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1. INTRODUCTION

We consider the problem of numerical solving of the spherically-nonsymmetrical model of
polaron [1] in the limit of strong coupling. Such a model of polaron describes the behavior of a
non-relativistic particle (electron) in the field, created by the interaction with medium.

Let us formulate a mathematical statement of the problem. The wave function % and
potential u satisfy the following system of partial differential equations in the space R3:

A(x) + (u(x) — v(x))p(x) - A(x) = 0, (1)
Au(x) + 4r*(x) = 0, (2)
Av(x) - c?o(x) + 4P (x) = 0, N )]

where A is the Laplace operator and ¢ is the constant of coupling.
The wave function 1(x) satisfy the normalization condition:

/ PA(x)dVx = 1. ' (4)
RS

In spherically symmetrical case (when ®(x) depends on r = |x| only), the system (1)-(2)
may be reduced to a boundary problem for the system of ordinary differential equations on
semi-axis [2],(3]. This problem has been studied quite well. In paper [4] the authors consider
the axi-symmetrical solutions of the polaron model. The papers [5],[7] are devoted to numerical
investigations of the problem for the nonsymmetrical case.

In the present paper to appraximate equations (1)-(3) we use the approach proposed in {5].[6]-
To solve the nonlinear discrete problem, a parametrization of initial equations is introduced by
means of the additional continuous parameter ¢ [8]. At the initial moment ¢ = 0 the problem
is reduced to the sufficiently simple spectral Helmholtz problem for a ball. All eigenvalues and
eigenfunctions of this problem may be easily found. After that, the solution of the original
nonlinear problem (1)<(3) may be obtained if we use a movement with respect to continuous
paraeter .



2. DISCRETIZATION

In this section we consider the problem of discretization of the system of equations (1)-(2).
For this aim we use the Bubnov - Galerkin method [9]. Let functions ¥(x), u(x) and v(x) be
expanded in spherical harmeonic series {5]:

o k
) =YY vulr)Yu(d,0), (5)
k=0Il=~-k
oo k o k
u(x) = 3" 3" wu(tulb,e),  o(x) = 3N va(nYa(s, ¢, (6)
k=0i=—k k=0Il=~%

where Y} are spherical harmonics {10].

Taking into account a finite number K of terms in the expansions (5),(6) for approximations
of functions ¥(x),u(x),v(x) , multiplying (1)-(3) by the spherical harmonics and integrating
over the angle variables, we get the following approximate system of equations for the functions
Y = YT, g = ur, g = o

- k(k+1)- 1 - -
o - (—T,—)wu + - Z Z W;ilk‘lliz Yryt Bkt = A (1)
k1,1 k2 da
- k(k+1)_ 1 .
iy — _(72’_)““ +aro DD Wikl b i, = 0, (8)
k1t k2,02
- k(k+1), _ 1 -
v;c,l - (62 + (_Tg_))vkl + 4”; Z Z Wlilkl;li: wklll wkzlz =0, (9)
k1,01 k2l

k=0,1,2,..,K;l1 = 0,£1,42,..., +k.

Here coefficients W,glk’;ia equal to the integral over the unit sphere for the product of spherical
harmonics:

2x x
ng?zlis = /0 [~/0 Y1, (9, ‘P)Ykzlz(ea ?)Ye,1,(8, ‘P)Sinade] de. (10)

The normalization condition (4) may be written in the following form:

Z/Ow $idr = 1. (11)
k,l

_ Let [0, R] be an interval of the variation of r. We assume that R is large enough, so functions
Pri(r), &g(r), Txe(r) have a behavior, which may be approximated analytically for r > R. We

choose a uniform grid of nodes for variable r : {ri;t = I,N}(T,‘ = (i- Dhh = N}i—l) to
discretize the system (7)-(9). The second order accuracy finite difference scheme with_ respect
to step h is used for the approximation of equations (7)-(9). Let the functions Yiy, U Vg e



v = Pu(rs), u}; = dr(ri), v}y = Bulri). Then the discrete system of equations has the following
form:

Vi - 20, vt K(k + 1)

i1 i ;
2 Y+ — Z N w6l i, = AWk (12)
‘ hh k2.d2
i+1
ud! - 2uj, + ! k(k‘: l)u. z Zwti.i W th, =0 (13)
2 1l Ykl
h i Tk .
vt _ 2y, 4 it E(k+1 . i .
AP (B Dyl Y Y W s =0 )
Ti Pk dy ke 2

k=0,1,2,..K;1=0,£1,42, ... +k;i = 2, N — 1. For r; = 0 we have the following left-hand
boundary conditions: d),:, =0, u}d =0, v,", = 0. Taking into account exponential vanishing of
the function 1 on infinity, we get the right-hand boundary condition for v-y:

-2
o R+ el (15)
Analogously, for u',;‘ and v, we have
N-2 N2

uN N
U~y - kN Vet — Y k -
T oh A lukl ' T=(—"+—)"u L (16)

By using some numerical approximation for {11) the normalization conditions may be written

in the form:
N .
Y adwi)® =1, (17
kg i=1
where «; are the coefficients of the quadrature formula for calculation of integrals.
To find the approximate solutions of the original problem (1)-(3). it is necessary to solve the
nonlinear system of algebraic equations (12)-(17) for the unknown variables {tg,.u}.ry-7 =
1, N} and the spectral parameter A.

3. THE METHOD FOR SOLVING THE NONLINEAR DISCRETE SYSTEMS

Let ¥; be the vector with the components :1),;, . U; and V. be the vectors with the components
u}, and v}, correspondingly. Analogously we define the vectors corrospondmg to the nonlinear
terms (double sums) in the equations (12) and (13), as Fi= F(i’ 0).G; = G.A¥,.%,). Then
the system (12)-(14) can be written in the form:

Gipy — 29+ ¥i_ . Lo o -
S DT L 4 (D + B0 = (18)
Uipr — 20; + Uiy

o +[DiU; + G(¥..%,) = 0. (19)



Vier — 2Vi + Viy
A2
where i = 2, N — 1; the matrices [D,] are diagonal matrices with coefficients on the main di-

agonal depending on the number k of the correspondent harmonic. The normalization condition
(17) may be written in new variables as

-V + [DV; + Gi(¥,,9;) = 0, (20)

N
Y alEF-1=0. (21)
i=1

The left-hand boundary conditions reduce to the following equations:

¥,=0, U0;=0, V=0 (22)

Analogously, we rewrite the right-hand boundary conditions:

Un ;:N—2 = [Bx](jN-l, K]% = (—c[E] +A [BZJ)VN—l, (23)
I N (L) + (B, (2

where [E] is an identity matrix, [B,] , [B;] are diagonal matrices.
Let us consider an auxiliary problem. We can write the right boundary condition for the
wave functions in the following form:

¥y =0. (25)

Then the system of equations (18)-(23),(25) also approximates the problem (7)-(11), but with
the lesser accuracy. To solve the nonlinear problem (18)-(23),(25), we use the continuation
method from [8]. In equations (18)-(20) we introduce a parameter ¢,(¢ € [0, 1]) by the following
way:

Fi(ty = tF(9,,0:),  Gi(t) = tGi(¥;,¥,).
After this substitution the system (18)-(20) may be transformed to the following system of
equations:

Gipr — 20 + 9, >

3 + Dy + tF(9,,0) = M, (26)
ul_lhl‘i:i'l}'——l‘*l); ~i+tG~{(‘i’.;‘,\i",) :01 (27)
Vi 22Vt Vit oy 4 v 4 1Gi(§:, 50 = 0, (28)

h2



with boundary conditions (22)-(23),(25). In this case the solutions ¥;, ;, A of the problem
(21)-(23),(25)-(28) will be the functions of the parameter ¢ (t € [0,1]). Obviously, for t = 1
we have the original system of equations (18)-(23),(25), and for ¢ = 0 we obtain the sufficiently
simple non-connected linear spectral problem for each harmonic separately.

To find the values of functions U (t), V (1), $(t), A(t) at the moment ¢ = 0 for the fixed orbital
momentum ko, we solve the one-dimensional spectral problem for one equation only:

L P 5 (29)

h?

with boundary and normalization conditions

N
n=0 ynv=0 Y ayi=1 (30)
i=1
Let {y:},A; be a solution of the problem (29)-(30). For the fixed number lg : —ko < Iy < kg
we assume

vIV2, l=lgk=k
yi/V2, 1= —lok=ko
0, 1# 1l
0, k # ko.

This case corresponds to the real initial approximation for determing the solutions which are
even functions with respect to angle ¢. The case corresponding to the odd initial approximation
can be written by the following way:

im0 = (31

y:/\/i, I=Io,k=kg
—y,'/\/i, = —10,k = ko
0, 14 I
0, k # ko.

Accordingly for the spectral parameter we have A(t) = A" for t = 0.

So, for every t € [0,1] we have obtained the nonlinear boundary problem.  Let {t;;7 =
0, M)(ty = 0,tpr = 1) be some partition of the interval [0,1]. To find the solutions Yrilt;),
uki(tj), vi(t;), At;) of the problem (29)-(30) in the point ¢; the Newton method is used.
Supposing the difference |t; — ;44| is small enough, we have the good initial approximation
from previous step t;_; for Newtonian iterative procedure.

Let ‘i":" be the vector of components 1/),‘;1 on m~th step of Newtonian iterative process.
Analogously let (7,-’" and 17{“ be the vectors with components u}, and v},. Then we have the
following boundary problem for the vectors of corrections § \fl':" = \17:-""" - \i;,”‘, é l7:" = (7'-’"“ -
G, 67 = VU

Bia(O]e=0 = (32)

8UT, — 260 + 68T,
~ h?

+[DSET + [An)(F)6FD + (A1) (F7)60 — AmbE™+



gm —2m 4 ¥ I, .
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jm, - 260" 4+ 8U™,
h2

Or, - 207 + 0 m 4 G §
— _(_L,_M_Ll +{DJU™ + G;(W;",‘I'.’")),

+ (DU + [An) (T80T + (A2 (U6 =

VM. — 26Vm 4 6Vm . . L
e ; =L (D3] - FLEDSV + [An(V7)6V™ + [As (V7 )6V =

h'l
P, - a7 4 Vi o
- (PR T gy - i + G ),

where LA&J, {:?,—5 5 n=1,2 are the matrices corresponding to differential operators for func-
tions F: and G; from (18)-(20). After that, the boundary conditions can be written in the
following form:

ST = 0,600 =0; SUF =0,60F=0; V5" =0,6VF =0.

To find the correction §A,, for spectral parameter, we have the equation:

(6¥™, ™) = 0.

To solve this boundary problem, we apply the matrix sweep method [11]. The found solutions
{‘i;;‘(tM), l-].l‘(tM) Vi‘(tM)},)\‘(tM) are used as the initial approximations for Newtonian iterative
process to solve the problem (18)-(23) with the non-zero boundary conditions (24). Initial
approximations {y?},A* for t = 0 have been found by using the procedure from [12].

4. THE RESULTS OF NUMERICAL SIMULATION

On the base of the proposed techniques the FORTRAN code to calculate the three-dimensional
egenvalues and eigenfunctions for the polaron model has been created. These programs allow one
to find as spherically-symmetrical and axi-symmetrical solutions as essentially three-dimensional
solutions.

Now we define some classification of solutions. Let the class of solutions Q,, correspond to
the solutions obtained from initial guesses with k = kg, = lp in (31),(32). It should be noted
that from iteration process we have functions ¥, ux equal to 0 for k£ < ko. So the class Qg0
includes the spherically-symmetrical solutions of the polaron problem. The case with lp = 0
corresponds to the axial symmetry of the problem. In Table 1 the summary of the obtained
results for polaron model in the limit of strong coupling (¢ = oo) and the comparison with
results from {5] are shown. From this Table we see that the fast convergence of solutions in
respect to the number of harmonics takes place near the ground state, but there is a dynamics
of the numerical results for the low part of spectrum. In order to obtain the reliable results in
this case it is necessary to increase the dimension of the solving discrete problem. In Table 2



Table 1. The calculated eigenvalues A in dependence on the number of harmonics A = kg

Eigenvalue | Class | K =1 | K=3 | K =5 | results from [5]
Ao Qoo | 0.08139 - - 0.0814
A1 Qoo | 0.01540 - - 0.0154
A2 Qoo { 0.00626 - - 0.0062
Az Qoo | 0.00337 - - -
Ao Q0 | 0.02705 { 0.03392 | 0.03443 0.0343
A Q0 | 0.00880 | 0.00833 | 0.01327 0.0126
A2 Q0 | 0.00432 | 0.00407 | 0.00415 -
Az Q0 | 0.00255 | 0.00263 | 0.00276 -
Ag Qg - 0.01490 | 0.01642 0.0159
A1 Qa1 - 0.00618 | 0.00573 -
Az Qqy - 0.00342 -

Table 2. Eigenvalues A in dependence on the value of the constant of coupling ¢

Eigenvalue | Class | C =0.1 C=10 C =10.0 =00
Ao Qo0 | 0.0347194 | 0.0769554 | 0.0813419 | 0.0813949
A Qoo | 0.0127952 | 0.0153239 | 0.0153978 | 0.0153986
A2 Qoo | 0.0058969 | 0.0062565 | 0.0062632 | 0.0062638
Ao Q0 | 0.0215822 | 0.0333973 | 0.0339144 | 0.0339199
A Qo | 0.0078265 | 0.0083211 | 0.0083275 | 0.0083276
Az 10 | 0.0039902 | 0.0040679 | 0.0040688 | 0.0040688
Az Q10 | 0.0026181 | 0.0026338 | 0.0026339 | 0.0026339
Ao Q3 | 0.0126877 | 0.0148575 | 0.0148967 | 0.0148970
A1 Q2; [ 0.0059044 | 0.0061771 | 0.00618088 | 0.00618088
Az Q1 | 0.0033554 | 0.0034145 { 0.0034152 | 0.0031152




the numerical results in dependence on the constant of coupling ¢ for different classes )y are
given. From this Table one can see the fast convergence of the solutions for large value ¢ to the
solutions in limit of strong coupling.

This investigation has been supported by the Russian Foundation for Fundamental Research,
grant N 94 — 01 — 01119.
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Axuiund 1T, My3siuun U.B., Cmupnos 10.C. - E11-96-494
MeToa HbIOTOHOBCKOIO MPONC/IXEHHS [JIS YHCIEHHOrO PELICHHS
TPEXMEPHOH 3aJauu nonspoHa

[TpennoxeH YHMCIEHHBIH METO WIS pELlEHNS TPEXMEPHOH HENHHEHHOM 3amauu
chepHUECKH-HECHMMETPHYHOIO MOAPOHA C KOHEYHOM KOHCTAHTOM cBi3u. [ns an-
NPOKCHMALIMH PeLIEHHs HCTIONBH30BAHO PaxioXeHHE N0 ChepHUECKHM IapMOHHKAM. |
JIna pewieHus HENMMHERHOI 331241 peanTn3oBaHa HHIOTOHOBCKAS HTEPALIHOHHAs cxeMa
¢ 100aBOYHOI MapaMeTpH3alMel HCXONHOFO ypaBHeHHa. Ha ocHoBe npeanoxeHHoil
MeTOINKH co3nan xoMiieke POPTPAH-nporpaMm mns BuiaMc/ieHHs cOBGCTBEHHBIX
3HaYeHHil ¥ cobctBeHHbIX (yHKuWil. OBcyxnaloTcs pe3ynbTarsl YHCIECHHOTO MO-
JeTHPOBAHHA. )

PaGora BeinonHena B JlabopaTopuy BEIYHCITHTENTBHON TEXHHKH H aBTOMATH3ALIHH
OHUSH.

MpenpuuT O6BEAMHEHHOTO KHCTHTYTA SUICPHBIX HccnenoBanuil. IybHa, 1996

Akishin P.G., Puzynin L.V., Smirnov Yu.S. E11-96-494
The Newtonian Continuation Method for Numerical Study
of 3D Polaron Problem

The numerical approach for study of the 3D-nonlinear problem
for the spherically-nonsymmetric polaron is considered. Expansions in spherical
harmonics are used for the approximation of the solution. The iterative Newton's
scheme with an additional parametrization of the initial equation for the solving
of the nonlinear problem is proposed. The results of numerical modelling
are discussed. The comparison of the obtained eigenvalues with the known ones
confirms the efficiency of the elaborated algorithms.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1996




Maker T.E.[Toneko

MoanucaHo B nevars 30.01.97
®opmar 60 x 90/16. Odcernas neyars. Yu.-u3gucros 1,04
Tupax 360. 3aka3 49678. llena 1248 p.

Jybsa Mockosckoit obnactu .

L]
Hanatensckuii otaesn OObeIMHEHHOrO HHCTHTYTA SAEPHBIX UCCIIENOBAHHMH




