LPNHE 96-07

Laboratoire de Physique Nucléaire et de Hautes

Energies

CNRS - IN2P3 - Universités Paris VI et VII

Feasibility study for re-processing
H1 data on the IN2P3 computer farm

4, Place Jussieu - Tour 33 - Rez-de-Chaussée
75252 Paris Cedex 05

Tél: 33(1) 44 27 63 13 - FAX : 33(1)44 27 46 38

= 0
— 1]
= =
- Z
Q=§
7= 7
o
S= 7
o
N = ;
—— (1]
= <
S >
()MB?OE

e T Y e e [N .
iy - 7\,“{; SRR | Thu P 4 v R b L RN [N
Lp! i-"i‘ LN PL - ONRY UNIVERSIUES PARIS VI VT
LPNHE- Qa7

September 13, 199(

Feasibility study for re-processing the H1 data on the IN2P3 computer farm

S. Dagoret-Campagne!™) E. Lebreton?),
G. Farrache?)Y. Fouilhe?),W. Wojcik®,J.Furet?.

Abstract

This note describes 1) the architecture of the H1 re-processing program based
on dice (SGI Unix multiprocessor) multitasking system, 2) the transport of this
architecture on “Anastasie” (IN2P3 workstations on a network). A statistical
analysis of the network doesn’t show any significant drop of the performances.

1) LPNHE. Université Paris VI-VII, IN2P3-CNRS, France.
20 CCINDPOINZRF3-ONRS. Vilieurbanne., Franee

o
e U aet oeon

1 Introduction

H1 is the first experiment of a new generation which acquires a few TB of yearly
amount of data, 2 order of magnitude more than the previous generation such as LEP
experiments. The amount of data expected per year is about 5 TB. This corresponds to
an event flow of 10 Hz, with a mean raw event size of 50 KB (after zero-suppression), for
about 107 seconds of acquisition time, i.e. about 10® events [1].

With such an amount of raw data, the aim is to process or re-process them at least
at the same rate as the acquisition rate if one wants to analyse them with an acceptable
latency after data taking.

The estimated amount of acquired events for this year is about 70 millions of events
(maximum 100 millions of events). With a re-processing time of 2 seconds per event [2](this
number must be confirmed), if one fix to 3 months the time during which the full re-
processing should be done, we end up with a computer which must deliver 18 seconds of
CPU time per second of real time (maximum of 26 seconds of CPU time per second of
real time). Thus a computer with about 20 processors is needed?).

The aim of this note is to see if the Anastasie processor farm can fulfil the require-
ments for doing such data re-processing.

2 The Anastasie farm

Anastasie is a heterogeneous cluster of UNIX based workstations located at the
computer centre (CCIN2P3) of the IN2P3 at Lyon. Those processors are of 2 types, the
HP series and RS series. This is an open system in which processors can be added if
more computing power is required. This farm is shown on figure 1. At this time, there
are 14 HP9000-735(PA RISC 7100 at 125 MHz) and 6 RS6000-390(Power PC 603 at
99 MHz). Those processors are mounted on the network by ATM switches. A performance
of 10 Mbytes per second in data transfer has been reached.

The computing power is shared among several physics experiments and users. The
CPU time sharing is done by the BQS batch system[3]. The imposed condition to perform
the re-processing is the use of this batch system. This condition exclude any solution based
on the PVM software. This condition is different for the H1 SGI (dicel) at DESY because
the computer dedicated to only one user, the H1 data re-processing, and the use of a batch
system is not mandatory.

3 Description of the structure of the re-processing program

The H1 processing or re-processing program has been totally written in C language
by Z.Szkutnik in 92-93, in cooperation with R. Gerhards and has only slightly been modified
since.

The reconstruction program H1REC has been written by HI1 physicists in FOR-
TRAN language during many years and is still nowadays updated frequently.

The structure of the SGI program is shown on figure 2. It comprises a master (called
onlrec) which fork two data servers, the receiver and the sender. In addition it forks the
reconstruction processes H1REC'.

The receiver allows the distribution of the events to be processed in a sequential
order to the HIREC. It reads events from an input file and fills input buffers in shared

1) This assumes 100% efficiency in CPU-time to real-time conversion and a nesligible

f S
o

: - . P
everhiead But presently the effici ency on Anastasie 15 onlv about 50 7

ANASTASIE
preparation of jobs

DATA SERVER

DISK SERVERY

200 GB 404GB

CHC)

ermanenttempora
P data dglta Y

(stage-in

RS —— /

batch machines

ATM
SWITCH

<

ROBOT
cartridge

3490

Figure 1: Structure of the CCIN2P3 processor farm Anastasie.

[RECEIVER

read

INPUT BUFFERS | l
shared memory |

fork |
i

_-‘

write a buffer

read event

MASTER

fork
' |
|

OUTPUT BUFFERY
shared memory |

fork

write event

read a buffer

SENDER

’i

input raw
data file

interactive

HIREC

output data
files

pots

l4rej

15rej

Figure 2: Scheme of the structure of the H1 re-processing program.

memory. The HTREC which want 1o process 2 new event gels the first not already pro-
cessed event from the input buffer.

The sender allows the collection of processed events. It gets the events from outpat
buffers in which the H1REC have written in the order of processing completion. Thus
it collects events which are out of order due to the different times of reprocessing, which
might be considerable depending on the type of event. The sender writes events in one of
the 3 output files according to their class (pot events, L4 rejected events or L5 rejected
events) and starts dumping processes whenever necessary.

Shared memory is also used to share information between the master, the sender
and the recetver.

On SGI, H1REC and receiver and sender run on the same machine. On the con-
trary, on Anastasie batch HIREC jobs on the one hand and the receiver, the sender and
the master on the other hand, would run on different machines. On Anastasie, the master,
the receiver and the sender would run interactively on the same workstation. Thus trans-
mission of events between them must be done through the network. The figure 3 shows that
it is necessary to add 2 servers, the I Nserver and the OUT server, in order to distribute
and collect events through the network into H1REC. But information in common between
master, recerver and sender is still available in the shared memory.

In case of a crash, the master has to be restarted manually after evaluation of the
problem by a physicist. On Anastasie “machine de service” could be installed to allow the

interruption of the reprocessing procedure and then restart it automatically if machine-
handling by CCIN2P3 staff is needed.

4 The event servers

The event servers, the INserver and the OUT server, set up a two-way connection
oriented communication[4] between the server and the H1REC client. This communication
is based on the TCP/IP protocol and the Unix socket mechanism to transfer events over
the network of Anastasie.

5 Access to events in shared memory

Shared memory is a common facility of UNIX-like operating systems. It allows to
share some data between independent processes (having of course a different identifier pid
but running on the same machine). In the H1 processing system, arbitration of the access
is done via semaphores to guarantee that an indivisible instruction of the type “Test and
Set” (two operations in a single instruction masking any interruption from the system) can
be performed. In our case it prevents from to giving twice the same event to 2 different
H1REC processes or to write 2 processed events at the same place in the output buffer
(one write erasing the other).

5.1 Access to input buffer

There are 3 input buffers, each having a size of 3 MB. The number of input buffers
and their size has been chosen after optimisation studies on SGI.

5.1.1 On SGI:

The access to input buffers on SGI is shown on figure 4. The receiver writes a full
buffer and then H1REC's unstack events one after the other. The receiver writes buffers
in sequential order. It stops the buffer filling when it encounters a buffer which has not

4

RECEIVER |2 | input raw

data file
1
I write a buffer
INPUT BUFFERS | l l
shared memory 1
| read event
fork l_ send event over nelwiork
-
| batch
-=— HIREC
MASTER ‘
-1 send in batch
|
I o, receive event over network
fork ™ (AT sorve
l »
| wrile event output data

OUTPUT BUFFERY files
shared memory |

I read a buffer pots
[SENDER]/

l4rej

write

15re;j

Figure 3: Adaptation of the H1 re-processing program on Anastasie farm.

SG1: semaphores:

B inserven
RECEIVER B oooisem
' fnamsen
write the
full buffer

Figure 4: Access to input buffers on SGI.

been totally read by H1RECs. The HIREC reads an event in the input buffer through

specialized FPACK input routines. The lowest level routine lgetev reads physically the

event from the input buffer.
Arbitration of the access is done via 3 semaphores :

e the inservsem semaphore which is scrutinised by the receiver in order to access to
one input buffer (the value of inservsem is incremented by H1REC whenever an
input buffer has been emptied),

e theinclisern semaphore which is scrutinised by H1RECS in order to authorise globally
the event reading in this buffer (the value of inclisem is incremented by the recetver
after filling a buffer with raw data),

e the innumsem semaphore which arbitrate the access between the different H 1RECSs.

5.1.2 On Anastasie:

The access to the input buffers on Anastasie is shown on figure 5.

The reading of an event in the input buffer is now done by the I Nserver in the
same way as HIREC did previously, by the routine Igetev. The server transmits the event
on the network as a packet of a certain number of bytes. The reception of the event by
HI1REC is done by a new low level routine read_network_event and is transmitted to
FPACK routine as lgetev did previously.

The number of semaphores is reduced to 2, the inservsem and tnclisem, as there
1s only one reader (the I Nserver) now.

5.2 Access to output buffer

There are 2 output buffers, each having a size of 3 MB. The number of output
buffers and their size has been chosen after optimisation studies on SGI.

5.2.1 On SGI:
The access to output buffers is shown on the figure 6.

ANASTASIE: seinuphores:

x inservsom
RECEIVER 5

inclisess

ork
7,

(oaizazocno:

HIREC

Figure 5: Access to input buffers on Anastasie.

SGI:
wrkie oy
?MM HIREC
|
semaphores:

. ouiservsem
‘ outclisem

B ovtnwnsem

read a full
buffer

SENDER

Figure 6: Access to output buffers on SGI.

ANASTASIE:

semaphores:
' auiservsern
B outdisem

read a full
buffer

SENDER

Figure 7: Access to output buffers on Anastasie.

H1RECSs write into the output buffers, one after the other through the FPACK
routine layers, using the lowest level routine Iputev. When a buffer has been totally filled,
it is then read by the sender.

Again, arbitration of the access to buffers is done via 3 semaphores :

e the outservsem semaphore which is scrutinised by the sender in order to access to
one output buffer (the value of outservsem is incremented by H1REC upon writing
the last event to the output buffer),

e the outclisern semaphore which is scrutinised by H1REC's in order to authorise glob-
ally the event writing in this buffer (the value of outclisem is incremented by the
sender after having read the whole buffer),

e the outnumsem semaphore which arbitrate the access between the different H1RECs.

5.2.2 On Anastasie:

The access to output buffers is shown on the figure 7.

The sender read a full buffer as it did on SGI. The change intervenes when H1REC
has a processed event to send back. It sends it through the network to the OUTserver as
a packet of the corresponding number of bytes by the new routine write_network_event.
When the OUT server receives the event, it writes it into the output buffer in the same
manner as H1REC did it previously, using the routine lputev.

The number of semaphores is reduced to 2, the outservsem and outclisem, as there
is only one writer (the OUT server) now.

6 Forking the processes
The master, named onlrec, handles the whole processing and forks all the necessary
processes. The master has 2 phases, an initialisation phase and an infinite control loop.
The forked processes on SGI are shown on figure 8. During the initialisation phases,
it forks the sender and the receiver using the UNIX-standard fork routine. During the
control loop phase, it forks or stops the H1REC processes, adjusiing the number of running

<

RECEIVER

exec!
ONLREC hirec
fork X
SENDER
check _processes

sorling
+

ampex_write ampex_write
execl execl hldump

Figure 8: Forked processes on SGI.

H1RECS to the desired value, using the UNIX-standard ezecl routine. In addition it forks
regularly a check_process routine which controls the status of the H1REC, using the fork
routine. In their turn, the receiver and the sender fork processes using the fork command,
for stage-in input file or dumping output file onto media.

There is only a small difference on Anastasie with respect to SGI shown on figure 8.

The HIREC are no more forked by execl routine but rather sent in batch by the
BQS batch command gsub. The I Nserver and the OUT server are forked in addition by
the fork routine.

7 Signal handling

During the execution of the program on SGI, the different processes exchange
several UNIX signals (these are software interruptions). Proper signal handlers are set for
those processes. The exchanged UNIX signals are sketched on the figure 10.

These signals are often associated with a termination procedure.

When the master sends the signal SIGT ERM to the sender or receiver, those pro-
cesses clean their respective semaphores. When the master sends SIGUSRI to a HIREC.
the later sets a stop flag. HIREC exits properly at the next attempt for reading next event
in the input buffer. The sender can receive the signal SIGUSR2 from the receiver. It cor-
responds to an order to dump immediately all the processed eveuts (handler force_dump).
(This order is set in the steering file which is regularly read by onlrec, which transmits
the flag receiver block to the receiver via shared memory.) H1REC can also send to the
master a signal ST/IVSR2, asking for a database update.

Almost all these signals can be used on Anastasie (see figure 11} heeauze Uie s
Peroine reecrorand the sendes ave anning en the serme praee g, The ol

AR 3 A
B A N SR
EERIEE DRI L

system
xtageread (DLT)

ONLREC | hlrec

SENDER

check_processes tork /" sk Nork

(xtagewrile(3490)
in fpack)

xtagewrite(3490) xtagewrite(349())50f_:i“g
system system hldump

Figure 9: Forking processes on Anastasie.

handler:
‘_‘ SIGTERM
RECEIVER clean_semaphores

_ SIGTERM
hmdl@r. SIGUISR1
SIGUSR?2
db_update /
ONLREC SHELR: HI1REC
handler:
SIGUSR1
SIGTER SIGUSR?2 set.stop. flag
i handler:
SIGTERM
SENDER clean_semaphores

Figure 10: Signals handling on SGI.

Chondies
ey SO TERM
]
RECEIVER] Uelean_ semaphuores

handler:
SIGUSR1
CIGE N set_stop_flag
74 handler:
SIGTERM
SENDER

clean_semaphores

— |

signals from hirec to onfrec are not possible

signals from onlrec to hlrec are done by batch command gsig

Figure 11: Signal handling on Anastasie.

SIGUSR2 issued by H1REC to the master, associated to the database update request can-
not be used anymore. This is not critical, however, for re-processing, because the database
should anyway contain proper constants in that case.

8 Getting the input file

The input file is staged-in by the receiver as shown on figure 12 for the SGI. The
name of the next file is found by the routine get_frname which calls the routine finfal.
In the routine finfil, there is a mechanism to set the current RUN-EVENT number to
start in, either at the beginning of the whole reprocessing, or at the restart point after
a crash. Then the correspondence between the RUN-EVENT number and the filename
is found by reading a mapping file HOINCR.STPOT93.RUN. The filename is a HI-
standard file name and its form must be kept on Anastasie in order to avoid much changes
in the receiver code. As soon as the filename is known, the staging of the media is done
in the routine get_file. Note that at DESY, the knowledge of the filename is sufficient
to have a link to the correct number cartridge. At Lyon, this facility doesn’t exist and
an additional mapping file must give the correspondence between the filename and the
DLT-VID number. This mapping file must be provided by HI-DESY when they will send
the DLT to the CCIN2P3.

9 Dumping the output files
After having read one buffer, the sender stores the events according to their FPACK
bits sel during the reconstruciion in 3 outpst files of 200 MB each ivhe MOMIFILE for

£ woacectegd e gybg he Tl R ol I N P RN B e TR
: Lot ed AR ot IS AR U S N . T R JETO S i T AR U S

SGI:

exvcl ampeard”

e

fork

RECEIVER

ANASTASIE:

systemtstageread")

RECEIVER

Figure 12: Getting the input file on SGI and on Anastasie.

physical events also called the pot data). The figure 13 shows that both implementations
on SGI and Anastasie are very similar. Concerning the POTFILE, the events must be
sorted (using an intermediate 65 MB SORTFILE) before being dumped on a cartridge.
This is done via a set of routines fsort hldump and rdump. After a successful output
dump, a mapping-file is written to map the output pot filename with the RUN-EVENT
reconstructed event number range : the potsum routine write the HERA05.H1POT95
mapping-file. An additional mapping-file is needed on Anastasie to map the pot filename
with the output cartridge VID and file sequence number. Note that this last mapping file
is essential when the reprocessed data are to be stored at DESY.

10 Information saved on files
10.1 The control file

During the execution, some information is saved in the file
“HOINCR.CONTROL.NCR” in the form of a table of 50 integers “Istat”. This information

is regularly updated in the main control loop of the master. The most important parameters
are the following :

Istat(3): current number of H1REC processes,

Istat(5),Istat(6): current run number and event number in the sender,

Istat(9): 1: start from scratch O:restart after a crash, used in the routine fin fil (this works
only together with Isteer(3)),

Istat(38),Istat(39): last event dumped on tapes, saved by rdump, used as the restart point
after a crash.

10.1.1 The steering file
The user can write some steering choice during the execution in the file
HOINCR STEERINGT asing an interface prograv sith nep - “ctrread” The vser can

—
B,

¢‘ »; 5
tp§¢ wm.;}
el d',«m'

- i - vy "
maonifile trigfile g §{ execl
(Ldrej) (I.5rep) potfile fork yampexw

ANASTASIE: SENDER

monifile trigfile
(LArej) (L5rej)

Figure 13: Dump of the output files on SGI and Anastasie.

change interactively the number of “H1REC” processes and ask for stopping the re-
processing. The steering information is under the form of a table of 5 integers “[steer”.
The most important parameters are the following :

Isteer(2): the requested number of H1REC processes by the operator,

Isteer(3): run number to stop at,

Isteer(4): run number to start at,

Isteer(1l): stop the main control loop of the master,

Isteer(5): force an urgent dump when requested (a signal is send from receiver to sender).

)
)
)
)
11 The master

The master program named “onlrec” consist of a phase of initialisation and a
phase of an infinite control loop.

11.1 The initialisation phase
During the initialisation it performs the following tasks :
1. creation and attachment of the shared memory segment,
2. reading of an input steering file and a control file,
3. forking the receiver and the sender.
This phase can be re-copied from the standard H1 code without major changes. On Anas-
tasie, the I NVserver and the OUTserver are forked in addition.

11.2 The infinite control loop

The comniand in the main control loop of the second phase are shown on figure 4.
This loop has a temporisation of 1 minute. It loops over the foliowing tasks :
L. writing the control file,

20 veading e nout steering file,

Master main control loop:

creation of processes (hirec):

read_steering _file

* SGI execl(""hlrec")
* Anastasie gsub

[check_disk_spade

I test status of processes

ltest_user stog * SGI kill(pid,0)

* Anastasie gjob
l test_hangu;

(adjust_nb_processe}

I fork

@mmxm__sema® —aust_procs_status]
]

Figure 14: Task performed in the main control loop.

checking the remaining disk space,

checking for user-stop,

adjustment of the number of batch H1REC processes,
checking the status of batch jobs (and of servers),
handling of the merging of control histograms.

A delicate point for the adaptation of the master on Anastasie are the adjustment
of the process number and the checking the status of the process because batch commands
must be used.

On SGI, the information concerning H1REC processes is kept in tables of C-
structures. One table contains the pids of the processes H1RE Cs, the other table contains
the status of those processes. These tables are located in the shared memory used for
storing information. A simple adaptation for Anastasie would consist in adding a parallel

table of C-structures. The C-structure would contain all the information about the batch
jobs :

Sl

- the machine name which runs the process,

- the (batch) job name given by the batch supervisor,

- the pid on the batch worker (machine),

- the date and time at which the job started,

- the status of the job : queued, running, ended, killed...
- the CPU time used.

In addition some primitive routines must be defined in order to replace them in
the standard-H1 code.

These pfimitive routines would do :
* sending job in batch (new_processes),

14

8 CHUE batoh 1oh iatis
e Riliimg Lacoh jole

Another iniportant point is the histogram production for a data qaaiing cont o,
The histegrams are gencrated by the reconstruction processes. Pheses Tiles Lave 1o b
merged afterward by a dedicated process (HIPRINT) which is forked by t

from the control loop. This procedure oceurs when the mastor detect that ali processes

He aster

HiREC have ended the processing of a run. Conditions of the imnplementation of histogram
production on Anastasie are described in section 12.

11.2.1 Adjustment of the number of //1REC tasks and the checking of their

status

In the 2 implementations, SGI and Anastasie, the logic of creation/deletion aud
checking-status of the H1 REC processes or batch jobs can be kept. Obviously the technical
tools, in order to execute an H1REC process on SGI (exec! C routine) or to submit an
HIREC job qsub BQS command in the Anastasie differ. In Anastasie mplementation, a
C-interface to BQS has been written for this reprocessing project. On SGI, the deletion
of HIREC is done by sending Unix signals (SIGUSRI or SIGTERM). This can also be
used on Anastasie by sending signals with the gstg BQS command. In order to check the
status of the H1IREC, a checking-process is forked from the main control loop. While
the state (RUNNING or DEAD) of a process is obtained by sending the NULL signal
on SGI, the batch-status of a batch job is obtained by issuing the gjob BQS command
on Anastasie. The HIREC batch job is considered to be RUNNING if its batch-status
is either QUEUED or RUNNING and it is considered to be DEAD if its batch-status is
ENDED, KILLED or DELETED.

11.3 Automatic restart from a crash

This is done automatically when the master is restarted (by a “machine de ser-
vice”). This “machine de service” must be delivered by CCIN2P3. Before restart,
the machine must check that all previous processes are dead or kill them. The restart point
is determined from the information saved in the control file.

12 The reconstruction program H1REC
In SGI, the standard H1IREC (FORTRAN written) reconstruction program is

encapsulated in a C-written program chlrec. chlrec set signal handlers for all possible
errors which could occur during the execution of the standard H1REC. Then shared
memory is attached and semaphores are opened before the execution of the standard
H1REC. Shared memory is accessed in the following conditions :
reading a raw event from the input buffers,
writing a reconstructed event to output buffers,
database update at the beginning of each run,
to announce printed histograms to the master at the end of each run,
to erase itself from the table of processes when the master has send a SIGUSR]1 signal.

In Anastasie, the access to shared memory and semaphore is not possible. Condi-
tions 1 and 2 are solved by the use of data servers. Condition 3 doesn™ occur because the
full database is available on disk.

St LN

During the reprocessing, at the end of each run, the reconstruction Processes write
an histogram fles with the name LOOK NO Brn (030 is the number of the HUIRLT preces

attributed by the master). Those histogram files must be accessed by the master which
has to perform the merging task. On Anastasie, each batch job should write the histogram
files at a common place on a disk accessible via AFS. Condition 4 and 5 can be solved by
doing remote shell execution (Unix command remsh) : the execution of a small program
is asked to be run on the machine of the master. This small program attaches the shared

memory and write some integers (given through script arguments) at the right place in
shared memory. -

13 Results and present status at August 27, 1996

A version of the reprocessing close to the final version has been made running
with a master forking the processes recewver, sender, I Nserver, OUT server. Jobs with
a pseudo- HH1REC (skeleton but without the reconstruction code) were send in batch and
controlled by the master. Automatic stage-in and stage-out was not yet implemented in
the receiver and the sender.

The most advanced structure tested is the following : a version of a simplified
recever read a file containing 95 raw data. This receiver fills the input buffers looping
infinitely on this file. The I Nserver unstacks the raw events one after the other from the
input buffers when receiving a client request of a job. The event is send over the network
to the pseudo-H1REC. The pseudo-H1REC send the events to the OUTserver. Then,
the OUT server fills the output buffers which are read by the sender. The sender writes
events in the pot output file.

For this structure, all the processes were running on the same HP processor cc-
shp001 except the pseudo-H1REC which were running on batch machine.

The performance of the I Nserver are shown on figure 15. The time of transmission
is roughly correlated to the event size by the formula :

6t(ms) = 0.16size(kB) + 11

but a tail at large 6¢ raises the mean time of transfer to 30 ms (with a RMS of 30 ms).
These results are satisfactory for the reprocessing purpose.

14 User interface

A user interface is available in order to allow the user to choose a run range and
to start “by hand” the re-processing or to ask for urgent stopping of the re-processing. A
user friendly interface with multi-windows giving the status of the re-processing exist on
dicel and could be installed on Anastasie.

15 Conclusion

This study proved that all the logic and the H1 re-processing program running on
the SGI, can be implemented on Anastasie without major difficulties. Some development
was necessary because Anastasie is a processor farm and not a multi processor computer.
This was done by writing 2 servers which have to distribute raw data events to batch
reconstruction jobs or have to collect the reconstructed events from these batch jobs.
Preliminary results on the I Nserver have shown that the transmission time of events on
network is small compared to the reconstruction time.

If H1 takes the decision to re-process data on Anastasie, the development of service
routines in order to manage the continuous flow of operation will be needed.

16

ccpoan®d : 6088 evis data 95 {fdevinull)}ceshp®si)

$E/85115 1662

s =1 600 F i -

450 ;_ uss M. - W § n.g
400 E 500
350 E 3
300 E 400
250 300 |
200 E :
150 E 200 F
100 E -
3 100
50 E s

0 : 1 L i l i 1 I 1 1 0 - L l i L] l L i 1 i

0 20 40 60 0 100 200 300

time one event from network (ms)

‘si:e of transfered event (Kb)

w 60 - 10
E -
50
40 é 10
30 -
F @
10 |
o:llllllllllllll 10 llllllllllllllllll
0 100 200 300 0 200 400 600 800 1000

transfer time vs size time vs event number

Figure 15: The distribution of the time of transfer (upper left), the event size distribution
in kB (upper right), the time of transfer versus the size of event (lower left), time of
transfer versus ike event number for the first 1000 event {lower right){the step in the time
Of transine o e the the fethe evend size,

chaneoe

Acknowledgements

The H1-IN2P3 group expresses its gratitude to J. Ganouna, director of the CCIN2P3
who strongly supported this re-processing project as one of the main developments of his
computing centre and E. Auger, who defined our critical framework and gave us courage
to start.

18

REFERENCES

[1] Data logging and online reconstruction in H1
P. Fuhrmann, R. Gerhards, U. Kruner-Marquis, J-E. Olsson, Z. Szkutnik

[2] Reprocessing des données & Lyon
U.Berthon,V.Boudry,M.Jaﬁre,E.Lebreton,J P.Pharabod
13 juillet 95

[3] Utilisation des Ressources Unix & I'IN2P3
CCIN2P3
6 octobre 95
Under development

[4] Practical Unix Programming
K.A. Robbins, S. Robbins
Prentice Hall PTR 1996

