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Abstract

If a curve in &3 is closed, then the curvature and the torsion are pe-
riodic functions satisfying some additional constraints. We show that
these constraints can be naturally formulated in terms of the spectral
problem for a 2 x 2 matrix differential operator. This operator arose
in the theory of the self-focusing Nonlincar Schridinger Equation.
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periodic solutions of the Filament Equation is obtained. We show
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1 Introduction

In our article we shall study the periodic problem for the Filament Equation

d7(s,t) -
5 = k(s t)b(s,t) (1)

where (s, t) is t-dependent family of smooth curves in R, s is a natural
parameter on these curves, k(s,t) is the curvature, b(s,t) is the binormal
vector (the necessary definitions from differential geometry are collected in
Section 2).

The Filament Equation describes the motion of a very thin isolated vortex
filament in an incompressible unbounded fluid. It was derived by Da Rios
[4] in the year 1906 and rediscovered in the 60’s by R. J. Arms, F. R. Hama,
R. J. Betchov (see the historical article [17] for more details).

By a periodic problem we mean constructing solutions of (1) such that
for any t = to the curve (s, ) is closed:

F(s +1,tg) = F(s, ) (2)

Without loss of generality we shall assume the length { of the curve to be
equal 27. A closed curve can be naturally interpreted as a smooth isometric
map

v: 8o R (3)

In 1972 H. Hasimoto [10] found a change of variables connecting (1) with

the the self-focusing Nonlinear Schrodinger Equation (NLS)

Oq(s,t)  Pq(s,t) 1, o _
i oo + 5 la(s,1)] q(s,t) = 0. (4)

This change of variables associates with a curve (s) a complex function

q(s):

H o y(s) = qls) = k(s)et | = (5)

(In {3] A. Doliwa and P. M. Santini have shown that under some natu-
ral assumptions any integrable motion of a curve in S? results in the NLS
hierarchy.)

The periodic problem for NLS is well-studied (see Section 3). Unfortu-
nately results from the periodic NLS theory can not be applied directly to
the Filament Equation because the Hasimoto map (5) does not map periodic
functions to the periodic ones. It is easy to check, that
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1. For a generic closed curve (s +27) = 7(s) the corresponding potential
q(s) is quasi-periodic:

als +27) = ¢ y(s). (6;

2. For a generic periodic potential ¢(s 4+ 27) = ¢(s) neither ¥(s) nor the
velocity vector (s) are periodic.

The problem of constructing periodic algebro-geometric solutions of the
Filament Equation (1) was studied by A. M. Calini in her Ph.D. disserta-
tion [1]. In [1] a number of interesting results were obtained. In particular
explicit exact solutions were constructed. Unfortunately, no characterization
of periodic solutions of the Filament equation was given in [1]. As pointed
out by S. P. Novikov, without such a characterization the periodic problem
for (1) can not he considered as completely solved.

Thus we are faced with the following diflerential-geometrical problem: If
a curve in R? is closed, then the curvature and the torsion functions are also
periodic. But the periodicity of the curvature and the torsion functions does
not, imply automatically that the correspounding curve is closed. To obtain a
closed curve we have to add additional constraints on the curvature and the
torsion. We show that these constraints can be naturally written in terms of
the spectral problem for a 2 x 2 matrix differential operator associated with
NLS equation (sce Scctions 3, 4).

Another interesting question associated with the Hasimoto map arose in
the Hamiltonian theory of the NLS equation. J. J. Millson and B. Zombro
have shown in [14] that the space of sinooth isometric maps of the unit circle
into R* modulo proper Eunclidean motions has a natural Kadhler structure.
The imaginary part of this structure coincides with one of the higher NLS
svinplectic structures. In order to study this relation it is important to have
an explicit description of the spaces connected by the Hasimoto map. We
belive that the characterization obtained in Scction 4 may be applied to this
problemn.

The problem of characterizing the spectral data corresponding to the
periodic NLS solutions it rather non-trivial. A convenient approach to this
problem based on the so-called isoperiodic deformations was suggested by
the authors in [9]. In Section 5 we show that this approach can be naturally
applied to the Filament Equation.



One of the authors (P.G.) would like to express his gratitude to Prof.
S. P. Novikov for the invitation to several visits of the Maryland University
(the last one was in the fall 1996) and for the interest to this work. He is
also grateful to Prof. J. J. Millson and B. Zombro for numerous discussions
about this problem.

2 Curves in 3-dimensional Euclidean space
Let 4(s) be a smooth, parameterized curve in Euclidean 3-space:

F(s) = (x'(s), 2%(s), 2%(s)) € R*. (7)

Denote by #(s) and 1 (s) the velocity and the acceleration respectively:

d¥(s) _ (d:El(S) (1;1:2(3)’ d:1:3(3)>

i(s) = (8)

ds ds = ds ds

Lo () Bxt(s) d*a?(s) d2x3(s)
ii(s) = ds? ds? 7 ds? 7 ds? ©)

We shall assume that s is the natural paraneter, i.e. the length along the
curve. In other words, the velocity has unit length:

13(s)]” = (dzg”)) + (d"jig”) + ((—1%(?) ~1 (10)

Then the acceleration vector is orthogonal to the velocity

< 9(s), w(s) >=0, (11)
where <, > denotes the standard scalar product in R?
if

< 7.0 >=v'w! + *u? + vl (12)

The magnitude of the acceleration vector is called the curvature of the curve

k(s) = |i(s)] = /< @(s), @(s) >. (13)



For each value of s such that k(s) # 0 we hiave a natural orthogonal reference
frame ('D’(s), ni(s), b(s)), where

w(s)
Eel)

Here x denotes the vector product in R?

i(s) = b(s) = #(s) x 7i(s). (11)

UXx = ('1)272,3 —o*n? o3t —utn? uln? — 'Uznl> (15)
The vector 7i(s) is called the principal normal to the curve, the vector b(s)
is called the binormal.
The natural reference frame (U(s),ﬁ(s), I)(s)) satisfies the Serret-Frenet
equations (sce for example [2})

dv(s) o
ds = k(s)ii(s)

d?:) = —k(s)T(s) + 1(s)b(s) 1o
db(s) AR

ds = )

The function x(s) is called the torsion.
Further we shall use another reference frame (€1(s), €(s), €3(s)) associ-
ated with a smooth curve ¥(s) parameterized by the natural parameter. Let

€1(s) = #(s)
&3(s) = cos(B(s)) i(s) — sin(A(s)) b(s) (17)

&3(s) = sin(0(s)) 71(s) + cos(8(s)) b(s)
where s
f(s) :/ k(3)ds. (18)

This reference frame satisfies

deils) _ k(s) cos(8(s)) € + k(s)sin(0(s)) &(s)

ds



dés(s)

T = ~k(s) cos(0(s)) €ils) (19)
d—(?T(;—) = —k(s)sin(f(s)) € (s)

Equations (19) are written in terms of the Lie algebra so(3). Let us
rewrite them in terms of su(2).
Let I, J. K be a basis in the space of skew-hermitian matrices

. i 0 . 0 -1 . To —
I——LOZ—[_O _7:}, J——I,Uy——|:1 ()}’ I\——LUJ;——[_i 0 },

where ¢ = (0,,0,,0,) are the Pauli matrices.
These matrices satisfv the multiplication rules for the basic quaternions
JJ=—JI=K, JK=-KJ=1 Kl=-IK=] I’=J)"=K"=-1,
(21)
and they form an orthonormal reference franie in the space of 2 x 2 skew-
hermitian matrices with the following scalar product

1
< A4, B>= —-2—171‘;1(:(‘AB. (22)
It is easy to check that the following map:
@ = (whwr w?) - W =wT+uw® - J+uw K. (23)

is an isometry between the Euclidean space B and the space of 2 x 2 skew-
hermitian matrices with inverse given by

. ‘ 1 . . 1 -
w! = —;tmce Wi, w= ~5t1'a(:(‘ W, w= —é-tra(:e WK.

&

It generates the famous map SU(2) — SO(3): any unitary matrix g €
SU(2) generates an isometric map of the space of 2 x 2 hermitian matrices

r — gzg " (24)
It is well-known (see for examnple [2] p. 431) that any isometric orientation

preserving map of the the space of 2 x 2 hermitian matrices is generated by
(24) and the matrix g is defined uniquely up to multiplication by —1.
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~ Denote the matrices corresponding to the vectors €,(s), €x(s) €3(s) by
E\(s), Ea(s), Es(s) respectively. They form an orthonormal reference frame.
Thus there exists a 2 X 2 unitary matrix €2(s) such that

Ei(s) = Q7 H(s)IQ(s), (29)
Ey(s) = Q7(s)JQ(s),
Ey(s) = Q7Y (s) KQ(s).

In terms of these 2 x 2 matrices the system of equations (19) takes the

form

[I,w(s)] = k(s)cos(8(s)) J + k(s)sin{f(s)) K

[J,w(s)] = —k(s) cos(8(s)) 1 (26)

where 19(s)
Qs
w(s) = QO '(s).
ofs) = B o1(s) (27)
Taking into account that w(s) is skew-hermitian we obtain
w(s) = —k(s) cos(8(s)) K + k(s)sin(0(s)) J = | 59 8 (28)
T2
where _
q(s) = k(s)e/", (29)

Starting from a curve §(s) € ®* we have thus constructed a potential
q(s). Formula (29) coincides with the Hasimoto transformation (5).

Let us discuss the inverse map (the map from the space of complex-valued
functions of one real variable to the space of curves in E*).

Lemma 1 Let q(s) be a complez-valued smooth function of one real variable
s such that q(s) # 0 for all s. Then there cxists an unique (up to a proper
isometry of B ) curve y(s) such that Hy(s) = €?q(s) where H is the Hasi-
moto map. (Recall that the image of the Ilusimoto map is defined up to an
arbitrary constant phase ¢). The curve ¥(s) can be constructed by using the
following procedure:



1. Define a matriz w(s) by (28).

2. Define a 2 x 2 matriz function Q(s) as o solution of the following linear
ordinary differential equation:

%Q(S) = w(s)82(s) (30)

such that Q(0) is an unitary matric. (From (30) it follows that the
matriz Us) is unitary for all s).

3. Let Ey(s) be a skew-hermitian matriz defined by the formula (25), and
é\(s) be the corresponding vector in K.

4. The curve 5(s) and the corresponding matriz-valued function I'(s) are
defined by:
5

& (5)ds, T'(s) =T(0)+ CE(G)ds (31)

Y(s) = 7(0) +
0 J0

The proof of Lemma 1 is standard, so we will not present it here.

Remark 1 If the potential g(s)is known, so is the curvature and the torsion.

Indeed one has ]
(

k() = la(s)l ls) = -argq(s), (32)

and the curve v(s) is defined uniquely up to an isometry (see for ezample
(2]). However the reconstruction procedure described above 1s essential for
the approach used in this article.

From Lemma 1 it follows directly:

Lemma 2 The curve 5(s) constructed in Lemma 1 is periodic with period
I = 27 if and only if the following two conditions are fulfilled:

1. The matrzx El(s) defined by the formula (25) is periodic with period 27

~ A~

Ei(s+2m) = E(s). (33)

2. The integral of E\(s) over one period vanishes, i.e.

/02 By (s)ds = {8 8} (34)



3 Periodic theory of Nonlinear Schrodinger
Equation

3.1 The zero-curvature representation

The self-focusing Nonlincar Schrodinger Equation (NLS)

9q(s,t) 0%q(s,t)
ot 0s?
is one of the most important soliton equations. In 1971 V. E. Zakharov and
A. B. Shabat [20] proved that NLS can be integrated by the inverse scattering
method. This method is based on the so-called zero-curvature representation
for NLS (a good introduction to the NLS theory can be found in the book
[7] by L. D. Faddeev and L. A. Takhtajian):
Consider the following pair of linear probleins:

OF (x,t, \)

n % (s, 6) [ q(s, £) = 0. (35)

0D = Uyt )P (1), (36)
?E((;_[ti) =V(x,t, ) F(z,t,)) (37)

where F'(z,t, A) is a vector-valued function
o o filatA)
Pz, t,\) = ( Rty ) (38)

U(z,t,\), V(x, ¢, A) are the following 2 x 2 matrices, which depend polyno-
mially on spectral parameter A:

Ut ) = | | 2 2 (39)

| . 1o, 1, 1
at(](:zj,t)((:l;,t)—51)\2,—5((.—).’;q(:c,t))+§zq(;v,t))\
Viz.t,A) = ) 1 T 1.,
(%q(x,t))—%izq(x,t)/\,—qu(:r,t)q(:n,t)+§z)\(40)



The system (36), (37) is compatible if and only if

oU(z,t,A)  dV(z,t, )
ot oz

(Here [, ] is the standard matrix commutator [A, B] = AB — BA.) A simple
direct calculation shows, that (41) is equivalent to (4).

The representation (41) is called the zero-curvature representation (see
e.g. [7] for additional information).

F U, \), V (2,8, )] = 0. (41)

Remark 2 The word “zero-curvature” means the following. The matrices
Ulxz,t,A), V(z,t,A) can be interpreted as local connection coefficients in the
trivial bundle with base R and fiber C2. Here (z,t) is a point of the base,
F(z,t,\) takes values in the fiber and A is a parameter. Then (41) means
ezactly that the curvature of this connection vanishes for all A.

3.2 The auxiliary linear problem and gauge transfor-
mations

The linear problem (36) is called the auxiliary linear problem for the
NLS equation. It plays a crucial role in the inverse scattering method. We
have a spectral problem for a first-order ordinary differential operator in
the variable z, with a spectral parameter . This operator also depend
on an additional parameter t. We shall study this spectral problem for a
fixed t = to. Henceforth we will drop the #-dependence from the notations
and write U(z, A), F(z,)), q(z) instead of U(z,to,A), F(x,t0, ), q(z,to)
respectively. Also we will rewrite (36) in the following form

_1 i A L iq(z)

2 2

LOVF(z,)) =0, L)) = (42)

a
dz

1. 1.
:Z‘Z(J(CL') 51)\

We are looking for a characterization of potentials corresponding to peri-
odic curves of length [ = 27. Thus we shall study the direct spectral trans-
form for the problem (42) in the class of smooth complex-valued potentials
¢(x) such that

q(s +27) = eq(s). dER (43)
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(It is well-known that ¢ is an integral of motion for the filament equations).

Usually the quasi-periodic spectral theory is much more complicated than
the periodic one. Fortunately in the present case we can handle the situation
(this fact was pointed out in [7]). The reason is that the linear problem (42)
is invariant under the following gauge transformations:

fila, ) =5 ez fi(z, \)
F.,)\ = . —)F",/\ = i ’ s 44
(@A) ( folz, A) (@A) "2 fox, A) (44)
A= A= A=, qlz) = () = e%q(x) (45)

1.+ 1

o o d —§i/\ —2—71(1(.%')
LNF(x,A\y=10, L\ = il B . (46)

- E 1 (](LL') 5 T A

parameterized by « € R.
With the choice ‘

S 47
“= 27 (47)

we have transformed (42) to a spectral problem with a purely periodic po-
tential §(z + 27) = G(x).

The gauge transformation (44), (45) respects the formula (25). More
precisely let 2(x) be a 2 x 2 matrix solution of the equation

L(0)Q(z) = 0. (48)
Then
Qz) = c"%”ZQ(m), 0. = [ (1) _01 } (49)
satisfy
L <—¢—> Qz) = 0. (50)
27
and ~ .
Ei(z) = Q7 (2)IQ(z) = Q7' (2)IQ(z). (51)

The gauge transformation (44), (45) shifts the spectral parameter A. Thus
the A = 0 eigenfunctions of the problem (42) with an arbitrary ¢ are equiva-
lent to eigenfunctions of the purely periodic problem with an arbitrary real
A

11



Taking into account the gauge transformation properties of (42) we ob-
tain the following modification of the recoustruction procedure described in
Lemma 1.

Lemma 3 Let q(x) be a complez-valued smooth function of one real variable
x such that q(x) # 0 for all x. Let Ag € R be a real point in the spectral
plane. Then there crists a curve v(z) (unique up to an isometry of R® ) such
that Hy(z) = e o%y(x) where H is the Hasimoto map. The curve v{(z)
can be obtained by the following procedurc:

1. Let Q(z) be an arbitrary 2 x 2 matriz solution of the following equation:
L{Ag)Q2x) =0 (52)
such that Q(0) is a unitary matriz.

2. Let Ey(z) be the skew-hermitian malriz defined by

Bi(x) = Q' () IQ(x). (53)

3. The function ['(z) is defined by

P'(z) = D(O) + /0 B (i)dz. (54)

3.3 Periodic spectral problem and Bloch variety

For the remainder of this section we shall assume that ¢(z) is a smooth
complex-valued periodic function with period 2.

If we impose no boundary conditions, then the equation (42) has a two-
dimensional space of solutions for any complex A. A point A € C belongs to
the spectrum of (42) if and only if this space contains at least one function
bounded on the whole x-line.

The structure of the spectrum of the problem (42) may be rather com-
plicated (this structure was studied by Y. Li and D. W.McLaughlin in {12]).
Fortunately we do not have to know this structure in detail to construct
explicit solutions.
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Let us fix a basis of solutions g1 (x, \), 3 (x, A):
LGV (2, ) = LGP (e \) =0, JD(0.)) = ( é ) 70,0 = < (1)
(

Denote by ®(x, A) the 2 x 2 fundamental solution of (42):
®(, ) = [0, 1) 770, 4)] (56)
The operator L(A) commutes with the shift operator
Flz) = fla+27). (57)
Thus we have
O(x + 27, \) = O(x, )T (A), where T(A) = ®(27. A) (58)

The matrix T(A) is called the monodromy matrix. For generic A it can be
diagonalized. The common cigenfunctions of L(A) and of the shift operator

1:(;1,,)\) ) L) = ( P (i, A) )

l-»(l) . /\ — 4 e
(/) (74 ) ( Ae! (.’IT, )\) ’(/)52)(.’17,/\)

o
1
z/’)g
LN (2, 0) = 0, W (g + 2w, \) = w2, \), (59)
LD (2, 0) =0, @ (z+ 27, 2) = w@D (NP (2, ))

are called the Bloch fuuctions. The functions ptM(A), p®(X) are called
quasimomenta. The matrix Uz, A) is traceless, thus

wH N wP(N) = L.
A point A € C belongs to the spectrum of (42) if and only if
|w(l)()\)‘ =l

It is convenient to fix a normalization of the Bloch functions by the con-
dition ‘ ’
S0, 0+ 0, 0) = 9P 00) + P (0,0 = 1 (60)

It is easy to check that
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1. The matrix T(}) is holomorphic in A in the whole A-plane.
2. detT(\) =1

3. For all A € R T()) is unitary, i.e. T7'(A) = T*(\) where x denotes
hermitian conjugation.

For a generic A € C T'(A) has two eigenvalues wM(N), w®()) and a pair of
corresponding Bloch functions. In fact there is a holomorphic function w(u)
on a hyperelliptic Riemann surface Y and wM(A) = w(ju), wP () = w(is)
where g1 and jip are the pre-images of the point A under the projection
Y — C (a Riemann surface is called hyperelliptic if is a two-sheeted ramified
covering of the Ricmann sphere). For generic potentials the surface Y is
connected, but there exist exceptional potentials such that Y =CUC.

Any hyperclliptic Riemann surface has a natural holomorphic involution
given transposing the sheets. Let us denote this involution by o:

ad= A, ow(p) =w" (). (61)

Let
P, ) = ( ’Z/)l(”"”) ) o

o, 1)
be a Bloch solution of L(/\(/z,))'(/j(:z:, 1) =0, (e +2m, 1) = w(/1,)'z/_)‘(:1;, j2). Then

,‘/74-(:,;7/1,) = ( —‘/—:/IE(I”’III)I) ) (63)

is a Bloch solution of L(A(u))¢ (x, 12) = 0, G+ 2, ) = o)t (@, ).
Thus on Y there is in addition an antiliolomorphic involution o7 (we use
this notation for historical rcasons):

orA =X, orw() = w(p). (64)

The Bloch solution of (42) 1/;(?[2,”) with the normalization (60) is mero-
morphic in ¢ on Y with poles which do not depend on .
The function

1
p(p) = 5 T w{(ge) (65)
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is called the quasimomentum function. It’s differential

dp(ys) = [%p(m} an (66)
is called the quasimomentum differential. Of course p(y) is defined up
to adding an arbitrary integer. For a generic potential ¢(z) the function p(u)
is essentially multivalued on Y, ie. it’s increment is non-zero along some
cycles in Y. The quasimomentum differential is a well-defined holomorphic
differential on the finite part of Y.

The Riemann surface Y is called the Bloch variety. It plays a crucial
role in the inverse problem for periodic potentials. The structure of ¥ was
studied in details by one of the authors (M.S.) in [18]. Let us recall some
basic facts.

A point A € C is called regular if w(V(\) # w@()) and irregular if
wW(A) = w®()). We shall distinguish 3 types of irregular points.

1. Branch points.
2. Non-removable double points.
3. Removable double points.

An irregular point Ay is called a branch point if going around this point
we come from one sheet of ¥ to the other one (i.e. the monodromy around
this point is non-trivial). If the monodromy around an irregular point Ag
is trivial, then )g is called a double point. In a neighbourhood of a double
point we have a pair of locally holomorphic functions wB(N), w?(N), and
the Bloch functions /z;“)(a;, A, 1/7(2)(33, A) are locally meromorphic. A double
point Ag is called non-removable if 15(1)(37, Ao) = 1/7(2)(.1", Ao), and removable
otherwise.

Lemma 4 Let A be a real point of the spectral plane, i.e. X = X.Then:
1. trT(X) is a real function of A and {trT(X)] < 2.
2. X\ lies in the spectrum of (42).

3. The point X is reqular if and only if {irT(X)] < 2.

15



4. If trT(\) = £2 then the matriz T()) is diagonal

10
TN == [ 01 ] (67)
and A is a removable double point.

The fact that all irregular points on the real line are removable double points
was proved in [18]. All other statements of Lemma 4 follow directly from the
unitarity of T'(A).

For generic ¢(z) Y has infinitely many branch points (and the genus of ¥
is infinite). But the asymptotic structure of Y near infinity is rather simple.
Let € be a real positive constant. Then there exists a constant R depending
on ¢(z) and € such that:

1. If A ec |A > R and |A — k| > ¢ for any integer k € Z, then the point
A is regular.

2. Let k € Z be an integer such, that |k| > R. Then the e-neighbourhood
of the point % in the complex plane contains either a pair of complex-
conjugate branch points or one removable real double point.

A potential (z) is called finite-gap or algebro-geometric if Y has
only a finite number of branch points (the numnber of non-removable double
point is always finite). A finite-gap potential has an explicit representation
in terms of the Riemann #-functions. Using the methods of [18] and [9] it is
rather easy to prove that any smooth potential can be approximated by the
finite-gap potentials.

Finite-gap potentials in the context of the soliton theory first appeared
in the soliton theory in the article [15] by S. P. Novikov (see the book
[19] for additional information). The finitc-gap theory of first-order ma-
trix differential operators, including the 6-function formulas was developed
by B. A. Dubrovin (sce [5]). The algebro-geometrical solutions of the NLS
equation were studied by E. Previato in [16].

An analog of the finite-gap theory for generic periodic potentials can also
be developed. For the first-order matrix operators including the NLS case it
was done by one of the authors (M.S.) in [18].

Let us recall some useful formulas from [18].
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Lemma 5 1. Let A € C be a regular or a removable double point and let
uy and po = oy be the pre-images of A. Then

2n
.Of (1 (e, i )b (, po) + 0o (i, g )Y (2, )] dx

4m [ (0, 1) (0, i) — 45(0, 111 )2, (0, 112))]

dp(p) = - dA(p1) (68)

2. Let A € C be a removable double point, j1; be one of the pre-images of
A. Then

27
| G ), s = 0. (69)

Proof of Lemma 5. Let 11, v be an arbitrary pair of points in Y and A(u),
A(v) their projections to the A-plane. A dircet calculation shows that

d

= [ 10)al,0) = o )i (2,)] =

1

= =5 (A0 = AW)) [z, o, v) + alz, whihr (2, 0)]. (70)

Integrating (70) over a period we get

(w(p)w(r) — 1) [, (0, n)ha(0, 1) — (0, )11 (0, V)] =

2O =20 [ W kil ) + il () ()

To prove part 1 let us assume that v = py, 1t = 41 + 6, 6 — 0. From the fact
A is a regular or a removable double point it follows that the Wronskian in
the denominator of (68) is non-zero. Then (68) follows directly from (71).

To prove part 2 let us assume that g =y, v = p1; + 9 where 6 — 0. The
left-hand side of (71) has at least a second-order zero as d — 0, (A(u) — A(v))
has a first-order zero, thus the integral at the right-hand side of (71) vanishes
as & — 0. This completes the proof.

4 Riemann surfaces corresponding to peri-
odic curves

We now state the main result of our article.
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Theorem 1 Let ¢(z) be a complez-valued smooth periodic function of one
variable z, q(z) # 0 for all z, q(z + 27) = ¢(z), Ag € R an arbitrary real
number, I'(z) the corresponding curve constructed in Lemma 8. Then

1. The matriz El(r) is periodic with period 2, i.e. Ei(z +27) = Ei(x),
if and only if Ao is a double point of the Bloch variety Y (let us recall
that any real double point is automatically removable).

2. The function ['(z) is periodic with period 2w I'(z + 2n) = ['(x), if and
only if Ao is a double point of Y and dp(p1) = 0, dp(p2) = 0 where pu,
o are the pre-images of Ay under the projection Y — C.

Proof of Theorem 1. Let j1o be one of the pre-images of Ag, let

—~ (s, jip)
W(x, pg) = 72
V(. ) ( P2(, f10) (72)
be a Bloch solution of (42) with a normalization such that
(0, 110) 401 (0, 10) + 12(0, p10)2(0, 20) = 1. (73)
Ay is real thus ~
e | —a(z, po)
(f)('na O-/‘LO) - < ’l/)] (-’E,/l'()) ) (74)
and the matrix ( ) o )
Yi(x, o) —y2(T, Mo
Qfr) = - 75
(€) [ $a(, o) Pi(, o) (%)
is unitary, satisfies (52) and one has
. . . ’I,U(/l,()) 0
Qz + 27) = Q=) [ 0wl } : (76)

Thus for the function E,(z) defined by (53) we have

Ei(z+2m) = [ ’w"lo(po) w((Lo) ] Ey(x) [ w((l)l’()) w"lo(uﬂ) } - (77)

From (77) it follows that E\(z + 27) = F\(z) if and only if one of the
following two conditions is fulfilled:
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1. Ey(z) is diagonal for all z.
2. wlug) = £1.

If the matrix E\(z) is diagonal for all x then ¢(x) = 0, but q(z) is ev-
erywhere non-zero by assumption. Thus w(j,) = £1 and Aq is an irregular
point. By Lemma 4 Ay is therefore a removable double point.

A simple calculation shows that

[ Beae= |5 7] 9

where o
a=1 /0 D1, o)1 (T, o) — o, ro)a(z, po)dz, (79)
2
b= —273/0 Wy, po) v (x, jog)dx. (80)
By Lemma 5
Ip(1)

b=0, = —

) =10, a s Y0 (81)

B=po

Thus a = 0 and I'(x + 27) = ['() if and only if dp(uo) = 0. Theorem 1 is
proved.

5 Deformations of Bloch varieties and peri-
odic solutions of the Filament Equation

It 1s well-known that if the Bloch variety is algebraic, then the solutions of
the soliton equation can be written explicitly in terms of the Riemann 6-
functions. Such solutions are called algebro-geometric or finite-gap. But if
we start from a generic algebraic Riemann surface, then the corresponding 6-
functional solutions are quasi-periodic in space. Riemann surfaces generating
purely periodic solutions form a rather complicated transcendental subvariety
in the moduli space of all Riemann surfaces (let us call it the “Periodic
subvariety” ).

A characterization of this subvariety for the periodic Korteveg-de Vries
equation in terms of conformal maps was obtained by V. A. Marchenko and
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I. V. Ostrovski in [13]. Another approach to construct periodic solutions of
soliton equations is based on the so-called period preserving deformations of
Riemann surfaces and it was suggested by the authors in [9]. Let us recall in
brief the results of [9] concerning the self-focusing NLS equation. To explain
our ideas, for the sake of transparency we shall consider generic algebro-
geometric potentials only. The case of gencral periodic potentials can also
be studied by the same method, but it requires some more details from the
soliton theory.

Let ¢q(z) be a generic non-singular algebro-geometric NLS potential with
period 27 g(z + 27) = g(z). Then the associated Bloch variety ¥ has the
following propertics:

1. Y has a finite even number of branch point Ay,. .., Azgq2, Im Ay # 0 for
all k£, the enumeration can be chosen such that Aokr2 = Aokt1. g 18
called the genus of .

2. Y has two distinct points over A = oo. Denote these points by ooy
and co_. A local parameter in a neighborhoods of these points can be
chosen as v = 1/A.

3. Y has no non-removable double points.

4. The quasimomentum differential has the following representation:

Ip(p) = —% ueh i\,
([)(,“) 2 \/()‘"Al)-u(/\—)\zg+2)( (82)
where A = M), ¢(A) = AT+ g M + ...+ @A+ gos
where the real constants go, qi, - - -, ¢y are uniquely defined by:
Iin fdp(u) =0, res dp(p) =0, (83)
& p=z00c

where ¢ being an arbitrary closed cycle in Y.

5. Let ¢ be an arbitrary closed cycle in Y. Then

;{ dp(y) € Z. (84)
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6. Let ¢ be a path in Y connecting the points ooy and oo_, let p(u) be a
primitive of dp(u) defined on ¢ with the following normalization:

A 1
p(p) = ——%Q +0 <X> as fL — 004, - (35)

Then

. A 1
p(p) = (;L) +k+0 (X) as jt — oo_, where k € Z. (86)

F4

Let Y be an arbitrary hyperelliptic Ricmann surface with the properties
1)-3) listed above. Then we can construct a family of NLS solutions corre-
sponding to Y (see for example [16]). The rcal dimension of this family is
g+ 1. Some of these solutions may have singularities, but it is not important
in the present context. The quasiperiods of these solutions depend only on Y
and are the same for the whole family. It is well-know that Riemann surfaces
generating purely periodic in 2-space solutions can be characterized in terms
of the quasimomentum differential (see for example [9]):

Lemma 6 Let Y be a hyperelliptic Riemann surface with the properties 1)-

3) listed above. Let q(x) be one of the potentials corresponding to Y. Then
q(z) is periodic with a period 2w q(x + 27) = q(x) if and only if a meromor-
phic differential dp{y) uniquely defined by the formulas (82), (83) has the

properties (84)-(86).

In the finite-gap theory the differential dp(y¢) is called the quasimomentum
differential for both the periodic and the quasiperiodic solutions.

Assume now that we have a family of Riemann surfaces Y (§) such that
the following equations, introduced by L.M. Krichever [11], N.M. Ercolani,
M.G. Forest, D.W. McLanghlin, A. Sinha [6], and one of the authors (M.S.)
[18] are fulfilled:

01){/L= £) _w(é) (87)
o€ d (1)

p=const

where any fixed € w(ji, &) = &(p, €)dA(p2) is a meromorphic differential on
Y (£) having no poles outside the points 0o, 00— and at most first order-poles
at the infinite points. Let us recall that any such meromorphic differential
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can be written in the following form

€)= 1 o) dA
w(p, €) 2 /O M(€) - (A=dog+2(8))

(88)
where A = A(p), o(X, &) = 0g(E)N + ... 4+ 01 (§) A + 0(&).

(We shall assume that 0,(€) arc smooth functions of €). Assume that Y(0)
generates periodic potentials, and for all § the surface Y (§) admits the an-
tiholomorphic involution o7. Then Y (§) generates periodic potentials for all
.

The proof of this fact is based on Lemma 6 and the following observation:
The function on the right-hand side of (87) is single-valued on ¥ and decays
as y — oox. Thus the deformation (87) affects neither the periods of dp(u)
nor the asymptotics of p(p) at infinity.

It is well-known that cquation (87) is equivalent to the following system
of ordinary differential equations on the branch points (see [8])

(6 o) )
05 (1(’\7 E) .
The right-hand side of (89) involves hyperelliptic functions of the branch
points because we have to calculate integrals (83) over periods of Y to deter-
mine the coefficients of ¢(X, €). In [9] it was shown that the system (89) can
be naturally embedded into a slightly bigger system of ordinary differential
equations with a rational right-hand side.

Denote by ax(€), k = 1,...,g + 1 the zeroes of the polynomial g(}, §)
(we shall call them the zeroes of the quasimomentuimn differential). In fact
dp(u, €) has zeroes at both pre-images of cach y,(€). Since we consider only
generic surfaces, we may assume that all v, (&) are pairwise distinct.

Lemma 7 Letw, (1, &), k=1,...,g9+1 be the following basis of differentials
on Y(£)

k(1 8) = Ty O, A= A (90)

Let "
w(i,6) = 3 cpl€)wilin, €) (91)

k=1
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where ¢, (€) are arbitrary complex constants. Then the flow (87), generated
by the differential w(u, &) has the following representation:

(e _ _gi‘ ok ()
N GG
) cx(E)e, 2942 (92)
9a; () _ D k(e () 1 ex(€)
aé o1 gar OO T 2 & N O-au(d)
k#)

Lemma 7 was proved in [9].

For generic complex ¢ (£) the flow (92) does not respect the symmetry
Agji2(€) = Agj+1(€) . To construct NLS solution we have to add additional
restrictions on ¢, ().

If Y (£) has the symmetry Ay;12(€) = Agjy1(€), then the polynomial g(A)
has real coefficients, and there are two types of zeroes o (€):

1. Real zeroes oy (&) = . (€).

2. Pairs of complex conjugate zeroes (&) = ax(€).

Lemma 8 1. Let the functions ck(§) be chosen such that for all € the
following conditions are fulfilled

(a) If (&) is a real zero of the quasimomentum differential, then
cx(§) = ax(§).

(b) If cr(€), cv{€) is a pair of compler conjugate zeroes of the quasi-
momentum differential, then ¢;(&) = ¢, (€).

Then the flow (92) respects the symmetry Aoj12(€) = Agjp1(€).

2. Consider the subvariety of all hyperelliptic Riemann surfaces generating
periodic solutions of the self-focusing NLS in the moduli space. Let Y
be a generic point of this subvariety. Then the flows described above
act locally transitive at this subvariety.

The first statement of Lemma 8 follows directly from the formulas (92). To
prove the last statement it is sufficient to calculate the number of conditions
in a generic point (sce [9] for details).

The algorithm for constructing periodic solutions of the self-focusing NLS
suggested in [9] is the following: Assume that we know at least one Riemann
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surface with 2¢ + 2 branch points generating such solutions. Such a surface
can be constructed in a neighbourhood of a constant solution by methods
of perturbation theory. Then integrating the system of ordinary differential
equations (92) we can construct all NLS solutions in a neighbourhood of the
original one. (In fact, any NLS solution can be constructed by this method,
but to reach some of them we have to pass through singular points of the
system (92).)

Let us show that the method of [9] can be naturally applied to construct
periodic solutions in the z-space of the Filament equation. (Let us recall
that if the curve 7(z,t) is periodic in z for a fixed t = #o, then it is periodic
in z for all ¢ and the z-period does not depend on t.)

Theorem 2 Let Y be a hyperelliptic Riemann surface such that:

1. Y is a Bloch varicty corresponding to o smooth periodic potential q(x),
q(z + 27) = ¢(x).

2. Y has 2g + 2 branch points and no non-removable double points.

3. There exists a point Ag € R such that

(a) Ag is a removable double point, i.c. the values of the quasimo-
mentum. function p(p) at the pre-images of Ao are integer or half-
integer.

(b) Ay coincides with one of the zerocs of the quasimomentum dif-
ferential. Since the zeroes of the quasimomentum differential o,

.., (tgs1 have no natural order, without loss of generality one
may assume therefore Ag = cgq1.

(Let us recall that by Theorem 1 the pair (Y, Ay) generates periodic solutions
in z-space of the Filament equation).

Let c(€), k= 1,...,9+ 1 be arbitrary smooth complez-valued functions
of a real variable & defined in a neighbourhood of the point £ = 0 such, that:

1. For all € the c(€) satisfy the reality conditions of Lemma §.
2. co+1(£) = 0.
Let \e(€), k=1,...,20+2, ax(§), k=1,...,9+ 1 be a solution of the

system (92), with the following indtial conditions:
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1. X¢(0) are the branch points of Y.
2. Oik(O) = .

(This solution is non-singular at least for sufficiently small £).
Let Y(&) be a family of hyperelliptic Riemann surface with branch points

Ak(€), Ao(8) = g1 ().
Then for all sufficiently small real €

1. The pair (Y (€),Ao(€)) generates periodic solutions in x-space of the
Filament equation.

2. The non-singular solutions form an open subset in the g+1 dimensional
variety of all solutions of the Filament Equation corresponding to Y (£).

Proof of Theorem 2. By Lemmas 7 and 8 the Riemann surfaces Y (€) generate
periodic solutions in z-space of the self-focusing NLS with period 27. For
all £ Ag(€) is a zero of the quasimomentum differential, which is real. By
Theorem 1 it is sufficient to prove that Ag(€) is a double point of Y (€). Let
1o(€) be one of the pre-images of Ag(€). Ag(§) is a double point of Y (€) if
and only if p(10(§), &) = n or p(pe(€),€) = n + 5 where n € Z.

From (87) it follows, that

o wn©.8 4 1o €)
%p(:“’[)(\g)vg) - (])\(,LL) + (]ﬂp(/ag) y o (€) df

(93)
where the differential w(y, €) is defined by the formmla (91). Since Ag(€) co-
incides with one of the zeroes of the quasimomentum differential, the second
term on the left-liand side of (93) is equal to zero. Since ¢,41(§) = 0 and
thus w(pe(€), &) = 0 and therefore

d

jg[}(hg(f%f) =0, p(jp(€)) = const. (94)

This completes the proof of the first part. A proof of the second statement
can be extracted from [18].
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