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1 Introduction

It is the purpose of this report to state the generalized Hamiltonian dynamics
[1] of the spatialy homogeneous Bianchi IX cosmological model without matter
sources.

The cosmological models due to the existence of additional rigid spacetime
symmetries are incomparably simpler than the underlying theory of gravity. At
the same time, they possess the main features of the full theory and thus can
be used as a laboratory for testing viability of new ideas and techniques. The
traditional method in Hamiltonian analysis of cosmological models that has been
extensively used is the Arnowitt-Deser-Misner (ADM) formulation of canonical
theory of gravitation [2]. The ADM method is based on certain fixing of coordi-
nate condition (gauge) and solving of constraints. The crucial unsolved problem
in this approach is the proof of the independence of observable quantities from
any possible choice of the gauge condition. To clarify the problem we shall study
the Bianchi cosmological models using the alternative method [3], [4] to con-
struct the observables in the constrained system without supposing any gauge
condition. The first step in the application of this gaugeless approach is the
abelianization of constraints i.e., the conversion of the initial non-Abelian con-
straints to the equivalent set of Abelian ones. Below, we shall construct the
matrix transforming the constraints to the abelian form for the non-diagonal
Bianchi IX cosmology with constraints obeying the SO(3) aigebra. The real-
1zation of this conversion allows us to find the explicit connection of dynamics
of diagonal and non-diagonal Bianchi IX cosmology. The conclusion is that the
dynamics differs only for non-physical degrees of freedom and observables for

diagonal and non-diagonal cases are one and the same.



2 Spacetime decomposition

Canonical analysis views the Universe in terms of space plus time [5]. Thus, we
suppose that the spacetime is a smooth manifold, M = X, x R, endowed with
a metric g of signature (—,+,+,+), metric-compatible connection and time
function t. The level surfaces of ¢, ¥, are spacelike and form a foliation of a
spacetime manifold. This means that they are nonintersecting and fill M. After
the foliation of the spacetime manifold it is useful to choose on M a surface
compatible moving coframe (e, ,e,) ' with four-dimensional unit-length vector
field e; orthogonal to ¥; and three dimensional vector fields e, = (e, e, €3)
tangent to it. 2 The corresponding dual frame has a time axis orthogonal to the
slices ¥, while the space axes are tangent to them. In this frame, the metric g
reads

g=—0"20" 41,000 (1

with the spatial metric ~ induced on ¥;. To implement the canonical analysis,
one can specify a time like vector eg = % : “time flow” vector field on M which

will describe the evolution with the time parameter ¢{. The well-known Dirac-

ADM metric [5] follows from (1) after fixing the coordinate coframe e, = (5%)
and rewriting the vector field ey in terms of the normal vector field e, and spatial

vector field Ve, tanget to the hypersurface ¥, eg = Ne| + N¢¢,
g = —(N?= N°N,)dt @ dt + 2N,dt @ dz® + 74 dz® @ dz’. (2)

The spatial metric 7, the lapse function N and shift vector N* are treated as

field configuration variables for the gravitational field. Their classical behaviour

We use boldface to distinguish four-dimensional quantities from three-dimensional

ones.
2 According to this decomposition, the Lie derivative Le, , derivative with respect the

proper time along the normal to ¥, will describe the evolution having physical meaning.



1s determined by varying the Hilbert-Einstein action
A[N,N%, 7] = / 7R, (3)
M

where R is the spacetime curvature scalar and 9 = /=g WO AW AW A WP is
the four-dimensional volume element.

To proceed further from this general canonical formulation of the gravita-
tion, let us consider the spacetime that contain some rigid symmetry and use
this symmetry to restrict the gravitational configuration space in the Hilbert-
Einstein action (3). In the case of large symmetry the gravitational degrees of
freedom are reduced to finite number and this circumstance essentially relieves
the analysis of the theory. Below we shall investigate the restriction of gravita-
tional configuration space by the requirement of spatial homogeneity that leads

to so-called Bianchi cosmological models. 3

3 Model description

By definition, in spatial homogeneous spacetime a three-dimensional Lie group
(3 acts on spacetime as a group of isometries, such that each orbit on which G,
acts simply transitively is a spacelike hypersurface. The advantage of considering
simply transitive action is that we can put the element of G5 into one-to-one
correspondence with the points of ¥;. After this identification the spacetime is
considered topologically as the product space Gy x R. After mentioning this ob-
servation it is clear that instead of usual coordinate coframes we need to choose a
new space coframe ¢, adapted to the Lie group structure of the three-dimensional
hypersurface ¥,. The algebra of infinitesimal generators of isometries, i.e., Killing
fields £,, a =1,2,3

€0, &) = Cuée (4)

3For details we refer to one of many comprehensive reviews [6].




dictates this choice. The vector fields e, and £, provide a basis of a coframe
invariant under the isometries [:E..eo =0, ‘CE,,C“ = 0. In this case, one finds
the form of a space metric for the Bianchi models v = 7,5 w® @ w® with a group
invariant frame w® whose structure coefficients 0% = dw®(ey, €.) are structure
constants of the homogeneity group G3. The preferable role of this choice for a
coframe is clear: from the Killing equation £Eag = 0 it immediately follows that
the functions N, N° and 7,; depend only on the time parameter /. Due to this
simplification the initial variational problem for Bianchi A models * is restricted
to a variational problem of the “mechanical” system
ty
L (N, Ny, YabsFab) = /dt VAN [°R - KK+ KuKk* ], (5)

i1

where 3R is the curvature scalar formed from the spatial metric v

1 ab e 1 ab_c i ]
3R = —57 bC daCdcb - Z’y b’y d,%_]_c acCde7 (6)
and
. 1 ¢
Koy = 3N ( (YadC% + 164Ch)N® + Aab ) (7)
is the extrinsic curvature of the slice ¥; defined by the relation K, = _%Lel’}'ab-

The Lagrangian (5) belongs to the class of so-called degenerate ones. Thus,
to deal with the Hamiltonian description we need the Dirac generalization of

Hamiltonian dynamics {1] .

4 Hamiltonian formulation

Implementing the Legendre transformation on variables NV, N, and 7, we get

the canonical Hamiltonian He = NH + N°H,, the primary P* = 0, P® =

4Writing the structure constants of the isometry Lie group in the general form, cd, =
€ap ST+ A[déf], class A models are those for which Cdd =A, =0.

a



and secondary constraints

1 1 .
b b 3
H = \/A_ 7!'(1)7.’“(, _ _—)‘71'“(17(' h — \ﬁ R (8)
¥ K
H — (ui be o 9
a — = “!)7‘— pod - ( J

Due to the reparametrization symmetry of (5) inherited from the diffeomorphism
invariance of the initial Hilbert-Einstein action, the evolution of the system is

unambiguous and it is governed by the total Hamiltonian
Hy = NH+ N"H, + wgP + u, P, (10)

with four arbitrary functions u,(¢) and uy(?). One can verify that the secondary

constraints are first class and obey the algebra
{HH} =0, {H,.Hp} = —CUH,. (1)

To provide the explicit construction of true dynamical degrees of freedom
without gauge fixing according to the general scheme [3], [4], it is necessary to
implement two operations: to convert the constraints (8) to the new équivalent

set of “commuting” constraints
q)u - Cude (12)

i.e., to abelianize the first class constraints (11) and to perform the canonical
transformation to new coordinates so that a part of the new canonical variables

coincides with the new Abelian constraints.

5 Hamiltonian reduction: canonical trans-

formation and abelianization

Let us concentrate our attention on the Bianchi type IX model. * For this model

it is very useful at first to realize certain canonical transformation that essentially

SFor the Bianchi IX model the symmetric matrix S is the unit matrix.



simplifies the procedure of abelianization. This canonical transformation means
a passing from coordinates (7;;. 7) to the well-known Misner representation [5].

In. Misner's representation the spatial metric is given by

Yy = Rge e, (13)

¥

where .4,; is a 3 x 3 symmetric traceless matrix and (2 is a scalar, both being
functions of time parameter only, R is a constant. Whenever () is a monotonic
function of time, one can choose  as a scale factor for cosmology related to the
volume through RS¢%? = dety. To realize the abelianization it is convenient
[6] to use for nondegenerate symmetric matrix /3 the following decomposition:
3 =R Yo.0.0yDR(0,8. ) with the SO(3) matrix

R0, 0. p) = ek (L
parametrized with the Euler angles and diagonal traceless matrix
D = diag(By + V34, By — V3P-. ~25,). (15)

In terms of new canonical coordinates 8. pg: @, py; ¢, p.; . 3_,p_: 34, py the mo-

mentum constraints can be rewritten as
—1 .
H, = (72 ’T<I>)a, (16)

where the &, = (pg, py,pg) and T is the following matrix

0 I 0
7 =1 siny cotfcosy: % . (17)
costp cotfsiny =L

It is clear that exept when sinf = 0 the matrix 7 'R is just the matrix of
abelianization C in (12). So, after implementing the Dirac transformation to the

initial constraints H,, the equivalent set of Abelian constraints is

¢, =p; =0, ¢, =py =10, ¢ =p, =0 (18)



To complete the abelianization stage of reduction let us rewrite energy constraint

in new coordinates

H= (p+ +pl —pa) + W(8,0.9,ps,p0,ps) — R(B4, B-) Rge ™, (19)
where
o1 Pi (sin ¢sin @ pg + cos g cos @ py — cos @ py)?
W=s{07 + T2 N 2 +
sinh?(2v/34_) sinh?(38, + v/38_)sin? @

(cos ¢sinfl pg —sin g cosf py +sin¢g p,,,)2>
sinh?(38; — \/_/3 sin® 9

(20)
The three-dimensional scalar curvature °R for the Bianchi IX model is
3R = _% (64(ﬂ++\/3ﬁ—) 4 A8 —VEBS) | ~85s _
_9p=2B++V3B-) _ 9o —2(B+~V3B-) _ 264ﬁ+). (21)

The price for the passing to new constraints (18) is that the energy constraint

(19) does not commute with them

{Hv q>a} = f:q)ba
{@a, @} =0, (22)
where f° are a certain functions on phase space. However, one can again apply

the Dirac equivalent transformation of constraints. Keeping the momentum

constraints ®, unchanged and shifting the energy constraint
H="H+psCo+pyCy +psCy (23)

we shall get the set of Abelian momentum constraints (18) and new energy

constraint

H=~(p> +p° — py) +°R(Bs, B-) Roe™7, (24)



The arbitrariness of the functions u in the total Hamiltonian (10) reflects the
presence in the theory of variables whose dynamics is governed in an arbitrary
way. The conversion to the equivalent Abelian set of constraints allows us to
separate these ignorable variables from physical one whose classical behavior is
uniquely determined. It is clear that in the case of the Bianchi IX model ¢, .0
are just these ignorable coordinates. The fourth ignorable coordinate is connected
with the remaining energy constraint (24) It is worth to note that this constraint
coincides with the corresponding Hamiltonian ones for so-called diagonal Bianchi
IX cosmological model. This means that in terms of the Misner variables after
abelianization of constraints the dynamics of diagonal and non-diagonal Bianchi
IX cosmology differs only for the non-physical degrees of freedom v, 6,8 while
the dynamics for the physical variables is one and the same.

To find the fourth ignorable coordinate it is necessary to analyze the energy
constraint . For this purpose it is useful to implement the set of canonical

transformations

} 1 1 1
3 =43 33_. - Q = _ 25
B = By + V3 P 6p++2fp gPe (29)

1 1
— V33 -0 e py - ——p _~ 2%
V33 P2 6P+ 2\/§P 3 Pa (26)

1 1
Py = =284 —Q P3=—3 P+~ 3 Po (27)
and

bi = exp(ﬂ,') P,’ = pib,', 1= 1,2.3 (ZS)

In this new canonical basis the energy constraint reads

3
W:%E ZbP b;P; + - Zb“ Zblbz (29)

i<y 1<
Starting with this representation one can reduce the problem of the Hamiltonian

description of our constrained system to the analysis of motion of “free particle”



with zero “energy” on the three-dimensional hyperbolic manifold with a certain
metric. To achieve this let us again perform the canonical transformation that

absorbs the “potential term” in (24)

b, = /211, sinn,,
P = /211, cos ;. (30)

As a result the energy constraint becomes
’}-_i = Ha gabnbv
where the “metric”

G = 2siny, sinp, (éub + (b — 1) cos(n, — r,b)) (31
has been introduced. Now it is clear that one can easily determine the corre-
sponding ignorable coordinates if this metric possesses the Killing vector. For
example, there is a simple case when this metric admits the symmetry. If one
suppose, that 5 = 1; = 1y = 73 then the metric G can be transformed to the
diagonal form

G = (4sin’n) diag(—1/2.1.1)
with the help of the constant orthogonal transformation G = O7 G . After the

implementing the canonical transformation
I = 0,11,
Mn = Ouclle (32)
the energy constraint reduces to the simple diagonal form
Ho = —1/2112 + 1137 + 1157 = 0 (:33)

and this means that our reduced system is equivalent to the motion of a free

“ '

massless relativistic particle " in the three-dimensional flat Minkowski space-
time. It is interesting that the same reduced system has been obtained in [7] for

the so-called diagonal, intrinsically multiply transitive models (DIMT).
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TForunumze C.A. v ap. E2-96-479
FaMuasTOHOB ananu3 KocMonorud buanku IX

Tpeuacrasied anajiui HeOMaroHanbHOH KOCMOI0rHYeckoil Mopesid buankn 1X
B pamkax o6obueHtoro [Jnpakom raminbToHoBa 1oaxona. Beinonweno npeobpaso-
BaHHe CBA3eH B 3KBHBwIeHTHBIA Habop abenernix ces3ei (aberzauns). [Nokasano,
4YTO JUHaMHKa HaOModaeMBIX B HEAHAIOHAIbHOI KocMonoruu buanku X naenruuna
AHHAMHMKE B IHAroHaNbHOM aHanore.

Pabota suinontena 8 Jlaboparopuu teopetnueckoii pusnkn um.H.H.boronw6o-
sa OUAH.

[Ipenpuut OGBLEIHHEHHOTO HHCTHTYTA SACPHBUIX HecaeaoBanmii. [lybua, 1996

Gogilidze S.A. et al. E2-96-479
On Hamiltonian Analysis of Bianchi IX Cosmology

The analysis of non-diagonal Bianchi IX cosmological model in the framework
of the Dirac generalized Hamiltonian approach is presented. The conversion
of the constraints to the equivalent set of Abelian constraints (abelianization)
is implemented. It is shown that the dynamics of observables in the non-diagonal
Bianchi IX cosmology is identical with its diagonal counterpart.

The investigation has been perforrhed at the Bogoliubov Laboratory
of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Rescarch. Dubna, 1996
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