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Abstract

The ot(¥) strength distribution as a function of the excitation en-
ergy is investigated in the framework of the Quasiparticle Random
Phase Approximation. The results are compared with the available
experimental data for *Fe and with the results of recent shell model
calculations. It is demonstrated that the full single-particle space has
to be used in order to describe the GT strength function correctly.

1 Introduction

The investigation of the Gamow-Teller (GT) strength function, i.e. the dis-
tribution of the strength of the ¢,*) or ¢,¢(~) operators as a function of the
excitation energy is of interest not only in nuclear physics, but it has also
important applications in astrophysics. Its precise knowledge is requested for
nucleosynthesis problems and in the study of supernovae evolution [1]. It also
plays an important role in predicting neutrino scattering cross sections used
for determining the detector efficiency in solar neutrino flux measurements
[2]. In nuclear physics the GT strength function is important in connec-
tion with the problem of missing GT strength occuring in the (p,n) charge-
exchange reactions at intermediate energies [3], and in connection with the
question of a possible renormalization of the axial vector coupling constant of
weak interactions in nuclear media, g4 [4]. The GT transitions play a leading



role in muon capture, in pion charge-exchange reactions and in other low and
medium energy processes in atomic nuclei. In many cases the knowledge of
g4 is needed to extract the other parameters of the weak nuclear current,
as for example the induced pseudoscalar weak interaction coupling constant,
gp.

The Random Phase Approximation (RPA) as well as multiparticle shell
model calculations give a reasonably description of the shape of the GT
strength function at low excitation energies and in the giant resonance re-
gion. However, agreement with the experimental data is achieved only after
application of a quenching factor of roughly 0.8 to the transition amplitude.
From the theoretical point of view one is therefore interested in finding a
mechanism which is responsible for the transfer of giant GT strength to-
wards higher excitation energies and which simultaneously allows one to re-
produce the strength distribution in the giant resonance region and below
it. Since now experimental data for both, 7,t(*) and o,t(~) are available, it
seems important to prove wether the mechanism proposed below is success-
ful in describing both strength functions simultaneously. The purpose of this
work is twofold. (a) It is shown within an extension of the RPA that the
inclusion of an interaction between 1p— 1h states (one-phonon states) and
2 —2h states (two—phonon states) is not capable of changing the strength
distribution in the desired way. (b) It is demonstrated that those parts of
the residual interaction coupling single-particle orbitals with different radial
quantum numbers are essential in order to achieve a reasonable (at least at
a qualitative level) description of the strength distribution. A good overall
behaviour of the o¢(~) strength function at low energies is then obtained and
the position and strength of the giant GT resonance can be reproduced. Si-
multaneously a large fraction of the ot(-) strength is shifted towards higher
excitations, forming new collective states. These collective states are built
up from particle-hole (two—quasiparticle) excitations whose single-particle
orbitals belong to different major shells. From this it is concluded that it
is absolutely necessary to use a full single-particle space in all GT strength
calculations. This statement applies in particular also to large shell model
calculations. Finally the energy-weighted moments of the strength function
are investigated. It is pointed out that in all model calculations where the
ground state is not included in the model space (where it serves as a vacuum
in the quasiparticle space) the zero and first order energy-weighted moments
of the strength function are unchanged by introducing an interaction between

2



(Ip —1h) and (2p—2h) states.

2 The nuclear model

The model Hamiltonian used in the present work consists of separate single
particle potential wells of Woods-Saxon shape for neutrons and protons re-
spectively representing the mean field, a superconducting monopole pairing
between like particles, and a particle-hole residual interaction in separable
form

Hres. = —2’5(1)1 Z QI,HQI,AH (1)
o

Qi = Z < Gy Mp|U ()0 ut G, i > a}mmpajmmn. (2)

jp ‘Mp,in,Mn

Here (! is the effective coupling constant of the residual interaction, a}p,mp

(@j,,mn) is the creation (destruction) operator of a proton (neutron) in the
nlym-single particle state, U(r) is the radial form factor taken as [5]

and W(r) is the central part of the single-particle shell model potential.

The case of a strong attractive particle-particle interaction which has
been shown to be especially important for low energy ot(*) transitions [6]
should be discussed separately. Here we would like to note only that there
is a definite contradiction between the description of the 8% decay of the
proton rich spherical nuclei and the 8~ decay of neutron rich nuclei when
using the particle-hole and particle-particle interactions simultaneously [7].

The diagonalization of the model Hamiltonian is done in two steps. First,
we make the transition to the quasiparticle operators by means of the Bo-
goliubov transformation (for protons and for neutrons separately):

Qim = U;Q5m + (—l)j'muja},_m . (3)
In the next step the charge-exchange 1(*) phonons are introduced

Qui= 3 {0 [0+ (=148 5 [ej,0601 L), (4)

jpvjn



where

[ajpajn]/\:l-‘ = Z < jpmpjnmnl’\/‘ > ajpympajﬂymn
mp,Mn

and < jpmpjinmn|Ap > is a Clebsch-Gordan coefficient. The normalization
condition for the phonon amplitudes is

1
Z {1’[)-7?’.771 Jpdn pr]n ]p»]n} 5 1,0 .

Jpiin

The equations defining the phonon amplitudes and the excitation energy w;
of one—phonon 1{* state over the ground 0(+) state are

R+ lgq W;w q =0 (5)
'—w;'gq + Rq’q,wq, = 0 5 (6)
where _ ,
gq = inan + ¢ Jpsdn ? 'LD =1 J'pgn - i]p,Jn ?
RS = €0, — (2/3)61 houlhyus

6q = 6_,,;,.+ .6_7,1 v 'f-l';t — quvjﬂ :*: va"an ?
ke = h(jp, Jn) =< Jp || U(T)O't(_) | 3o >

The amplitudes of the transitions from the ground state to the 1{¥) one-
phonon excited states are given by

. 1 : .
b:(1(+)’1) = % Z < JP “ Ut(+) “ Jn > (vjpujn ]p,]n + quan¢]p,]n) 7(7)

jp,jn

b;(1(+),7,) = \/— Z < JP ” O't( ) ” ]n > (u’Jpv.’ln Jprin + v]pu.’ln JP,J,,) ‘(8)

]py]ﬂ

The parameters of the single-particle potentials and the monopole pairing
constants are taken from [8]. Only one parameter will be varied during the
calculations — the effective coupling constant of the residual interaction «$'.
The calculated GT strength function is given by the running sum

S(i)(E Z Zlbi 1(+ . 2
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3 Results and Discussion

We present here the results of our calculations of the GT strength function
for %*Fe and compare them with detailed experimantal studies of the ot(*)
and ot(-) strength functions by means of the (p,n) [9, 10] and (n,p) [9]
reactions on **Fe. These experimental results together with our theoretical
evaluation are shown in figs. 1 and 2 and 3. A detailed discussion is given in
the following sections.

3.1 The ot(t) strength in %Fe

In this section we discuss the theoretical results of the calculations for ot(*)
transitions. Fig. 1 shows the experimental running sum S*(F) from the
*Fe(n,p)**Mn reaction[9] in comparison with the theoretical results calcu-
lated for different values of x9* (—0.23/A, —0.43/A, —0.63/A and —0.83/A).
The distribution of the o#{+) strength at low excitation energies is determined
by the positions of the two—quasiparticle states. There is one collective state
which absorbs the main part of the transition strength. With increasing ab-
solute value of the effective interaction constant |£9*| the collective state is
shifted towards higher excitation energies and its strength decreases. Simul-
taneously the total transition strength becomes smaller. The calculated and
measured strength distributions [9] are in qualitative agreement. It should be
mentioned that in the low excitation energy region a much richer experimen-
tal spectrum is observed than calculations show. The total ot(+) strength
measured in the (n, p) reaction up to excitation energies of 10 MeV is equal
to 3.1 £ 0.6 (all energies are measured with respect to the ground state of
the residual nuclei). The calculated QRPA strength for this energy range lies
between 4.2 and 6.5 depending on the value of [«?!|. A recent shell model
calculation [11] needs a quenching factor of 0.77 for the ot operators in order
to reproduce the experimentally observed transition strength. The work of
[11] contains also a review of previous calculations of S&) in 4%€Fe. Various
shell model calculations and the QRPA with different residual interactions
give usually higher values for S(*) than those obtained in the present work.
An exception is the QRPA case with the particle-particle interaction of [6]
which gives S(+) = 4.2. The relative low value S*) in our present calculation
is due to the used residual interaction. The radial form factor U(r) varies
rapidly with radius and differs from zero only in the surface region. There-
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fore the matrix elements between single-particle states with different radial
quantum numbers contribute appreciably. In this way a mixing not only
between the usual spin-orbit partners of the valence shell occurs (as should
be the case in shell model calculations), but is present also between all the
other single particle states. The influence of this mixing becomes especially
important in the case of o¢(~) transitions, when the Gamow-Teller resonance
can be excited.

3.2 The ot(-) strength in %Fe

The results of our calculations of S(7)(E) for the same set of values of !
are shown in fig. 2 together with the GT strength function measured in the
Fe(p,n)**Mn reaction [9, 10] (data are taken from tables I and III of [10]).
The results of [9] are close to those of [10] and have larger error bars. Fig. 3
shows a comparison between the experimental and theoretical (' = —243)
strength functions plotted as a function of excitation energy. The following
observations can be made
(i) a collective GT state located above the conventional GT giant resonance
appears above a certain value of the effective interaction constant. This
state is formed on the basis of two-quasiparticle states in which neutron and
proton quasiparticles occupy levels with different radial quantum numbers;
(ii) as |«{!| increases, this collective state absorbs a steadily-increasing part
of the total (-} strength and is shifted gradually up to higher excitation
energies;
(ili) accordingly, the conventional giant resonance around 10 MeV looses
part of its transition strength and is shifted only slightly towards higher
excitation energies. The reason for this positional stability are additional two-
quasiparticle poles appearing in the QRPA secular equation located above
those forming the giant GT resonance. It should be mentioned that the
standard way of obtaining the value of the effective coupling constant from
the position of the giant resonance meets difficulties in this case.
Introducing the residual interaction in its present form allows to describe
the main features of the ot*) strength distribution and to reproduce the
experimentally observed GT transition strength without any additional ef-
fective charges [12] or quenching factors [11].



4 Sum rules analysis

For all values of %! the difference between the total ot(~) and ot(+) strength
1s

S(=) 8+ =561 .

This value is somewhat less than S(-) — S+) = 6.0 predicted by the well
known Ikeda sum rule [13]. The origin of this difference is mainly the small
nonorthogonality of the neutron and proton single-particle wave functions
due to the difference in the single—particle potential wells. It can easily be
proved that this sum rule is conserved in the QRPA, i.e. the difference
S(=) — 8#) calculated in the QRPA does not depend on the interaction
between the two—quasiparticle states and is determined by the included two-
quasiparticle space only [14].

We are turning to a discussion of the mechanisms which govern the dis-
tribution of strength in QRPA and which make a satisfactory description
possible. First we observe that the interaction between 1p—1h and 2p—2h
(or between one- and two-phonon states), responsible for the width of the
giant resonance, causes some redistribution of the transition strength over
the excitation energies [15, 16]. It is far from obvious why this interaction
changes the strength function in such a way that almost half of the total
strength of the giant resonance is shifted to very high excitation energies.
Therefore a description of the general features of the GT strength distrib-
ution in the framework of the QRPA seems to be important. To be more
precise let us consider the energy-weighted moments of the strength function

S*=3"Ef<¥,|T0> |, (9)

where < ¥,|T'|0 > is the transition amplitude from the ground state |0 >
to the excited state ¥, with excitation energy E, under the influence of a
transition operator 7', k are non-negative integers. The sum is to be taken
over all final states ¥,. Let us suppose that we have a certain given model
wave function for the ground state |0 > and that we solve the Schrodinger
equation for the excited state wave functions only. It is possible to decompose
the wave function of the excited states in some basis spanning the relevant
space

v, = Z cu,mém + Zéu,nén (10)
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In this expression the set of basis vectors has been divided into two groups
according to the values of the matrix elements of the transition operator 7'

<OLTI0>£0, < &,|T0>=0.

For example, if one had used the Hartree-Fock ground state and the space
of excited states spanned by 1p—1h and 2p—2h basis vectors, particle-hole
components would belong to the first group and two-particle-two-hole vectors
would fall into the second group for every one-body transition operator.

It was proved in [17], that in such cases the zero and first energy-weighted
moments (S° and S?) are determined by the ®-subspace of simple excited
states only, and do not depend on the interaction between ®- and more
complicated &-states and on the interactions acting inside the & subspace
alone. This is a direct consequence of freezing the ground state.

In connection with the problem of missing GT strength this means, that
by adding 2p—2h components into excited state wave functions only, the
total transition strength and energy centroid of the strength function (equal
to S!/S°) must be necessarily the same as in the 1p—1h (or QRPA) calcula-
tion! The aforementioned separation was done practically in all calculations
investigating the influence of complicated states on the GT strength function
(see, for example, [18]). The simultaneous conservation of the total transi-
tion strength and of the energy centroid has the following consequence: if a
large part of the strength from the giant resonance could be shifted by the
interaction with more complicated states to higher excitation energies, then
some strength would be shifted to the very low excitation energies too. As a
result the strength function in the giant resonance region and below changes
completely. This effect was noticed in the shell model calculation of {19].
Our arguments are valid in the shell model case too. Several theoretical cal-
culations {18] showed that the high energy tails of the GT strength function
contained a large fraction of the total GT strength and simultaneously the
low energy part of the strength function was reproduced correctly. Therefore
there is a definite contradiction between our statement on the conservation
of S° and S? and the results of several numerical calculations. Probably, the
changes in the 1p—1h and 2p—2h propagators (inclusion of an energy shift)
made in these papers to imitate some of the omitted terms are responsible
for this sum rule violations.

The limitation arising from S°® and S conservation can be removed if one
considers the ground state to be lying in the same space as the excited states.
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Calculations with explicit inclusion of two-phonon correlations in the ground
state (see, for example {20, 21]) have shown that the strength distribution
cannot be changed very much and an opening of the model space is therefore
necessary.

5 Conclusion

The present work leads to the following conclusions.

(1) It is possible to describe in the QRPA simultaneously the strength func-
tions of ot{*) transitions in 3Fe. The use of a separable nonlocal residual
interaction allows a qualitative description of the ot{t) strength function.
The calculated S®) strength below 10 MeV is between 4.3 and 5.4 and to
be compared with 3.1 + 0.6 obtained experimentally in the (n,p) reaction
[9]. The calculated ot(~) strength function agrees with the strength function
obtained from the (p,n) reaction in the low excitation energy region and in
the giant resonance region without any quenching factors. The rest of the
GT strength is absorbed by high-lying collective 1{(-) states formed around
two-quasiparticle states having different number of nodes in the radial part of
their single-particle wave functions, i.e. belonging to different major shells.
This is basically the reason why it is important to use the full single-particle
space in the calculation of the ot(~) strength function.

(ii) Some arguments were presented why it is impossible to shift a large
part of ot{~) strength to the higher excitation energies and simultaneously
describe the low-energy part of the GT strength function by using 2p—2h
admixtures in the nuclear wave functions only.
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Figure caption

Fig. 1 Running sum S™)(E) for the ot(*) transition operator as a function
of the excitation energy of the residual nuclei. The shaded area represents
the experimental strength function for the **Fe(n, p)>*Mn reaction [9]. a), b),
c) and d) represent QRPA calculation for various values of k9! (a: —0.23/A,
b: —0.43/A, c: —0.63/A and d: —0.83/4 ).

Fig. 2 Running sum S(-)(E) for the ot(~) transition operator as a func-
tion of the excitation energy of the residual nuclei. The notation is the same
as in Fig. 1. The experimental data for the **Fe(p,n)**Co reaction are from

ref.[10].

Fig. 3 o,t~ strength function as a function of excitation energy. Experi-
mental data (shaded area) for the **Fe(p, n)**Co reaction are from [10]. The
theoretical calculation for k' = —0.43/A corresponds to curve b) of Fig. 2.
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