of parameters, while those authors restricted
themselves to small values of A and 4. Also note that there are some notational distinctions: (i)
our NLS equation (2) has different coefficients with respect to those in [15]; (ii) our driver A is real
and positive and g is complex whereas Terrones et al work with complex h and real positive vo;
(iii) conclusions of [15] are presented in the sine-Gordon rather than the NLS notation.

Writing o = ae'?, €q.(10) reduces to a system

—a+2a%= —hcos#, (1
vya = hsin 6. (12)

Eliminating §, we obtain an equation cubic in py = a®:

4p3 — 402 + (1 ++4Hpo - h2 = 0. (13)
Any positive root pg of this equation defines a flat-locked solution 1 = poe'? where
tanf = .
1-po

The analysis of eq.(13) is straightforward. First of all, it cannot have real negative roots.
(Substitute pp = —q and obtain a sum of four strictly negative terms.) Hence there are either threc
positive roots, or one positive and two complex-conjugate roots. In terms of

P(po) = po [4p2 — 4po + (1 +7%)] s

eq.(13) is rewritten as
' P(po) = 2. (14)

When 72 > 1/3, we have dP/dpg > 0 and so eq.(14) has just one real rool, whereas when 2 < 1/3,
there can be either one or three real roots (Fig.1).
In the latter case the number of real roots is determined by the sign of the expression

0- (72 —31/3)"+ (72 +1/9 _hz)’.




If () < 0, there are three real roots; if @ > 0, there is just one. After some algebra, this criterion
translates to the following one:

3 roots if h_(7) < h < hy(7); (15)
1 root otherwise,
where
31 12
) BV SR LY LY SR
him)_{:,,(v s 7)} . (16)

Summatrising, we have two cases. First, for v > 1/v/3 and all h, we have just one flat-locked
solution {the right-hand curve in fig.2). Second, for y < 1/v/3 (left-hand curve in fig.2) we have
threc branches of solutions: there are three solutions for h lying between k- (y) and hy(y), and
only one solution if / does not fall into this interval. The first (lowest) branch satisfies

0 < |wol* < p-(7)i
the second (middle) branch is
p-(7) < [tol® < p+(7);
and the third, upper branch is given by
W’O\2 > pe(7)

Here

+ é\/l ~ 32 an

w| -

px(y) =

2.2 Stability of flat solutions

Next we proceed to the stability of the flat-locked solutions. Taking (z,t) = ¢(z)+ (a,1) where
¥(x) is a stationary solution of eq.(4) and 87 is a small perturbation, and linearising eq.(4) about
¢(a) yields

J(ye +vy) = Hy.

Here y(z.t) is a two-component column comprising of the real and imaginary part of the pertur-

bation: s
Re b2
y(z,t) = ( 1m6w)’

0 -1 \
J= ( ' ) , (18)
—0% 4+ 1 - 2(39% + v} —4pRYr
=1 _sypus —9% + 1~ 20303 + ¥h)

and H and J are 2 X 2 matrices:

(19)

where 8 = 8/8z. Finally, %r(z) and ¢;(z) represent the real and imaginary part of the solution
¥(z) whose stability is examined. In the case at hand, ¥g and ¢ are the real and imaginary part
of the flat-locked solution ¥y, i.e. Yo = ¥R+ 1¥1-
Separating the time variable,
y(z,t) = ,:(z)e’\', (20)



we arrive at the eigenvalue problem
Hz(z) = pd z(2), (2
where
p=Aty (22)
In general, u and z(z) are complex. The solution ¥(z) will be stable if eq.(21) does not have
eigenvalues u with the real part greater than ~.

In the case of the homogeneous solution ¥(z) = g, the eigenvalue p and eigenvector z(x) can
be found explicitly. Writing 2(z) = zoe~**, we obtain a matrix eigenvalue problem

(He - pJ)z0 = 0, (23)
where
g [ B 1 20vR+ %) ~49Rr;
k= — 4Ry K2 +1-2030+9d) )

and ¢r = Re g, ¢¥; = Im ¢g. Equating the determinant of (Hy — pJ) to zero, we finally arrive at
— it = (R 4+ 1= 2fol?) (K2 4+ 1~ 6lwol?) - (24)
If |10|® < 1/6, there are no k’s such that
F(k*) = (290)® — 1 — k%) (6]wol* — 1 - k?)

is negative, and so Rep is always zero and the flat solution is stable. Let us now assume that
lho|? > 1/6. Here we have to differentiate between two cases. First, if |¢p]? > 1/4, the minimum
of the parabola F(k?) occurs at k* = 4|42 — 1 > 0 and is equal to Fpin = —4|tpl*. The
corresponding Rep is maximum and equals 2|1g|%. Consequently, the peturbation 8¢ will grow in
this case if 2{10|2 > 7. (This is the case of the modulation instability.)

Second, if 1/6 < |¢0|* < 1/4, the minimum of F(k?) occurs at £ = 0. In this case Fin =
(2|%0]® — 1)(6]0]% — 1), and the perturbation will grow if

= (2ol* = 1) (Blwol® — 1) > 7*. , (25)

This is an instability with respect to spatially homogeneous perturbations. The inequality (235)
amounts to

p—(7) < Iol® < pr(v)

with p1 as in eq.(17). Notice that since p_{7) < 1/4 only if ¥ < 1/2, this type of instability may
occur only in the region vy < 1/2.

2.3 Summary of flat solutions

Summarising, we have three typical situations.

(a) 0 <y < 1/2. This situation is presented in Fig.3{(a). We have three branches of flat
solutions. The whole of the lowest branch is stable. (Here |4p}> < p_(7) and h < hi(7) ). The
whole of the upper branch as well as the upper part of the middle branch above l1ho|? = 1/4, are
modulationally unstable. Finally, the lower part of the middle branch, p_(y) < [%ol® < 1/4,is
unstable with respect to flat perturbations.

(b) 1/2 < v < 1/+/3, Fig.3(b). Similarly to the case ¥ < 1/2, we have three branches here.
However, only a part of the lower branch, namely |¢o|? < 7/2, is stable. The rest of it as well as the



other two brauches. are modulationally unstable. In terms of i and 4. the inequality [eol? < /2
translates into h < hu(y) where
hyy= VP =92 +9/2 (26)

(¢) 3 > 1/V/3. This situation is depicted in Fig.3(c). There is just one branch which is stable
for fegl* < v/2 (e, for h < ho(7) ) and modulationally unstable otherwise.

Finally. our (h.5)-plane is decomposed into two infinite regions. see Figf. A stable homogeuneous
solution exists in the blank regign: the domain of instability has been shaded. The boundary
between the two regions is given by

hy(y). 1 <1/
i) = ¥
hay)e v 20/

~
=1

3 Solitons

3.1 Asymptotic behaviour

Another 1vpe of imsight provided by the analysis of the flat solutions, is into the asymptotic be-
haviour of spatially localised solutions. Indeed. if ¢(4) is a static solution approaching asyvmptoti-
cally the value y. then denoting 6" = ¢() — tg we find that

: Redo
gl = ( Im éee )

Hytr) = yJy(r). (28)

satisfies

with ./ and /1 asin (18) and (19). Writing y(r) = e~ we obtain:

(4 1= 20e0l*) (M + 1= 6leol’) = =17 (2m

This equation has twa roots, &% and k2. Consequently, the general solution of eq.(2%) is a sum
of four exponentials, etk and TR I both &y and by are real for certain o). wle) is not
localised and so eq.(4) can not have localised solution in the corresponding region. Both & aud &3
are positive if the following three conditions are satisfied simultancousty:

(1) The discriminant of (29) is positive:
\ b .
|¥ai® > Z (30)
(i1) The product of two roots is positive:
(2iwal* = 1) (6]gal® = 1) + 97 > 0: (31)
(i1} The sum of two rools is positive:
Slyal* =2 > 0. (32)
Again, we have to consider several cases.
If ¥ > 1/V/3, the condition (30) is strouger than (32) while (31) is satislied for all fual. This

means that the condition for the solitons nonexistence is simply {o|2 > 3/2. or.in terms of h and
3. > () where By is as inoeq.(26).



If1/2<+ <« l/ﬁ the inequality (30) is still stronger than (32) while eq.(31) arnounts to
[l € (0,p- YU (py,x)- {43)

Taking the intersection of (33) and (30). one gets

ot € (Bur-) Utprm.
where py = pi(7) are as in eq.(17).

Finally, when v < 172, eq.(32) is stronger than (30). while p_ is smaller than 1/1. Thus the
intersection of (33) and (32) is simply

feal® > pa().

These conclusions are summarised in Figs 5 and 6. [n Fig.5, dashed is the region where solitons
existence is excluded by the above asymptotic reasoning. In principle, solitons could have existed
for wo on the middle branch (i.e. between the curves l¥l? = p-(7) and |4\? = pylv) on Fig.3). In
this case one pair of exponents kj 5 is imaginary. the other one {k3.4) is real. However, no solitous
with asymptotic values on the middle branch were found (see subsection 3.4). As we will show
below, solitons exist only below the line

|7‘J"0t2 - p-tv) 7 < 1/2;
12 vz 1L

Consequently, the soliton’s existence region lies on the lowest branch of |¢]| (see Fig.6 a-c).

Our final remark in this subsection is on the way the soliton approaches its asymptotic value.
Here our interest is motivated by indications that solitons with undulations on their spatial “tails”
can form bound states [18]. For [Wo]? < /2, the exponents ky and kz area pair of comnplex-conjugate
values with nonzero imaginary part. Consequently, each of the four expouentials undergoes undu-
lations. On the other hand, when v < 1/2 there is a region where both k% and k3§ are negative.
This region is defined by the intersection of eq.(31) and the inequality [#o|? < 1/4; it is not difficult
to realise that this intersection is

3 < o <o) (34)
In this region solitons approach their asymptotic valies monotonically; according to [18], no bound
states of solitons may emerge under such circumstances. This region pertains to the lowest branch
of the flat-locked solutions. In terms of h and 7, eq.(34) can be rewritten as

ho(y) < b < hi(y) (7 < %) . (35)

3.2 Numerical solutions: the method
For 7 = 0, the equation
Poz — P+ 20 = ~iyp — h (36)

adinits a pair of exact soliton solutions [14]:

i 12
2sinh* « ) (37)

we(z) = Yo (1 + | 4 cosh acosh (Az)



Here a is defined by

2 cosh?
h = Vv2cosh?a - (38)
(1 + 2 cosh? a)

hia) being a monotonically decreasing function, a is uniquely determined by h. Next, ¥ is the
asymptotic value of both .. and 4, solitons:

Ye(z) — Yo as |z| = oo;

3 is real and positive:

1
Py = . (39)
/2(1 4 2cosh® o)
Finally, A has the meaning of “twice the area” of 44 and ¥_, and is equal to
9 P sinh & .
A=2 [ - pddr = e (40)
V1 + 2cosh? «

Solutions %4 (x) and ¥_(z) are plotted in Fig. 7. The domain of existence of both of these
extends from a = 0 to a = oc, or, in terms of the driver’s strength, from A = 0 to h = V2/27 =
0.2722.

For 4 > 0, no exact solutions are available. We therefore had to obtain solitons nurmerically.
Our numerical scheme was based on the continuous analogue of Newton’s method (see [19] for
review and references).

Writing the discretized eq.(36) as

G(y) =0, (41)

where ¥ = (1,149, ..., %) is the discretized solution, ¥; = 1(z;), we introduce an auxiliary “evo-
lution” parameter 7 in such a way that t(7) satisfies the differential equation

L Gapir)) + G = 0 (42)

with the initial condition

$(0) = v (43)
Here ¥'9 is an initial guess for the soliton solution. Since G(9(7)) — 0 as T — 00, P(00) satisfies
eq.(41). Our iteration algorythm is based on the discretization of eq.(42) with respect to 7:

BUHD = ) _ A7) @_)‘1 G (41)
I ¢=¢(J) ? !

where 7 = 0,1,2,..., and ArG+) = £+ _ 70} §s chosen so as to minimize the discrepance

600 = max{|Re Gi(s\)}, [1;m Gi(#\ N} (45)

(For details see [19]).

Our continuation strategy was as follows. First, we used the exact solutions (29) as an initial
approximation for y = 0.02 and h in the middle of the interval (0,+/2/27), i.e. for A = 0.136.
Second, we utilised the obtained numerical solutions as initial approximations for the same v = 0.02
and h above and below 0.136. We advanced along the h axis until the Newtonian iterations ceased
to converge. The absence of convergence may be caused by a bad initial approximation; for this



reason we had to decrease the increment Ah in the neighbourhood of the boundaries of the domain
of existence. As a result, we were able to establish both the upper and the lower boundaries with
the desired accuracy, see below. Next, taking the numerical solutions at approximately the middle
of the domain of existence for v = 0.02, we employed them as initial approximations for the same
h with v = 0.04; then advanced up and down in h, and the process repeated.

The bulk of calculations was performed on an interval (=L£/2,L/2) = {—30,30). with the
exception of the neighbourhood of the upper boundary of the domain of existence, where the solitons
decay very slowly in . In this neighbourhood the interval length L was increased appropriately.
Generically, we utilised the second order Newtonian algorythm with the grid spacing Az = 0.1 the
neighbourhood of the upper boundary was, again, an exception (see subsection 3.4).

Similarly to the case when y = 0, in the case of nonzero dissipation solitons generically come
in pairs. By analogy with the 7 = 0 case, we denote them v () and ¥_(z). Fig. 8 shows their
profiles for several typical h. Here we have chosen values of h not very close to the lower boundary:
the behaviour of solutions in the neighbourhood of the lower boundary can be quite peculiar (see
Fig.10 below).

3.3 Existence domain. Lower boundary

The value of h demarcating the lower boundary is usually referred to as the threshold driving
strength: for a given v, no localised solutions are possible for A < hur. Kaup and Newell have
found [1], by means of the Inverse Scattering-based perturbation theory, the following estimate [or
the threshold value:

2
henr = —7- (46)
e

Spatschek et al[11] and Terrones et al [15] reproduced eq.(46) by expanding _(z) in a perturbation
series in powers of small & and y.

The threshold value that we have found numerically is plotted in Fig. 13 at the end of this
section. For comparison, we have also plotted the straight line h = (2/7)7 in the same picture.
Surprisingly, the deviation of the actual Ay from (2/7)7 is extremely small even for not very small
~. For example, for v = 0.48 we have

faw 2 0 (47)
v ke
for v < 0.48 the above difference is even smaller. However, as v grows beyond y = (1.5, the aclual
hene gradually deviates from (2/7)y.

For h = huyr the two branches of localised solutions, ¥4(z) and ¥_(z), merge. The poinut
h = hy is a turning point, therefore. We illustrate this fact by plotting |(0))2, the modulus
squared of the value of ¥x(z) in the middle of the interval, as a function of h (Fig. 9).

It is interesting to follow the evolution of 14 and ¥_ when h approaches the threshold value
from above. The transformation of 14 into ¥_ is illustrated in Fig 10.

3.4 Existence domain. Upper boundary

Let us now turn to the upper boundary of the existence domain. The upper boundary is different
for ¥4 and ¥_ solitons, and depends on . Three typical regions can be identified as follows.

(a) 0 <y <1/2. Here we have three branches of flat solutions 3 (fig.3a); the lowest branch
is stable, the other two branches unstable. All numerically found solitons ¥ and 4_ have their
asymptotic values lying on the lowest branch. It is natural to assume that the upper boundary of
the domain of existence of the 94 and 9_ coincides with the point & = hy (), Ihol? = p—{7) which

10



separates the lowest branch of [1y]? from the adjacent branch. We have verified this hypothesis
numericatly.

Qur strategy was to find the solitons y4 and p_ with the asymptotic value [to)? as cluse 1o p_
as possible. As a closest asymptotic value we adopted p(7) = p_(7) = 1.0 x 107% and examined
an equidistant set of 7’s between 0 and 1/2 (7 = 0.02.0.04.0.06.....0.4%}. For all these 5 we were
able to find both vy and w_ solitons with the asymptotic value |¥y
can assert that the upper boundary of the existence domain {expressed in terms of [to]?) is not
further away than 1073 from the value [¢o}? = po{7). Tn terms of k. the proximity is even closer.
Deviating [vo]? from po by A (Jual?) = 1077 results in the deviation Ahin h: this deviation can
be easily found by means of the explicit formula eq.(13):

= A7) Consequently. we

b= TTeole = oot + (14 2[00l ()

For 3 < 1/2 the above deviation is ~ 107% (More precisely. as 3 is increased from 7 = 0.02
through 5 = 0.18, the deviation Al decreases from Ab = 3.7 x 107% through A/ = 1.6 x 107°).
The smalness of Al is explained. of course. by the fact that the derivative dhifdig|? goes 1o zero
as |L'l,\" — e

Parameters of our numerical scheme were chosen cousistently with the sinallness of the incre-
ments b Tn order to be able Lo approach the value h = by as close as the distance M ~ 107"
we had to require the diserepancy (45) to be not larger than 1) = 1077, Here we took the second
order Newtonian algorythm with Ax = 1073, i.e., the truncation error was of order (Ary =107

Sinee we were looking for even solutions, it was sufficient to solve eq.136) on a lalf-interval
(0. L72) with the boundary conditions v.{0) = ¢ L/2) = 0. When o — x. the solitons decay to
the value ¢ exponentially, as exp (= [Imk}r). where & is given by eq.(29). When 5 grows from 0.02
to 0.1%. the exponent [mk| corresponding to 'ygl? = p. grows from 0.07 to 0.2 Consequently.
choosing the half-interval length L/2 = 300 we ensured that [ (L/2)— e} wonld not exeeed 107

Thus, our numerical study shows that in the region 0 < 3 < 1/2 the upper boundary of the
existence domain (for both ¢y and - solitons) is given by [tol? = po(y) or.in terms of the driver’s
strength, by = hy(y). As we approach the “knee™ of the hystheresis curve [eo]® = ool () ie.
as |go)? — p—. the soliton vy (r) flattens out so that when f = hy{q). the vy(r) nerges with
the flal solution: ¥y (2) = o, (See Fig.8 ab). This is in agreement with the asymptaotic analysis
presented in the previous subsection where we have shown that as h — Jp(5) and |vol — po{7).
the decay exponents Ky pz4 — 0.

The second solution, y_{x). does not flatten out as we approach the hysteresis knee alt hough
the decay exponents go to zero. The solution v remains localisod (Fig.® cul). but the decay
becomes polynomial not exponential. In the undamped rase, y = 0, this can be demounstrated

explicitly. Sending o — 0 (b — /2/27) in ¢q.(37) vields

1 rt-9
NEEE

(b) 1/2 < v < 1//3 = 0.5774. In this region the curve |¥ol? = juol®(h) is similar to the case
(a); there are three branches. However, the flat solution looses its stability not at the “knee™ point
but carlier, at |thyl? = v/2 (fig-4b). On the other hand, we kuow rom the discussion in subsec.3.1
that there can be no solitons with |12 ou the lowest branch above Jea]? = 9/2. Consequently. it

is natural to assume that the upper boundary of the soliton’s existence domain both for the oy
and ¢_ - corresponds to |2 = 7/2. We examined this hypothesis using the siue eriterion as

in the region v < 1/2. Surprisingly, the results for the 4y and ¥ turned out to be different.
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We examined 4 = 0.52,0.54 and 0.56. For all these v's we were able to find the v soliton at the
distance A {Jig]?) = 1.0x 107% away from the value [vol2 = /2. 1.0 for [l = (v/2)— 1.0 x 1077
The vy solution is shown in Fig.11.

As far as the o is concerned, the upper boundary of its domain of existence was seen to deviate
substantially from 7/2. Namely, for v = 0.52 we were unable to find the ¢ soliton for |y]? closer
than 6 x 1073 to 4/2: for 3 = 0.51 and 0.56 this gap was 8 x 107 and 11 x 1077, respectively.
(See Table 1.) Here the parameters of the numerical scheme were Az = 1073, 84 = 1077 and
L/2 = 600. We do not plot the v solitons as they look qualitatively similar to those arising in
the region 7 < 1/2.

(¢) 7 > 1/+/3. In this region there is only one branch of flat solutions for each fr. Similarly o
the case (b). the flat solution becomes unstable for |vo|* > 7/2 and similarly to that case, there
can be no solitons in the region |yg2 > /2. Our numerical results in this region are also similar
1o the case (b). The v, soliton exists for vatues of [vgl® up to and including (7/2) - 1072 On
the other hand. the upper houndary of the existence domain for the w_ soliton, was scen to be
lower (see the Table 1). Fig. 12 gives the profiles of the 174 and v'_ solitons in the region 7 > 1/V3.
The numerical parameters in the vicinity of the upper boundary were Ao = 1072, 6) = 1077, and
L2 = 600.

3.5 Soliton existence region: summary

Our conclusions are summarised in Fig.13. The upper dashed line is given by eq.(27) and demarcates
the upper boundary of the domain of existence of the ¥4 soliton. The upper solid line shows the
upper boundary for the w_ soliton’s domain of existence. For v < 1/2 this boundary is given by
the same eq.(27) whereas for ¥ > 1/2 it deviates from eq.(27). This deviation is however guite
small (Ah ~ 107 = 107*) and not visible in the plot.

The lower dashed line is a straight line h = {2/7)v; it yields an approximation for the lower
houndary of the domain of existence. The actual lower boundary Ay, (which is the same for
both v, and w_ solitons) is shown by the lower solid line. Again, the dashed and solid lines are
graphically indistinguishable.

Finally, the middie solid line is the stability boundary of the w_ soliton. 1t will be discussed
helow (sec.d4.2).

4 Stability of solitons

4.1 Spectrum structure

To analyse the stability of the w4 and ¥_ solitons, we numerically solved the eigenvalue problem
(21) with # as in eq.(19). and ©p(z), ¥;(x) being the real and imaginary part of the corresponding
soliton solution (found numerically beforehand.) Solution is considered stable if Rep < 7 for all
eigenvalies g

Continuous spectrum. Before proceeding to results of the computation, we need to describe
the spectrumn structure of the operator J7VH. When |z| — oc, the solitons p4(z) approach the
value 1o, eq.(21) reduces to a matrix eigenvalue problem (23), and the eigenvalue y and wavenumber
I are related by the dispersion formula (24). The number of real roots ki, k2, ... of eq.(24) determines
the multiplicity of the continuous spectrum.

When {uol? < 176, the continuous spectrum occupies the whole imaginary axis of pu outside the
gap —wqo < Imp < wg, where

wo = V(2[¢]? ~ 1)(6jgol? — 1). {49)

12



When |wg|> > 1/6, the continuous spectrum fills in the entire imaginary axis and the region
—v < Rep < v on the real axis. Here

v V(1= 2Jeo[2}(6v0f? — 1), [tol* < 1/4
) 2wl fol® > 1/4.

Discrete eigenvalues can be complex and real. If u is an eigenvalue with the eigenfunction
z(z), its complex conjugate p* is also an eigenvalue with eigenfunction z*(z). This follows simply
from the fact that H is an operator with real coefficients. A less trivial observation is that (—u*)
will be an eigenvalue as well; the proof of the latter is relegated to the Appendix.

Thus, real eigenvalues of J~'H will always appear in pairs, ¢ and (—p); complex eigenvalues
will occur in quadruplets: g, (—u), u*,{(—p*). For any values of A and v, the operator J™*H has
two discrete eigenvalues: vy and (—v). (This is true for both %_ and %, solitons.) The eigenvalue
i = v tesults from the translational invariance. The corresponding exponent X in eq.(20) is equal
to zero; the corresponding eigenfunction 2(z) is given by

+(z) i(}ied&(ﬂ)_

“d\im We(z)

The other eigenvalue, u = —~, arises due to the symmetry g — —pu discussed above.

4.2 Numerical solution of eigenvalue problem
We define a grid with spacing Az = L/(N +1):
L
Ty = -3 +nlAz, n=12,..,N,
with zg = —L/2 and zy41 = L/2, and denote f, = Reéy(zn), gn = Im 69(z,). Approximating

the derivatives by second order finite differences, we reduce the differential eigenvalue problem (21)
to a matrix eigenvalue problem of the form

Hz = pJz. (30)

Here z is a 2¥-component vector,

fi

n
9

aN
and H and J are (2N x 2N) block matrices:

-D* 4y w
H‘(w —D2+v)’

(1)
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The entries of the N x N blocks u,v,w and [ are given by
mn = 31— 2 p2 H ' mn
= {1260k + 0D Jon
vmn = {1 - 2003 + 98| _ | Yot

Wyan = —41/)1211’1‘ bmn;
z =2,
Imnzﬁmn; m,n = 1727'--51\/- (r)l)

Finally, D? is an N x N matrix arising from the discretisation of the second derivative:

2 -1 0 0 0 ... 0

-1 2 -1 0 0 0

. 0 -1 2 -1 0 0
—D”:W . (52)

0 ... 0 -1 2 -1 0

0 ... 0 0 -1 2 -1

0 ... 0 0 0 -1 2

Since we are interested in discrete eigenvalues, we imposed the Dirichlet boundary conditions:
69(£L/2) = 0 which translate into

fo=fN+1=90=9n+1 = 0. (53)

Eqgs.(53) have been taken into account in deriving eq.(52).

Having fixed v, we increased h from hy, to h = hy(7); Tesults turned out to be gualitatively
similar for all ¥ < 0.3. Let us start with the 9_ solution.

As we have already mentioned, there always is an eigenvalue po = 7 (or, equivalently, there
always is an exponent Ap = 0) corresponding to the translational symmetry. When A = fup,. we
have a turning point and, consequently, there is one more zero exponent A; = 0. That is, at
h = hyy we have two pairs of discrete eigenvalues: the translational eigenvalue pip = 7y and its
negative jip = —y (we shall disregard these two eigenvalues in what follows), and the turning point
eigenvalue g, = v and its negative fi; = —7.

As we increase ki, the eigenvalues yq and (—p) approach each other along the real axis, coalesce,
then pass on to the imaginary axis and the separation between them increases. As h is increased
further, another pair of pure imaginary eigenvalues, y» and (—p2), detaches from the continunm.
(We remind that the continuous spectrum occupies the imaginary axis outside the gap —wy <
Imp < wo.) Subsequently, p1 coalesces with ug, jin with fiz, and all four eigenvalues move away
from the imaginary axis. We end up with a quadruplet By g, — e and —p".

On further increasing kb, the real part of 4 and p* grows and, at certain ki = hyops, becomes
equal to v. This is a point of the Hopf bifurcation; for A > hpopf, the soliton ¥_ is unstable.

The above scenario is almost coincident with the scenario described in [15]; there is just one
distinction. Terrones at al observed what they called the stability windows: after the first Hopl
bifurcation, the pair of complex conjugate eigenvalues 4 and p* crossed back into the stable hall-
plane Rep < 7, and then returned to the unstable region Rep > 7 again. On the contrary, no
stability windows were observed in our calculations. (This contradiction is to be rectified below).
After the pair of complex conjugate eigenvalues have crossed into the unstable half-plane, their real
parts were monotonically growing.

Curiously enough, as h approaches the upper boundary of the domain of existence (b — hy)
the limit value of Rey is almost independent of 4. More precisely, as A — hy(7), the real part of
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i 1ends to approximately 0.3. This observation provides a simple estimate for the value of 4 above
which no Hopf bifurcations may oceur. Indeed. for 4 > 0.3, Re po cannot exceed 7 and so the v_
soliton 15 stable for all fi (see the stability chart Fig. 13).

Now we turn to the ¢y soliton. As we have already mentioned. at /i = fy, (the turning point
where ¢y and - merge) there is a nontranslational eigenvalue ¢ = 7. (There is also its negative
partuer. ji = -1, but we are concentrating on the positive eigenvalue.) As h is increased. this
real cigenvalue grows hevond 4. reaches a maximum and then starts decreasing. This evolution
is accompanied by the restructuring of the continnous spectrum. As [vp}? grows bevond 1/6. the
gap —wo < lmje < wyin the coutinuous spectrum closes. Now the continnous spectrum fills in the
entire imaginary axis and, on the top of this, the region —r < Rep < v on the real axis. The value
s simaller than 4 but grows as & is increased. Finally, when h reaches the upper boundary of the
domain of existence (b4 {y) for v < 1/2 and I.(3) for 4 > 1/2. respectively). v reaches 5. This is a
point of bifurcation where the soliton gy merges with the flat solution. Accordingly, at this & the
real eigenvalue g reaches 5 from above and imnierses juto the continuous spectrum.

4.3 Stability Windows

It is important to trace the arigin of the contradiction between our results and conclusions of ref.[15].
in particular to clarify the issue of stahility windows. We shall demionstrate that the contradiction
stems simply from the fact that Terrones ef al cousider much shorter intervals 1.

Terrones of al impose periodic boundary conditions on perturbations dv(r).

d(—L/2) = 4 L/2): by (—L/2) = 6u (L)2). (54)

whereas in Sec.h.2 we worked with the Dirichlet conditions
si(klL/2)=0. (59}
In order to climinate a possible effect of the boundary conditions. we have now replaced our

vanishing conditions (55) by the periodic conditions (51). In terms of the discretised eigenfunctions.
this amounts to replacing eqs.(53) by

fo=Ino Inpr =00 go=98. gnaL = a0 (76)
The only consequence of this substitution is that the matrix — D% eq.(32). is replaced by

2 —1 0 0o 0 ... 0 -1
-1 2 -1 0 o ... 0 0
0 -1 2 -1 0 ... 0 0

g 0 ... 0 -1 2 -1 0
o 0 ... 4 0 -1 2 =1
~1 0 ... 0 0 0 -1

~

The D2 and D? are only different in their lower left and upper right corner entries.

I egs.(51), ¢~ = Pr+iyy satisfies its standard “open end” boundary conditions v (£ 1./2) = Q.
Since ¢_{z) is an even function. these boundary conditions are equivalent 1o petiodic conditious
P(—172) = P(L/2), ¥u(=L/2) = ¢ (L/2). Thus, we examine stability of exactly the same solution
as Terrones ef al.
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Those authors report the occurrence of the stability windows for the following two sets of the
sine-Gordon parameters: Lge; = 24.a = 0.04 (a) w = 0.87 and (b) w = 0.90. Using eqs.(7)-(9).
one gets the corresponding NLS values:

—~ - ——l‘

(@) Lnyps=122376. 7 =0.1538. h= 05303
r

b) Ll = 107331, v = 0.2000, h= :

(b) NLS ! ! ' 0.3578

(Here I and h are the sine-Gordon and NLS driving strengths, respectively.)

We have calculated the eigenvalues g for the first set of control parameters, i.e.. we took L =
12.2476, fixed ¥ = 0.1538 and varied h. The growth rate Red = Repp — v is plotted in Fig.1-a (solid
line). Clearly seen is the region where Rel < 0, the stability window. The values of h at which the
solution restabilises exactly correspond to those given in ref.[13].

[t is appropriate to emphasize here that although we have analvsed exactly the same eigenvalue
problem as Terrones et af, their numerical approach was totally different. Those authors worked
with the (truncated) Fourier expansion while we use the finite difference approximation. C'onse-
quently, the exact correspondence of our results with results of [15] allows to rule out any chance
ol numerical error.

We next increased the length of the integratiou interval (from L = 12.23% to L = 15) keepiug
fixed. Surprisingly, this minor change resulted in that the stability window has closed {short-dashed
curve in Fig. 14a). On further increasing L, the stability interval did not reappear. {Long-dashed
line in Fig. l4a shows the growth rate for L = 60.)

For the sake of comparison we repeated the caleulation for the same values of L and v, but with
the Dirichlet boundary conditions on eigenfunctions, eq.(55). Similarly to the periodic case, the
curve ReA(k) changes substantially as L is increased from 12.238 to 15, but on further increases,
results settle down (see Fig. 14b). For sufficiently large intervals (L = 60 in our case) discrete
eigenvalues are insensitive to the type of the boundary conditions.

Concluding, we may claim that stability windows may occur only for sufficiently small interval
lengths. This phenomenon is apparently of the xame origin as the stabilisation of the upper branch
of the flat solution when the interval is made sufficiently short {15]. The instability is caused by
tong wavelengih perturbations which cannot arise on short intervals.

5 Concluding Remarks and Open Problems

1. The principal result of this study is the chart of phase-locked attractors on the (h,v)-plane,
Fig.13. This chart comprises the existence and stability domains of the spatially homogeneous
solution and two coexisting solitons, 14 and #_. While 3¢ is unstable for all 2 and v, stability
properties of 72_ depend on whether v is greater or smaller than 7., where 7., = 0.3. When
4 > e, the o soliton is stable for all by when v < 7yer, the increasing of £ results in ¥_ loosing
its stability via a Hopf bifurcation.

The classification of the phase-locked attractors on the (£, y)-plane is the first step towards the
construction of the complete attractor chart. Our next step will be to study nonlinear structures
in the region where the 1_ soliton is unstable, i.e. above the Hopf bifurcation curve. Here some
guidance can be gained from the analysis of a twin problem, namely the parametrically driven
NLS equation [16]. Fig.15 displays the existence and stability chart for the parametrically driven
damped soliton; it bears a striking similarity to our chart for the externally driven NLS, Fig.13. [t
is therefore natural to expect that the structure of the attractor chart above the Hopf bifurcatrion
curve will also be similar. Fig.16 is the complete chart of attractors for the parametrically driven
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case which we reproduce from ref.[17). Seen are two lines of different types of transition to chaos,
period-doubling and quasiperiodic, meeting at a “tricritical point”. It is tempting to expect that
the topography of attractors of the externally driven NLS equation will be qualitatively similar.
Numerical simulations of eq.(2) available for several v [6]-{12], do not contradict this hypothesis.

2. It is pertinent to emphasize two main distinctions of our study from the work of Terrones
et gl [15]. First, those authors analyse solutions on a finite interval (—L/2,L/2) with periodic
boundary conditions, whereas the present article deals with infinite intervals. In their numerical
calculations, Terrones et al focus on rather short intervals, L ~ 10-15, for which the effect of the
boundaries cannot be neglected. Accordingly, some properties of their periodic solutions differ
substantially from properties of solitons reported in this paper. In particular, as we have observed
for ¥ = 0.1538, it is sufficient to increase the interval length from L ~ 12 to 15 to see the stability
window of the ¥_ solution closing.

Second, the aim of ref.[15] was to give a theoretical explanation for results of the available
numerical simulations; accordingly, the authors of [15] restricted their attention to several specific
values of 7. On the contrary, our objective here is to provide a global view: to chart the whole
(h,7)-plane according to habitats of various flat and solitonic attractors.

As we mentioned on several occassions, there are three characteristic regions of the dissipation
coefficient: v < 1/2, 1/2 <y < 1/+/3, and 7 > 1/4/3. The existence and stability properties of
flat and solitonic solutions depend on which region we are in. Results of ref.[15] are confined to the
region vy < 1/2.

One may argue that in applications, the damping and driving are weak, so does it really make
sense to consider large values of £ and ¥7 The answer is that, apart from their own role in plasma,
optics and other applications, the damped driven NLS solitons describe small amplitude breathers of
the damped driven sine-Gordon, eq.(1). The damping and driving coefficients of the two equations
are related by eq.(7): r

o
’7‘:“_2' h:4537

(58)
where the detuning

£=v2(1-w) (59)
acts as a small parameter. Consequently, even if the sine-Gordon dissipation coefficient « and
driving strength T are small, their NLS counterparts may be quite large.

3. Tt is instructive to make a link to results of direct computer simulations of the sine-Gordon
and NLS equations available in literature.

Nozaki and Bekki [6] simulated the NLS {2) with vy = 0.1 on a relatively large interval,
L = 50, and found that the soliton becomes unstable for h > 0.11. This is in a perfect agreement
with the value Apopr = 0.11 which we have obtained in the numerical solution of the eigenvalue
problem (subsec.4.2).

In their computer experiments with the sine-Gordon eq.(1), Bishop, Forest, McLaughlin
and Overman [8] set o = 0.04, Lsg = 24, and produced an attractor chart on the (I',w)-plane
for 0 < T < 0.19 and 0.82 < w < 0.94. In terms of the NLS control parameters, these simulations
correspond to 0.11 < v <€ 0.33.

Eliminating ¢ between (58)-(59), we have

w = 1- 5 (60)

Thus for the fixed SG damping o, the frequency w is completely specified by the NLS damping v;
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fixing w is equivalent to fixing v. The SG forcing I is then proportional to the NLS forcing h:

3/2
P:4(%) h. (61)

Assume that the NLS damping coefficient v is fixed and forcing h varied. Fig.13 shows that the
larger the v is, the smaller is the range of A for which the NLS soliton is unstable. Translating to
the sine-Gordon variables, eqs.{60) and (61) imply that for the fixed a and w there is an interval of
I’s where the breather is unstable; this interval should shrink as w is increased. This was indeed
observed in [8] for not very small detunings, £ > 0.45 (that is, for w < 0.9), see their Fig.1. For
smaller detunings ¢ (larger w) results start to deviate. This may be attributed to the fact that the
NLS interval corresponding to Lss = 24 becomes very short (Lyps = ¢Lsc < 10.8).

Taki, Spatschek, Fernandez, Grauer and Reinisch [10] studied the sine-Gordon with
a = 0.004 , Lsg = 80, w = 0.98 and 0.0585 < T < 0.116. This corresponds to v = 0.1 and
Lyps = 16. For T = 0.0038, the breather lost its stability via a Hopf bifurcation. The corresponding
h is equal to 0.12 which is close to our hgeps = 0.11; the difference should be attributed to the
smallness of the interval.

Spatschek, Pietsch, Laedke and Eickerman [11] simulated the NLS eq.(2) on an interval
L = 40 for a variety of h and v {7 < 0.25). Their experimental points fit very well into the y < 0.25
portion of our stability chart Fig.13.

4. Finally, it has remained unclear what happens to the soliton 1_ as |1|® — v/2 in the region
7 > 1/2. As we mentioned in subsection 3.4, we were unable to find the solution _ close enough
to the value 3|2 = 7/2; the Newtonian iterations ceased to converge a certain finite distance away
from /2. (This is in a sharp contrast to the case of the ¥4 solitons which turned out to exist
arbitrarily close to the value |y|? = 7/2.) It would be interesting to understand whether the upper
boundary of the existence domain of the #_ soliton is indeed different from |y]? = /2, or this is
simply a numerical effect caused by an anomalously small radius of convergence of the Newton’s
method in the neighbourhood of the boundary.

6 Appendix

The aim of this Appendix is to show that if 4 is a discrete eigenvalue of the operator J ' H eq.(21),
(—p~) is an eigenvalue as well. To this end we define an auxiliary operator A,:

A, = H—pd, (62)
where u is a complex parameter, and J is given by eq.(18). If n is an eigenvalue of A,

Auz(z) = n2(z),
!

1" will be an eigenvalue of the Hermitean-conjugate operator A,, where

Al =H - at = Htp'd = Ay

(Notice that taking the Hermitean conjugate amounts to replacing y by —u*.) Assume now that
z0(z) is an eigenfunction of the operator J=1H corresponding to the eigenvalue uo:

Hzo(z) = pod 2oz ).
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Table 1. The numerically calculated upper boundary of the existence domain for the v soli-
ton. Here p; denotes the value of Luvolz for which the v_ soliton still exists; f; is the corresponding
h: by = B{pr). Next, pyis the lowest value of |tg]? for which Newtonian iterations did not converge
and we were unable to find the ¢_; Iy is the corresponding h: hy = h(p2).

(5] o052 | oat [ 056 | 060 [ 064 [ 066 ]
/2 0.26 027 ] 0 0.30 032 1 033
” 0.251 0.262 0.269 0.286 [ 0-307 125 | 0318 528
,)2 0.255 0.263 026116 0237 | 0.307 370 | 0.319 340

I 0.360 785 | 0.36% 459 | 0.376 330 | 0394 145 | 0114 125 0.1251
Iy | 0360 801 [ 0.36% 481 | 0.376 552 | 0.394 213 ] 0114 150 0..1252

0.15% P
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0.15 4
¥>1/3
0.10 4
v<1/3
0.05 1
Po
0.00 T T T T 1
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Fig.1 The cubic Ppo) for 7% < 1/3 and 13> 1/3. Left to right: 2% = 0.5.0.35.0.01.
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Fig.2 The amplitude of the spatially-homogencons solution versus b Left-hand curver 3 <

L/ V3; right-hand curve: y > I/\/—i
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Fig.4 Regions of stability (blank) and instability (shaded) of the flat-locked solution on the
(h,v)-plane.
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Fig.5 The asymptotic value |4o|? versus the damping coefficient, . Shaded is the region where
no solitons can exist due to the asymptotic exclusion principle.
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Fig.6 The asymptotic value of the soliton, [1b0]|?, versus the driver’s strength, h. Dashed lines:
no solitons are possible with such |1]%. Solid lines: solitons with these asymptotic values are not
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Fig.11 The 1, soliton in the second region (1/2 < v < 1/4/3). In this plot ¥ = 0.52. The
transformation of ¢ is shown as k is increased from Ay, = 0.3319 through h = 0.360840 which is
close to the upper boundary of the existence domain, k. = 0.360843.
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Fig.12 Solitons in the third region (y > 1/+/3). a,b,c): the ¥, soliton in the neighbourhood
of the upper boundary of the existence domain. In this plot v = 0.60 and h = 0.39492. (The
upper boundary is h, = 0.39497.) d,e,f): the y_ soliton for ¥ = 0.66. Solid line: solution at the
threshold, h = Ay = 0.42425. Dashed line: soliton at the upper boundary, h = 0.4251. For this ¥
the value of k., is 0.4265; however no _ solitons with & > 0.4251 were found.
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Fig.13 The existence and stability chart for the soliton solutions of the externally driven.
damped NLS. The upper and lower solid lines show the upper and lower boundaries of the solitons’
existence domain. The middle solid line is the line of the Hopf bifurcation: above this line the
soliton ¢ is unstable. The upper dashed line is given by eq.(27) and demarcates the boundary of
stability of the flat-locked solution; the lower dashed line is the straight line h = (2/7)y. Below
7 ~ 0.66. these dashed lines are graphically indistinguishable from soliton’s existence boundaries.
They do not completely coincide, however (see the text).
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Fig.14 The maximum growth rate Re A{= Rey = 7)) as a function of h lor 3 = 0.153%. Solid
line: L = 12.238; short-dashed: L = 15: long-dashed: L = 60. (a) Periodic boundary conditions
lor cigenfunctions; (b) vanishing boundary conditions . The horizontal straight line portions of
the curves {where Re XA = —7) correspond to pure imaginary cigenvahies g, For I < 0.12 all three
curves practically coincide.
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Fig.15 The existence and stability chart for the parametrically driven NLS equation (3) as from
refl.[16]. (The driving frequency © has been normalised to unity.} The structure of the chart is
very similar to Fig.13. The lowest line is the lower boundary of the soliton existence domain: in
the parametric case hy, = 7. The uppermost curve is given by b = /1 + 7% and plays the role of
the upper boundary of the existence domain. Although the soliton does exist above this line, it is
unstable there, together with the zero solution, against continuous spectrum excitations. Finally,
the middle line is the curve of the Hop{ bifurcation: on crossing this line the stationary soliton
looses its stability to a temporally periodic soluticn. The structure of the nnstable domain (above
the Hopf bifurcation line) is shown in Fig.16.
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Fig.16 The attractor chart of the parametrically driven. damped NLS equation from ref.17.
Below the straight line b = + (the lowest line in this plot) the only attractor is the trivial one.

= 0. Above the fine £ = /1 4+ 4% (the uppermost line in the picture) the trivial solution is
unstable w.r.t. continuous spectrum waves. Line 1 is the Hopf bifurcation curve; stable stationary
solitons exist below and to the right of this curve. On crossing the curve 1, stationary attractors
are replaced by temporally periodic solitons {marked by empty circles). These can subsequently
bifurcate into double-periodic, 4- and 8-periodic solitons (shadowed boxes). Small white blobs
and shadowed diamonds represent more complicated attractors (periods-6, 7, 10 and temporally
chantic.) Above the curve 2, empty triangles mark the area where only the trivial attractor exists;

black triangles stand lor spatio-temporal chaotic states. An alternative scenario of transition to
chaos ocenrs on crossing the line 3; here the periodic soliton is replaced by the spatio-temporal
chaotic attractor without any intermediate period doubling. The two scenarios “meet” at a tricrit-
ical point o= 0.81,5 = 0.23. Finally, in the region above the line A = /1 + ¥% and to the left
of the Hopf bifurcation curve 1, the instability of the zero solution develops into spatio-temporal

chios.
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This zo(«) is. at the same time. an eigenfunction of the operator A, pertaining to the parawmeter
value g1 = py and eigenvalue 7 = 0:

Ao zolr) = (H = pgd )zole) = 0.

The conjugate operator _»\Io (= Aupy) will also have an eigenvalue ™ = 0: this implies that (—pg)
is an eigenvalue of J7VH. Q.E.D.
There is one point in the above proof that requires a word of caution. If 57 1s an eigenvalue of A.
a nonhermitean operator in the Hilbert space. the conjugate operator AT does not. in general. have
to have an cigenvalue . Consider, for example, a shift aperator T defined on infinite sequences
X o= (o)t
Tlaoeg,rs,0 = {20230, .0 ) (G3)

It is easy to see that n 0 is an ecigenvalue of 7. with an eigenvector (1.0.0....). However.

the conjugale operator 7T does not have a zero eigenvalue. This follows from the fact that the
kernel space of Al (i.c. the space of all x such that Tix = 0) is given by R{I)*E. the orthogonal
cotnplement of the range of 7. Since the range of the shift operator (63) obviously coincides with
the entire space, R(T) consists only of the zero element, and so 7t has no zero cigenvalues.

Fortunately, this situation does not arise for discrete eigenvalues ol differential operators (whose
cigenfunctions are smooth and exponentially decaving at infinities.) The reason is that these
cigenvalues can he approximated by eigenvalues of finite-dimensional matrices. For instance. one
can approximate derivatives by finite differences (as we do in section 1.2) or use a truncated
expansion over some complete set of functions (which is the approach of Ref. [15]). In auny case.
somding ¥ — oo, one of the cigenvalues of the N x N matrix Ax will approach the discrete
cigenvalue of the differential operator Az yx — . On the other hand. if yy is an eigenvalue of the
matrix -y, the Hermitean conjngate matrix Ay will have an eigenvalue ni. When N — oc. the
sequence g% converges Lo a discrete eigenvalue of the Herwitean conjugate operator AT whieh s
therefore equal to 5=,

Coming back 1o the shift operator eq.(63), notice that its zero cigenvalue cannot be approxi-
mated by a sequence of finite-dimensional matrix cigenvatlues. In particular. i we attempt o use
a linite-dintensional shift operator with periodic boundary conditions:

Ta{ry gt n) = (L2 030 IN T

we will immediately find that cigenvalues of the latter are given by exp (2min/N)Y.n =01,
None of these tend to zero as ¥ —
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Bapawetkos H.B., Cmupros 10.C. E5-97-80
CylecTBOBaHHE U YCTOHYMBOCTD COTUTOHOB HEJIMHEHHOTO
ypastenus [llpeanHrepa ¢ BHEUIHEH HAKAQYKON W AMCCHNaLMeN

Uccnienyercs HenuHeiHoe ypasuenue llIpequHrepa ¢ BHElIHeH Hakauykod M
AUCCHIALMNEH, ONpeleNeHHoe Ha ‘npxmoﬁ IMocTpoena kapTa CYLIECTBOBaHHA H
YCTONYMBOCTH €10 COTMTOHHbBIX PELUEHHI Ha TUIOCKOCTH H3MEHEHHS IBYX KOHTPO/Ib-
HbIX apaMeTpPOB: aMIUIMTYAbl BHEWHEro BOIEHCTBMA h v KoddduuHEHTa Iuc-
cunauuu Y. st o6lMX 3HaYeHHA A W Y CYWUECTBYIOT 183 HE3ABHCHMBEIX CONIMTOHA,
OIHH W3 KOTOPBIX (Y ) BCerla HeyCTOHYHB. BudypkaunosHas nuarpamma BTOpOTro

pewenust (Y_) 3aBHCHT OT KO3(DHUHEHTA AMCCHTIALMK: eCH Y< Y, W_ YCTOHYMB

MpH MabiXx A M CTAHOBHTCA HEycTolHuMBBIM B Touke Gucypkaunu Xonda npu
YBENMYEHHH F; TIPH ¥ > Y, W_ YCTOHYHB Anst nwboro A. TlokazaHo, 4yTo B obnactu

HEYCTONYHBBIX PELIEHNIH HE CYUIECTBYET «OKOH CTaGHIILHOCTH», a paHee OOHapyXeH-
Hble «OKHa CTabMIIBHOCTH» MOTYT BO3HHKATbh TONBLKO MPH PACCMOTPEHHH YPABHEHHS
Ha KOHEYHOM (M JOCTATOMHO MATOM) MHTEpBa/le W3MEHEHWs MPOCTPAHCTBEHHOH
nepeMeHHON. ‘

Pa6ora BeITONHEHA B Haﬁopampuu BLIYMCIIHTENBHONH TEXHHUKH Y aBTOMATH3aLIMH
OUsH.

CoobuieHie OOBEAHHEHHOIO HHCTHTYTa SUePHBIX HecnenoBaHuit. [lyGna, 1997

Barashenkov [.V., Smirnov Yu.S. E5-97-80
Existence and Stability of the Externally Driven, Damped
Nonlinear Schridinger Solitons

~The externally driven damped NLS equation on the infinite line is studied.
Bxistence and stability chart for its soliton solution is constructed on the plane of
two control parameters, the forcing amplitude h and dissipation coefficient v. For
generic values of h and Y there are two coexisting solitons one of which (y ) is |

always unstable. The bifurcation diagram of the second solution (y_) depends on
the dissipation coefficient: if Y<y_, the y_ is stable for small 4 and looses its
stability via a Hopf bifurcation as h is increased; if y> Yc'r, the y_ is stable for all

h. There are no «stability windows» in the unstable region. We show that the
previously reported «stability windows» occur only when the equation is considered
on a finite (and small) spatial interval.

.The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.
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