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IMAGE EFFECTS OF CYLINDRICAL PIPES ON CONTINUOUS BEAMS!

Christopher K. Allen and Martin Reiser
Institute for Plasma Research
University of Maryland
College Park, MD 20742

We analyze the image effects of a cylindrical pipe on continuous beams with
elliptical symmetry. Differential equations involving the second order moments of
a particle distribution are derived. The self-force components are calculated,
including the image forces. From the moment equations, a set of KV type equations
are developed which include the image effects of a cylindrical beam pipe. These
equations are used to analyze the image effects Jor FODO channels, sheet beams,
and a quadrupole maiching section.

1.0 INTRODUCTION

In most accelerator applications a particle beam must propagate through a conducting beam
pipe. If the beam dimensions are comparable to the pipe dimensions then the image forces from the
pipe will affect the beam dynamics. Usually these are unwanted effects, so by studying such
phenomena we hope to develop techniques to minimize their influence. In previous works we have
analyzed image effects for axisymmetric bunched beams in cylindrical pipes. In this paper we
continue the analysis for continuous beams having elliptical symmetry. The primary application of
these results would be the analysis of magnetic quadrupole transport systems.

In this report we consider continuous beams centered
on the z axis, the axis of propagation, having elliptical
symmetry. By elliptical symmetry, we mean that the beam is
symmetric across the planes x=0 and y=0. Elliptical symmetry
also implies that the charge density of the beam in the
transverse directions must be constant along concentric
ellipses. We assume the beam pipe to be cylindrical with
radius 5 We also assume the pipe to be perfectly conducting
and, for necessity in constructing the Green's function, we
hold it at ground potential (this does not affect the analysis).
Figure | depicts the example situation of a uniform elliptical
distribution in a cylindrical pipe. A transverse cross-section
of the beam and beam pipe is shown lying in the xy plane.
The beam is centered on the z axis (not shown) corresponding Figure 1. Example geometry of an
to the point (x,y) = (0,0). The beam has x envelope a, and y .elhpson.dall)‘/ symmetric uniform beam
envelope a, Of course, for more general distributions a.and Ina cylindrical pipe.
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a, will no longer be the x and y envelopes of the beam, but will be the major and minor semi-axes of
ellipses along which the charge density is constant.

1.1 The Equivalent Beam Concept
Our work is essentially an extension to the results of Sacherer’. He derived a set of coupled,

Kapchinskij-Vladimirskij4 coupled-envelope equations (KV equations). Indeed, for the uniform
distribution these equations are the KV equations exactly. This result leads to the concept of the
equivalent KV beam.

Sacherer's formalism allows us to model any continuous beam with elliptical symmetry with
an equivalent KV beam. This equivalent beam is a uniform-density, continuous beam having elliptical

cross-section and having the same second moments as the actual beam under study. The second

long as the r.m.s. beam envelopes and modified emittance values are used in the equation.
The main achievement of our work is the addition of terms to the KV equations which

1.2 Limitations and Assumptions
The major shortcoming of this work is the assumption that the r.m.s. beam emittance is either
constant or known a priori. The forehand knowledge of the r.m.s. emittance through the beam

would be to determine under what conditions image forces play a significant role in the beam
dynamics, rather than the precise prediction of beam behavior under the influence of image forces.

In this paper we neglect longitudinal effects. That is we assume that the continuous beam
expands and contracts gradually enough to ignore the longitudinal self-fields. Also, this implies that
the focusing system is ideal in that no axial forces are produced. With these assumptions we may

cross-section. Thus, for each axial location z we may describe the beam by a distribution function
of the transverse phase-space variables x, Poy, andp,




2.0 MOMENT DIFFERENTIAL EQUATIONS

In this section we develop the differential equations which describe the axia] evolution of the
particle distribution's second moments. We do so by differentiating the moments of the distribution
to yield a set of ordinary differential equations with z as the independent variable.

2.1 Elliptically Symmetric Distributions and Their Moments
Let n(x, Y:P.p,2) be the distribution function for the beam. We [et n(x,y;z) denote the
marginal distribution function of the configuration coordinates, that is

nx,y.z) = [fn(x,y,px,py;z)dpxdp,,- (1)

The condition of elliptical Symmetry may be expressed by requiring n(x,y;z) to be >f the form

2

2
n(x,y;:):f( A 'Z)’ (2)

alz) ale)’

where a () and a,(z) are real, positive-definite functions of z which represent the semi-axes of the
concentric ellipses, and fis a positive semi-definite function on the set [0,«)xR . Henceforth, for
convenience in the analysis we will usually suppress the explicit z dependence in ». J.a_ and a, Note
that the above form also implies that the beam is centered on the axis of propagaticn. Denoting the
total number of particles per cross-section as N, we see that

y 2 2
ff/{x_m_de@,
a?! a?

. x y

aarmn f As)ds |
0

N

(3

where the substitutions x = a.rcosBand y = a,rsin® where used to reduce the integral. We note
that since we are dealing with a continuous beam N must be constant with respect to z.

We now define the moment operator (-) with respect to the distribution #. For an arbitrary
function A(x, Y.PsP,2), the moment operator is defined as

(h) = —/:/ [ f:[f h(e.y.p,.p,2)n(x.y,p_p \Z)dedydp dp 4)

Note that the moment (4) is still a function of the axial coordinate z.

In the Vlasov regime we know that the total time derivative of 7 is zero (this corresponds to
conservation of particle number). Therefore, in a continuous beam where all the particles have the
same axial velocity v, we have dldi=(d/dz)(dz/dt) or didz=(1V)d/dt and we see that the total axial
derivative is also zero. This condition allows the operators d/dz and (-) to commute. That is (h)'=(A")
where the prime indicates differentiation with respect to z.
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2.2 Equations of Motion

Fleyz) = -kf(z)x + qE (x.y),
6
Fe2.2) = ~k@y ~ gE (x.y), ©

where ¢ is the particle charge, 4,(z) represents the external focusing force in the x direction, and £,
is the electric self-field in the x direction. Analogous definitions exist for the y equation.

We may write differential equations for the moments of the distribution » by differentiating
the moments with respect to the axial coordinate z. Since the Vlasov equation allows us to
differentiate under the moment integral, we may substitute Newton's equations in for the second
derivatives of x and Y. Using the above forms for the forces in the x and y directions, we have the

following equations for the second moments in the x direction (see Sacherer):

(x) = 2(xp.),
k (z)
Cp )" = p2) - (et o 4 (g
P b Ymy? ) Ymv? * )
2k '
(P2 = - x(z)<pxx) - (p.E),
Ymvy? ymv?

where p,=x’ and we have substituted (1/v)d/dz for d/dy in Newton's equations. There exists a similar
set of differential equations for the y direction.
There are two unknown terms in the above equations, (x£_) and (p.E). The term (xE) will

€. [<x2><px2> - (prC)le/z: [(xz)(xa) - (xx’)zjm,
~y _ [(yzxpyz) _ <ypy>2]1/2= [(yzxy/z) N (yy/>211/2.

m
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m
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For systems where all forces are linear, it is known that the r.m.s. emittances are invariant®. If there
exist nonlinear forces (say in E,) we simply assume that either €, is constant or its variation is known
a priori. We may eliminate (p,?) in Eqs. (7) using the first of Egs. (8). Equations (7) may then be
rewritten as one second-order differential equation. Performing a similar procedure for the y
equations yields the following set of differential equations for the second spatial moments:

ety - L 266G (x?) - 24 (xE_) - oy =0
2x?) ymv? Yymv: {x?) ,
9
/ 2512 2k (2) 2¢ 7
v [<2y< >z>] et S o
y ymv ymv y

3.0 COMPUTATION OF (xE)
The only unknown in the first of Eqgs. (9) is the quantity {x£ ). Sacherer computed this
quantity for the free-space situation® He found the surprisingly simple result

qN a. B} qN <x2>1/2
e, a -+ a, ame, (xH12 . (y 12

x£) =

(10)

Note that the above value is independent of the distribution. Substituting this expression for (xE)
in Eqs. (9) leads to Sacherer's equations for the r.m.s. beam envelopes (x?" and (y2)* However, we
wish to include the effects of images in this model. Therefore, we seek to calculate (xE) in the
presence of a cylindrical pipe.

3.1 Polar Coordinates

We will do the field calculations using a two-dimensional analysis in the xy plane. We will
also find it convenient to use the polar coordinates (r,0). The charge distribution p has the following
form in polar coordinates:

2 2
p(r.0) = qf[i2 +y—2J = qf(r*u(®)), (11)
a a
x ¥
where the function #(0) is defined
_ cos?®  sin?0
«0) = S, W2, (12)
x ¥

Since we are interested in the computation of (x£ ), we wish to express this value in polar
coordinates. We find that

E(r,0) = E(r,0)cosB - Ey(r,0)sin6 . (13)
Therefore,

(xE ) = (rcos’OE ) - (rsinﬁcoseE9>. (14)

-5.




3.2 Green's Function for Poisson's Equation
Poisson’s equation in polar coordinates (r, ) is written

Vi(r.0) = ii[r@] L 1P _p(r0)

r or or r2 ﬁ GO

(15)

where ¢ is the electrostatic potential. We use the Green’s function, denoted g(r,0:1,0.), to invert
this equation. It solves the system

&(r-r)8(0-96
Vig(r,0,r,6,) = - (rr)% x),

©o (16)
g(6.0:r,0)=0 for all 8,0 €[0,2m), r.€[0,8],

where 8(x) represents the Dirac delta function. Note that g(r,0:r,0,) is the potential at the field point
(r.8) due to the unit source at point (r,8,) when the beam pipe is held at ground potential. The
solution to Eq. (15) may be wnitten

n b

&(r.0) = ffg(r,6;rs,Gj)p(rx,G:)rsdrjdﬂs. (17)

00

One representation of the Green’s function is obtained by expanding it in terms of a
trigonometric series in the 6 coordinate. That is

o

gr.0) = Y g(nen, (18)
where the g (r) are the coefficients of the expansion. The solution to Eq. (16) using this expansion
is given as®

r =, cosn(0 -6)( r" ny pn
-~ it - > ( URE AN s for r<r_,
2ne, b ine, .o n b" rm) b"
g(r,e;rj,ex) = 9 (19)
-, cosn(6 -6 n n)r”
| L > OB b ~—  for r>r, .
Ire, b 2me, o n A

3.3 The Self-Fields in a Cylindrical Pipe
The potential of a distribution with elliptical symmetry inside the beam pipe may be written
by substituting Eqs. (13) and (19) into Eq. (17). The result is




2"’.( * - n n ”-
o 2l g mmenoe
a0

- d f(rszu(ej)‘»rsdrsdﬁs
ZTreO n=l n { h" P an
: (20)
q iy [ F. = cosn(6-6 ) r o opn| opn ,
- In—= + - ﬂrs u(es))rsdrsdes.
2TE€OO g b n-i n b rsn b

J
Note how the domains of definition for g(r,0.r,0,) affect the limits of integration over the r
coordinate. Using the relation E=-V¢ where

E is the electric field vector, we may compute the two
electric field components from Eq. (19) as

2n r
= n-1 n r"
E(r.0) = —q—ff{l + Z cosn(@~6s)( r_ .2 ) 2 }/{r}u(ﬁy)jrsdrxdﬁs
271‘60 rooa ‘

I bn rn‘l h"

2n b (21)
© rﬂ n -1
4 ff E cosn(0-60 )| —— - b rxzu(ex))rjdrj_c.'e_‘,,
27teoornx b" rn| b

5

and
o ’- = ( pr-l b" r”
Eyr.0) = -4 ff Z sinn(6-6 ) ~ : rszu(ex))r dr do
ZTL’GOO oL 1 h"” prtl b"
in b " (22)
- r’” n -1
-4 [f Y sinn(6-8) = - 27| rlu(®))r,dr do_
271:600’,,,, bn rjrl bn E
3.4 Compuning (xk)
We compute (x£) in parts according to Eq. (14). We first compute (rcos*0F,). From Egq.
(21) we have
n b
{rcos*@ £ ; %ffrcosleE,(r.ﬂ)ﬂrzu(e))rdrde
oo
n br e n
- q : - + - r_n. + _n Ts 2
- znewf”f{{r/(r u(0))cos 6(1 ’;cosn(e 6»()( o r") bn}ﬂr: u(®,))r dr drdb do
VAT S S A 0,40
' ZREUNfOf{[r/(r-u(e))cos 6 nz.;cosn(ﬁ -8,) i b r2u®,))r dr drd® B

(23)




where the order of integration between r and 0, has been
interchanged. Note that the r, integration over the terms
containing (+7/b%)" can be combined to yield an integration
over the full interval [0,5]. Also, it is possible to further
simplify this expression somewhat by changing the order of
integration in the second integral (after removing the term
containing (rr/b%" in the integrand). Figure 2 shows the
region of integration in r-r space for the second integral. i L
By integrating over r first then 7, we get a region of Figure 2: Integration region in r-r
integration similar to the first integral term. We also switch SPace.

the order of integration between 6, and 8 to obtain (after

relabeling)
g 2n b r
(rcos’O F) - rfiriu(®)) coszef(rfu(es))rsdrsdrdesdﬂ
511

- 2t b r n
' "z_:l anoN fof {{’ﬂrzu(e))[cosle - coszﬂs]cosn(ﬂ -8) %f(rfu(es))rsdrsdrdﬂsde

- 2n b b " n
2> anojvf [ [[rir*u@®)cos*eosn® ‘9:)[ ;—i——] fr 2u@®,))r dr,drd8,d8
m=l 0 00

Performing similar procedures for (rsinBcosOF ) we find that

(24)

.rsinBcosOEy; -

= 2 b r n

9 2 - o . an s s
asl 2TEN ffffrj(r u(8))[sin6 cosb sinB,cos B, Jsinn(6 -6,) r"ﬂrs u(8,))r dr drdd db

0 00

(29)
. n bbb

- Z an foffrf(rzu(e))sinecosesinn(e —BS)( ;_";LJ ﬂrszu(es))l‘sdrsdrdesde,
n=l 0:’ 6 0o n n

From Eq. (14) we know that the value for (xE) is given by the difference of Eqs. (24) and (29).
Fortunately, we do not have to compute most of the two above expressions; we already know them.

In the limit 56—, we expect to recover the free-space solution for (xE). In this limit, all the
terms of Eqs. (24) and (25) containing b in the denominator vanish. Consequently, these must be
terms representing the image component of (x£). Thus, it is possible to identify the terms of Eqs.
(24) and (25) corresponding to the free-space component and the image component of (xE ), for
which we use the superscripts £5 and /, respectively. We have for the image component




(xE)' = (rcos?@ £} - (rsinBoos@ £y

o 2n b b n n
=y ZoNfofb[{rj(rzu(e))coszecosn(e —93)( r_%] Lr2u®))r dr drdd 40

nel 2T bn (26)
v q 2n b b por n
+ . rflr*u(6))sin8 cosO sinn (B ~0)| ——=| Ar2u®,))r dr drdd_do
,§2neolvfof{.o[ b pn s%s s
and for the free-space component
(xE )5 = (rcos*OF S - {rsinBcos@ £,)FS
2 b r
= anofoffrj(rzu(B))coszBf(rszu(ex))rsdrsdrdesdﬁ
0 00
In br n
.Y _9q 2 20 - anc? ay s 2 (27)
; Tre N fnf}({r/(r u(G))[cos 0 - cos Bs]cosn(ﬂ Bs):](rs u(8,))r dr drd d6
o n b n
4 *u(6))[s1nBcos® - sinb cos6 Jsinn (@ -0 ) L 2
"X-% TreN [ﬂf{:{rﬂr u( ))[sm cos8 - sin6 _cos S]smn( ) rnj(r: u(®,))r dr drd® do
The integrand of Eq. (27) may be put into closed form to obtain (see Appendix A)
in br 6 - 012
XEFS - 4 ffffrﬂrzu(e))4r005 r,c0s s] Sir 4@, i, dr 0.9
2meN Jd < g rier?-2rrcos(6-6)
. (28)
n b ()—rcoseJ2
9 rfir-u(By) [rcos s z Sr2u®))r dr drdd do .
2meN j;f{}{ [rcose —rxcoses]2 " [rsinB *rssines]z T sTTes g

The above expression must equate to the free-space solution obtained by Sacherer. That is

lim (x£ ) = (xE ) = gN__ 9

b-o 47re0 a +a,

(29)

This identity is valid so long as there exists a suitable buffer region between the charge distribution
and the pipe wall. Specifically, # and f must be such that the quantity 5°u(8)] is zero for all 0 in the
interval O to 2m. In general this is a reasonable assumption. Note that since this is essentially
Sacherer's result, the above integral also turns out to be independent of the function f£. Using the
above identity we find that in the presence of the cylindrical pipe

o

N a 1
(xE) = -4 x .9 I/
/ 4ne, a_+ a, ZneoN,,Z.l pan " (30)

where the quantity /, is defined by




2 b
f,= ffffrf(r"'u(e)){coszecosn(ﬁ -8, +sinBcosBsinn (0 —9:)](r r ) Ar 2u@®)r dr drdd a8 ,
0 o

: ]s "5y ds f}‘ cos* 8 cosn (6 - 8) + sinB cosOsinn (0 - 6) 8,40
5 !z un/Z’l(e) un/Z*](es)

3

(31)

The above integrations where separated using the substitutions s=r°u(0) and =r*u(0). The first two
1,'s are readily identified (see Appendix B).

~ ]2 2n
, osBcos0
o= S [s s| [ [ i.d0 = N - o (32)
2 . ; u3/2(6)u3/2(6s)
and
1 iy cos*0cos? 0, - cos?0sin?O_ + 2sinBcosOsind cosd
I = Efs/(s)cis* [[ = 2 = dB db |
0 0

u*(0) u*(6) ' (33)
= N2 (xH? - N xDH(y

In a similar fashion we find that /=0 Therefore, the effects due to the cylindrical pipe is given by the
following:

(xE,) - "N( 2 ey ) c{—<x4>2 ey Wz] ,

dmey | (x L2 4 (y2y12 b8 T p8 T 8

(34

where O(°) indicates the standard order notation. The first term in the above equation represents the
free-space contribution to (x£), while the second term represents the contribution due to the charge
distribution’s quadrupole moment. The last term is meant to indicate that the image forces due to the
higher order moments of the charge distribution (octupole moments and up) scale as (x*")¥/b° etc.

4.0 THE KV EQUATIONS WITH IMAGES

We now use the preceding results to modify the KV equations to include the dominant effects

from images. We begin by substituting Eq. (34) into the first of Egs. (9) to obtain the ordinary
differential equation

(x2 [{x*)]? \ 2k (2) B 282 29 gN [ (x2)12

(vl
, 5oL 2 , P20 )| o,
2x?) ymv- x% ymv? 4‘"560[():*)”2 +{yin b* (35)

where we have ignored the higher order effects. There exists a similar equation for the y direction,
which is obtained by interchanging the x's and V's in the above equation. This equation may be
cleaned up by recognizing a few standard parameters. First, the generalized beam perveance is
defined as’

-10 -




- ql &\
K = = , (36)
2ne,ymv®  2me,ymv?

where / is the beam current. Next, it is customary to use the focusing function x (z) rather than the
force function 4,(z). These two functions are related as follows:

1
Ymvz kx(Z) . (37)

K(2) =

Lastly. we introduce the r.m.s. beam widths £ and Y for the x and y planes, respectively, as

X = <x2>l/2 ,
(38)

J o= (e

Note that we have (x"}"=2(£)?+2 ¥ " and (y°)"=2(j")%+2 vy
Collecting these results and substituting them into Eq. (35) and its couaterpart for the y
direction yields the following set of equations for the r.m.s. beam envelopes:

= 2
€
kg - —K 5 K
2A0x+y) g3 pe

i
~
H

]

=

<
~

it
jen]

. 39)
K €
26+y) 3 b

These equations are essentially the same as Sacherer's but with the addition of the image terms. From
the above, we may write the equations for the equivalent KV beam with uniform charge density.
Defining the envelopes of this equivalent beam in the x and y planes by X{(z) and Y(2). respectively,
we know that

2

7 k@5 -

0,

|
7~
<
|
=
ot}
~
N’
i

X(@) = 2X(2),
Hz) = 2)(z),

for such a beam. Therefore, the equation governing the behavior of the equivalent KV beam for any
distribution with elliptical symmetry is the following:

(40)

2

(S
2K : - K vxry 2o
X+Y x 4b*

X"+ k()X -

gy @41
K S5 Ky

Y+ k()Y -
42) X+Y y3  4pt

where the quantities €, and €, are known as the effective emittances of the beam and are given by 4€,
and 4€, respectively. These equations are recognized as the standard KV coupled-envelope
equations with the addition of a term (for each equation) to account for the dominant image effects.
Since the beam is centered and has elliptical symmetry, (x*) will be zero and the next image term will
be an octupole term.

-11 -




5.0 EXAMPLES AND ANALYSIS

We may use Eqs. (41) to explore the effects of the beam pipe on the beam dynamics. In this
section we present three example situations to determine the significance of image effects in typical
applications. The first example is a periodic transport channel made of (magnetic) quadrupole lenses.
This example we treat completely analytically by comparing the relative strengths of the competing
terms in Egs. (41). The second example is the approximate analysis of a sheet beam in a cylindrical
pipe. The third example is a matching section for a quadrupole transport channel used in the
University of Maryland's Electron Ring Experiment®®. In this example we numerically integrate Egs.
(41) for the matching section to analyze the effects of images.

3.1 Periodic Transport Channel

Consider a periodic transport channel made up of magnetic quadrupoles in a FODO
arrangement (focusing, drift, defocusing, drift). Assume that we have a matched beam with equal x
and y emittances. In addition assume that the FODO channel is symmetric, that is it has equal
focusing and defocusing strengths in each plane. In such a periodic channel, the beam envelopes X
and ¥ will oscillate 180 degrees out of phase with each other. We denote the minimum and maximum
beam envelope excursions for these oscillations (for both planes) as X, and X, respectively.
Therefore, at some axial location X will be at a maximum (with value X, ) and ¥ will be at a
minimum (with value X,,,.). This position will be the location of maximum image effects. It will be
our goal to find the channel parameters which will keep the image forces below a given tolerance
factor I’

Since we are interested in space-charge dominated particle beams, we start by analyzing the
ratio of the image term to the space-charge term (in such a beam 2K/(X+Y) will be the dominant self-
term). To maintain our tolerance, this ratio must be less than the prescribed value 7. At the axial
location where image forces are maximal this ratio is

% Xmax (A/man.x2 - Xmin2 ) ? (42)

where R denotes the average radius of the beam: for the periodic channel we have R=(X, .t X,.)/2.
We may parameterize the maximum and minimum beam excursions by introducing the ripple
parameter A. This parameter is defined as follows:

X, = (1+A)R,

43
X = (1-A)R. (43)
Inserting these values into Eq. (42) yields

R* 2

F(A + A%, (44)

Thus, to keep the image effects less than a factor T of the overall beam dynamics we must have

-12-




1/4

T
A +A?

In order to get a flavor for this requirement we apply this formula to some typical numbers. If we
pick a large but reasonable value for the ripple factor, say 0.3, we find that to maintain a tolerance
factor of 7=0.10 (10% tolerance) the ratio R/h must be less than 0.7, which means that X,,_is less
than 0.95. For 7=0.05 (5% tolerance) we find that R should be less than 0.65 and X, . less than 0.85.
Thus, these effects should be minimal in most situations. Only when the beam fills a substantial
portion of the beam pipe and is sufficiently eccentric (continuous, round beams do not experience
image effects) will images play a significant role.

For an emittance dominated beam we form the ratio between the image term and the
emittance term. At our point of maximal X excursion we find this ratio to be

K RS,

2 14
€ b

<

R
N 45)

We can simplify the analysis by realizing for the emittance-dominated beam the emittance term must
be much greater than the perveance term. This requirement yields the inequality

2

X R*(1+A). 47
X » ( ) 47)

In order to satisfy the above. let us say that € ¥K=GRY1+A)® where G is a large number. Then for
a tolerance factor 7 we find from Eq. (46) that

1/4

R

b

GT
A+ A?

(48)

Comparing this equation to Eq. (45) we see that the image forces for an emittance-dominated beam
can potentially be more significant because of the factor G*,

5.2 Sheet Beam

We may use the results of Section 4 to approximate the image effects on a sheet beam in a
cylindrical pipe. For such a beam we assume that the beam dimensions are much larger in one plane
than in the other. The result is a beam which is fairly flat, or a sheet. These types of beams are used
in free-electron lasers, for instance. We consider only the space-charge dominated regime. It will
be our goal to determine the design parameters which maintain the image effects below a given
tolerance T.

Without loss of generality we will assume that the x plane has the larger beam dimension.
Therefore, the image effects will be at a maximum when X has a maximum, call this X, _, and Y has
a minimum, call this ¥, . Let v denote the ratio of X t0 Y, that is

min?

max

Y

min

vV =

(49)
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Typically v will have values of 5 or larger for sheet beams. We mention that the y plane emittance
will be about v times the x plane emittance due to beam compression. However, since we are only
interested in the space-charge dominated situation we will not consider this effect. As before, we
form the ratio of the image term to the space-charge term in Eq. (41) in order to analyze the effects
of images. Again letting 7 denote the tolerance factor for the image effects, we have

2_y 2
8h4 Xm-’lx(Xmax Ymin )(Xmax + Ymm) <T, (50)
for the x plane and
1
l 8h4 ml"(Yminz —Xmaxz)(me'n +Xmax){ <T, (51)

for the y plane  Note that in this situation the image forces are defocusing in the x plane and focusing
in the y plane (thus, the absolute value is necessary in Eq. (51) ). Solving Eq. (49) for X, then
substituting into the above two equations yields

/\/ 3 1/4
max 8v Tl/4, (52)
b vievioy -]
for the x plane and
Y 4 1/4
max 8v TV (53)
b vV+vi-oy-]

for the y plane. Since v is always greater than |, the ¥ plane's requirement is automatically satisfied
whenever the x plane's tolerance is met. Thus, we need only consider Eq. (52).
We may rewnte Eq. (52) as

Toas < pyy e 5 2
V)£, 4
where P(v) is the function defined by = 1.8 \
<41
g3 |1 17 \/
P(v) = (55)
V3"'V2"V‘IJ 1.6
The function P(v) is plotted in Fig 3. Itblowsupat| "%, s 10 15 20
the point v=1 (since there are no image effects for a V=X Y ‘
round beam) then asymptotically approaches 8* as v !

approaches infinity. Note, however, that at v=3 there
is an absolute minimum of P(V) in the interval [1,).
This indicates a resonance condition in the beam pipe.
Therefore, to maintain the safest possible margin, the ratio X, to b should always be kept below the
value P(3)T"*=(27/4)*T**~1.612T"*. For the tolerances of 7=0.05 (5%) and 7=0.10 (10%) this
would require X,,<0.762b and X, <0.9065, respectively.

Figure 3: Image effect tolerance function
for a sheet beam.

-14 -




To get an appreciation for the full condition, consider the case where v=5 ar d we want a 10%
tolerance (7=0.1). We find that X, _ must be less than 0.925. This condition should be fairly easy
to meet in order to ignore image effects. For the more demanding case of v=10 ad a 5% tolerance
(7=0.05) we must have X, _<0.78b in order to avoid significant effects from images. Obviously in
this situation the designer must be much more conscience of the role of images. Finally, we note that
as v becomes large, say greater than 10, the tolerance condition approaches X, _<8YTYp and is
essentially independent of the ratio v. To compare this situation with the safest tolerance margin
(evaluating P at v=3) consider the tolerances of T=0.05 and 7=0.10. This requires X, . <0.795b and
X, <0.946b, respectively.

6.3 Quadrupole Matching Section
In the University of Maryland's Electron
Ring Experiment a matching section of five lenses |
i1s used to match an electron beam from its cathode | 0015
source to a transport channel composed of magnetic 0.012
quadrupole lenses.  The matching section is
composed of one (initial) solenoid lens followed by
four magnetic quadrupole lenses. The quadrupole
lenses are arranged so that they have the same axial
locations as the lenses in the transport channel, but
therr focusing str.engths' remain independent. Figgre 02 04 06 o8 1 12|
4a shows the simulation results for the matching z(m,
section obtained by a fourth-order Runge-Kutta L
integration of Eqs. (41). In this figure, both the X a)
and ¥ envelopes of the beam are shown with and
without image effects from a beam pipe with radius ;
h=1.5cm. The solid lines represents the free-space 400
solution while the dashed lines show the solution ) F
|
|

X(z) and Y(z) (m)

o
S
hog

L~
o

with image effects from the pipe. Figure 4b shows 00
the focusing function k(z) for the matching section.
Since the first lens is a solenoid it is focusing in both |
planes, the X and ¥ envelopes do not separate until =200 b
the beam passes through the second lens.

One can see that the image effects do not
play a large role in the beam dynamics. However, 1
one can also see that the beam will no longer be |
matched to the transport channel, so it is not an b)
insignificant effect in this situation. Matching
sections, in general, will probably be more
susceptible to image effects since the beam
envelopes tend to make larger excursions through Figure 4:Image effects for a magnetic
them. In this example we did not see an appreciable quadrupole matching system.
effect until the beam pipe radius was decreased to

K(z)
o

~400
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I.5cm. Notice that the images affect the beam most around the axial location z=0.6m, where the
difference in the X and ¥ envelopes is at a maximum and the beam's ¥ envelope fills 87% of the pipe.
At this point the ¥ envelope experiences a slight defocusing due to the pipe and subsequently remains
slightly larger than its free-space trajectory.

6.0 CONCLUSION

We have found that under certain circumstances image effects play a significant role in the
dynamics of continuous beams having elliptical symmetry. When the beam is sufficiently eccentric
and fills out a substantial portion of the beam pipe the image forces will notably affect the beam
dynamics. In practice, these situations will most likely occur in matching sections where the beam
experiences large eccentricities and large excursions through the beam pipe. In circumstances where
the beam envelope excursions in the two transverse planes are less extreme, that is they do not
deviate much from the average radius, we expect the image forces considered here to be insignificant.
In these situations perhaps a more important effect from images would be due an off-centered beam.
In this case the image forces would draw the entire beam farther away from its center position. This
effect is widely known and is covered in Ref 9. Chapt. 4.

As mentioned previously this approach is not self-consistent, unless we are fortunate enough
to know the values of the r.m.s. emittances along the channel. Since the image effects are nonlinear,
the r.m.s. emittances will typically increase through the channel, which violates the assumption of
constant emittances. However, for space-charge dominated situations the increased emittance is a
minor effect. Thus, our model will still yield meaningful results. More importantly, we have a way
to not only simulate the beam dynamics with images but also to analytically quantify when these
effects will play a significant role. It would seem that the best design strategy is to avoid such effects.
The work presented in this paper will provide the designer with an easy way to check that his or her
design will minimize any unwanted influences from image forces.
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Appendix A: Reduction of the Free-Space Component of (xE,)
We use the convergent geometric series to reduce the infinite summations in Eq. (29) to
closed form. Recall that the geometric series has the property

Yo -1 (56)
n=0

l-a

where o is complex with |e|<]. If we decompose the cosine function into its Euler exponents and
employ the above formula we find
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n

n n
r = |7 = |r
s 1 s 1(0-0) 1 s _-1(6-6)
cosn(0 -0 - e O+ = e |

Wk

_—

n=1r =0 [ ¥

57
) r? ~rr.cos(6-6 ) 7
r?+r?-2rr cos(0 -6,)
Likewise for the sine function we get
- n P r . . n « r i A n
Z : sinn(0-0) = iz 070 _ iz —se 1078 ,
n=1 r" 2’n=0 r 2Ir|=0 r
58
) rr.sin(0-0) (58)
r?+r?-2rr cos(0 -0,) -
Using the above two expressions and the trigonometric identities
~2sin8 cos6 sin(6 - 0,)
= |cos?0 - cos? B [cos(0-8) + [sinecosB - sinﬁscosﬂs]sin(e -0), (59)
and
cosOcos6 = cos’0_cos(0 - 0,) - sinB cos6 sin(0 - 8), (60)
we can reduce Eq. (29) to Eq. (30).
Appendix B: Moments in Polar Coordinates
The first four moments of distribution n(r,0) :f[r2 u(O)] are readily computed as
| " Taa, "
(0 = — d0 [As)ds = =2 [fis)ds ,
2N '((u(ﬂ) {j( ) N {ﬂ )
I % cos8
(x) = — (S8 g 512 s)ds = 0,
S
0 0 61)
| Tcos?® 7 nala, (
(x?) = —f do [sfis)ds = —= yfsj(s)a’s,
N u¥() 0 0
In 3 oo
(x3) = L [Ccos® do [sfis)ds = 0,
2N u5/2(6)

where the integrations are separated with the substitution s=r‘u(0). The values for Y moments are
obtained by substituting the sine function for the cosine function in the above. These equations are
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also valid for a distribution in a beam pipe with radius & as long as we assume that fand 4 are such
that /[5%4(0)]=0 for all 6 in [0,27t]. In other words, the beam does not touch the pipe.
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