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1 Introduction

The problem of the space charge influence on the beam dynamics in transport lines can be
studied by different methods, depending on the goals. The only solution for a uniform density
continuous beam is the Kapchinsky-Vladimirsky distrtibution [1]. Many computer codes
have been developed to take into account non-linear space charge fields, various magnetic
and electrostatic elements, beam bunching etc. [2, 3, 4, 5, 6, 7, 8]. The space charge influence
on the transverse ion beam dynamics in the axial injection line for the U400 cyclotron has
been investigated by use of the method of the distribution function moments [9], [10]. No
particles are traced in this approach. The information computed concerns averaged values
(transverse beam sizes and velocities, cross terms). The method previously had been applied
for the calculation of a high intensity beam injection line for the INR Meson Factory (Troitsk)
[11]. The program used then has been substantially revised now to extend magnetic elements
available for a user, to make it comfortable in the interactive mode and to provide it with
the proper graphics.

2 Moment Method Use for Beam Transport Calculation

Let us define second order distribution function moments matrix M
M, M
I _ TT TV
M= ( ML M, ) : o

M =5 = / Foic;d3ds, MY =7 = / Feiv;dEds,

Mo = 5 = / fuwdZds, 0,5 =1,2. (2)

Here f is the beam distribution function, and z;, v; are particle coordinates and velocities.
The evolution of the matrix M under beam transportation through a beamline with linear
electromagnetic fields is defined by the system of equations {10]

dM,

— 2 = M., + M?,
ds + v
Mz, =M,, + M, .B*+ M}, A",
ds
di;l”" = BM,, + M:,B* + AM,, + M, A*, (3)
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where s = v,t and v, = Bcare longitudinal coordinate and velocity, the matrix 7 includes ex-
ternal and space charge forces, matrix A4 includes external forces only (magnetic field defined
by particle transverse motion is neglected), the matrices M*, A*, B* are transposed matrices
M, A, B. The matrices 4 and B for typical magnetic elements are given in Appendix.

Space charge forces in (3) are considered to be linear, that is correct for the beam dis-
tribution functions with a particle density constant on 4D ellipse in transverse beam phase
space [10], [12]. In this case

.1 M2
Bt SpMiL
with Alfven current I, = ByAmc?/Ze,~ is relativistic factor, Am and Ze are ion mass and

charge. Matrix M}/? is defined by conditions M2 MM = My,, MY? MZM2 = 1, [ s the
unit matrix. Direct calculation gives for the elements of the matrices M2 and M ~1/2
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Tz [SpM. + 2(detM,,) /2172 My = M,5", (5)
M M Sl M e o MR
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where M;; are elements of the matrix M,,.

3 Brief Description of Program

The program is based on solving of 10 differential equations (3) by 4* order Runge-Kutta
method. Moments of the fisrt order can be added easily. It has been written for IBM PC, and
Is used in interactive mode, with graphic presentation of results. File with beam parameters
along a beamline is also available.

Along with magnetic elements listed in Appendix, arbitrary solenoidal magnetic field
given by user, is accepted also. After the first beam transportation through a beamline
program puts in the memory beam parameters at the entrance and exit of every element.
For the next variant, user can change parameters in arbitrary element and start from it,
keeping envelopes before untouched. The beamline parameters can be optimized in order to
fit the M matrix elements.

4 Space Charge Effects in Axial Injection Line for U400 Cyclotron

The following parameters of the beam were used under calculations: both horizontal and
vertical sizes are equal to 0.4cm, the emittance is 150rmm-mrad. Two variants of ion mass
to charge ratio A/Z equal 5 and 10 have been used under investigation. The beam kinetic
energy at the injection line entrance corresponds to the ECR source voltage of 26.5kV and
13kV for these cases respectively. The parameters of the axial injection line from the ECR
ion source for the U400 cyclotron are summarized in Table 1.



Element Maguctic field Length  Aperture/Gap Pole face angle

kGs 1n cm degree
Magnetie field of BCR sontce  from 7.4 to 0 0.44
Drift space 0.21
Solenoid <6.0 0.134 8.5
Drift space 0.321
Analysis magnet, 102° 1.4998/1.488%  0.3115 7 33.5
Drift space 1.433
Vertical bending magnet, 90°  1.3124/1.3024  0.31416 8 26.5
Drift space 1.10
Axial magnetic field 0.2 0.1
Drilt space 0.25
Solenoid < 1.7 1.12 21.5
Cyclotron magnetic field up to 22.2 2.3875

Table 1: Parameters of Axial Injection Line for Cyclotron U400

Two values of magnetic fields given for the analysis magnet and for the vertical bending
magnet correspond to A/Z equal to 5 and 10 respectively. For the solenoids the maximum
magnetic fields are given. It should be noted that second solenoid has three equal sections
with independent power supply.

In the beginning of the study, optimized values of the beam sizes at the end of the
beamline in the absence of space charge fources have been found. They are oy=5.4mm,
o,=3.5 mm for A/Z=5 and ¢,=3.7 mm, ¢,=6.0 mm for A/7Z=10. It is necessary to note
that the strong axial magnetic field (more than 20 kGs) of the U400 cyclotron at the end
of the injection line makes the control of the exit beam parameters to be very difficult. To
improve it, the installation of two quadrupoles located after the vertical bending magnet 1s
under consideration.

With taking into account space charge forces (and keeping magnetic fields in solenoids
unchanged), the beam sizes at the end of the injection line are increased, as it is shown in
Fig.1 and Fig.2. From these figures one concludes that the space charge effects are important
when current I > 500gA for A/Z=5 and I > 150pA for A/Z=10.

The influence of space charge effects on beam envelopes in the injection line for A/Z=5
and curreni ] = 1000gA is shown in Fig.3 and 4. For comparison the beam envelopes in
the absence of space charge effects (1=0) are shown also. The beam sizes at the end of
the injection line are increased to o,=59mm and o,=8.8mm compared with g,=5.4mm
and o,=3.5mm for negligible space charge effects. To improve beam envelopes the solenoid
strengths have been readjusted. As a result the beam sizes for J =1000¢A have been made
very close to those for I = 0 (Fig.5 and 6). After optimizatior beam sizes at the end of the
injection line are 0;=5.2mm and o,=4.8mm.

The beam envelopes in injection line for A/Z=10 variant without space charge forces
are shown in Fig.7 and 8. The space charge effects in this case are much more stronger in
accordance with AvA/Z scaling (formula (4)). The beam sizes at the end of injection line
are 0,=13.1mm and o,=9.8mm. Readjusting of the solenoids strengths is not so effective as
in the previous case, but keeps beam sizes tolerable (Fig.9 and 10). The beam sizes at the

end of the beamline are ,=6.6mm, ¢,=7.2mm.
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Figure 1: Dependences of the beam sizes at the end of injection line versus current for AJZ=5.

160 —
Oy
120
g Oy
>
Lo
O oso0
H
040
o
0 10 200 30 400 500

LuA

Figure 2: Dependences of the beam sizes at the end of injection line versus current for A/Z=10.
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Figure 3: Horizontal beam envelopes for A/Z=5, 1=0 and 1=1000 xA. No optimization has been made in

solencid strenghs.
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Figure 4: Vertical beam envelopes for A/Z=5, 1=0 and 1=1000 pA. No optimization has been made in

solenoid strengths.
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Figure 5: Horizontal beam envelopes for A/Z=5 in the absence of space charge effects (curve marked by

1=0), and for current 1=1000 pA. For the second case injection line has been optimized.
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Figure 6: Vertical beam envelopes for A/Z=5 in the absence of space charge effects (curve marked by 1=0),
and for current 1=1000 ;A For the sccond case injection line has been optimized.
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Figure 7: Horizontal beam envelopes for A/Z=10,1=0 and /=500pA. No optimization has been made in

solenoid strengths.
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Figure 8: Vertical beam envelopes for A/Z=10, I=0 and I=500uA. No optimization has been made in
solenoid strengths.
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Figure 9: Horizontal beam envelopes for A/Z2=10 in the absence of space charge effects {curve marked by
1=0), and for current I=500 pA. For the second case injection line has been optimized.
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Figure 10: Vertical beam envelopes for A/Z=10 in the absence of space charge eflects (curve marked by
1=0), and for current [=500 pA. For the second case injection line has been optimized.



Appendix: matrices A and B for magnetic elements

Solenoid with axial magnetic field B.

[}"’“ _ € (?B:(S) ( 0 1 ) A(f[ — (?B:(S) ( 0 1 >‘ ([\])

T 28ymc? 0= -1 0 T Bymez \ -1 0

quadrupole with gradient G

or eG -1 0 .
B ( 0 1 ) v A =0, (A.2)
horizontal bending magnet (sector type)
peree B\ 10 T "
- Ayme? 00 ) Hee=U (A3)
vertical bending magnet (sector type)
et B, )2 B R AA)
= - . A =0, A.
Byme? ) (U 1 ! (
accelerating cavity
1d
Aerl — __% ] (AS)
- ds

To take into account pole face rotation, we use well known formulac for beam coordinates
and velocitics transformation for a particle passing through edge lens [13]. If pole face
rotation angle is @ and bending radins is p, then new coordinares and velocities are expressed
through old ones in a horizontal bending magnets by

¥ 1 0 00 af 2y
1’2 _ 0 1 00 .]'g W J'g
(A S? 0 o P | W o) | (A.6)
v 0 - '—“{',ﬂ 01 vy vy

For a vertical bending magnet « is changed to -a. Then elements of moment matrix M are
transformed accordingly

My = 2lzp = (W=),(W:=0)) = W2P(00 W = i arie, (A7)

where 2 = (), 72,v1,v9) and W* is transposed matrix 1.
y T2, U1



5 Conclusion

The results of calculations show, that the space charge influences essentially on the ion beam
dynamics in the axial injection line. when the beam current exeeds 500#:‘\ for A/Z=5 and
150pA for A/Z=10. The space charge effects can be corrected by proper readjusting of
solenoid fields for currents up to 1500pA (A/Z=5) and 500pA (A/7=10). The next step to
take into account ions with different charges which influence strongly on the ion beam with
selected charge through the injection line up to analysis maguet is now under consideration.
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benouwnukuit I1.d., Ulesuos B.d. . E9-97-90
DgxbexThl NPOCTPAHCTBEHHOIO 3apsiia
B KaHa/le aKCHAIbHOH MHXEKUMH UHKIOTpoHa ¥Y-400

HcenenoBaHo BiMsHHE NPOCTPAHCTBEHHOTO 3apsia Ma TPAHCMOPTHPOBKY 1y4Ka
B KaHase aKCHaIbHOH HHXEKUMHU LUHKiI0TpoHa ¥-400. H3ydeHue npoBeneHo MeToa0M
MOMEHTOB "DyHKLMH pactipenenenus. Uucnennoe pewieHie cucteMbl u3 15 ypas-
HeHHi obecrieynBaeT GbicTpOe BLIYHC/IEHHE MOMEHTOB EPBOIO H BTOPOrO NOPSAKOB
(CpenHeKBapaTHUHBIX NONEPEYHBIX PAIMEPOB W CKOPOCTEH, HEMMATOHANBHBIX Ulle-
HOB) BAONb KaHata. Jnd KaHala akCUanbHON HHXEKLHW B uuksioTpoHe Y-400
ONpEAe/ieHa BENHYMHA TOKA, NPH KOTOPOM 3thdbeKThl MPOCTPAHCTBEHHOIO 3apsiaa
OKa3bIBAIOT 3aMETHOE BITHAHHE Ha AMHaMUKY Nyuka. [lokasaHo, uTo npu nocrarouno
OOMBIWINX TOKAX ONTHMHU3ALMEH CONEHOMAATBHBIX JIHH3 MOXHO B 3HAUMTENbHON
CTENEHH KOMIEHCHPOBATh 3EKT NMPOCTPAHCTBEHHOTO 3apsa.

Pabora srinonnena B JlaGoparopuu sineptbix npoGnem OUSIH.

Coobiuctue OGLEAHHEHHOIO HHCTHTYTA RUCPHBIX HeCaelopannit. HyGua, 1997

Beloshitsky P.F., Shevtsov V.F. : : E9-97-90
Space Charge Effects in Axial Injection Line
for U-400 Cyclotron

The space charge influence on the beam dynamics in transport line is studied
by the method of the distribution function moments. Fifteen equations describing
dependence of the first and second order moments (average transverse beam sizes
and velocities, cross terms) on longitudinal coordinate are :;qlved numerically.
For particular U-400 cyclotron injection line the value of current which produces
significant effect on beam dynamics is defined. It is shown that space charge effects
can be compensated by proper readjusting of the solenoid strengths.

The investigation has been pc(rformed at the Laboratory of Nuclear Problems,
JINR.
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