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Abstract

We give an elementary introduction to lattice calculations of the QCD equation of
state and briefly review results for the case of two light flavors (1, 2.

1 Introduction and Background

Lattice simulations have shown for some time that ordinary hadronic matter at zero tem-
perature undergoes a dramatic crossover characterized by large increases in the entropy and
energy densities of the system [3] when the temperature is raised to about 150 MeV. In
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the thermodynamic limit, this crossover may become a phase transition to a new state of
matter, the quark-gluon plasma(QGP). The equation of state (EOS), or energy density and
pressure as a function of the temperature, is important input for phenomenological models of
upcoming heavy-ion collision experiments at RHIC that seek to detect the QGP. Because the
phase transition occurs at relatively low temperature, a nonperturbative method is required
for first principles calculations using QCD.

Generally, thermodynamic quantities are given by derivatives of the partition function.
In particular, the energy density € and pressure p are given by

1 olgZz Olog Z

~ VT v |’ (1)

and p=T
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where V' and T are the spatial volume and the temperature of the system. The partition
function is given by a path integral over all possible field configurations of the Boltzmann
weight,

Z= / [dA, dip, diple=S", 2)

where the Euclidean space-time action is given by

Se= [ dr' [ FEL(AGT), B 7). H(E ), 3)

and the integral over Euclidean time is cut off at time 7. The above path integral corresponds
to the thermodynamic partition function if 7 is identified as the inverse temperature, and
the boundary conditions on the (fermion) boson fields are chosen to be (anti-) periodic.

To regularize the theory nonperturbatively, Sg is discretized on a four dimensional space-
time lattice (see Fig. 1) with spacing a, so the continuum derivatives become finite differences,
and the integral over space-time becomes a sum over all lattice sites. In the limit that a — 0,
the classical continuum action is recovered. The lattice spacing disappears from the lattice
action; the extra factors of a are absorbed into the fields and the quark mass to make them
dimensionless. Therefore the lattice spacing, or cut off, is varied implicitly by changing the
bare gauge coupling, 6/¢%, and the bare quark mass am,. Explicitly,

Se= [dr [ 5 (FEuF + 5@ +mpp) > ¥ 5 (%R;e’ﬁ u,w) LMy, (4)

sites p>v

The gauge fields, U,(z), live on the links of the lattice to maintain exact gauge invariance.
They are elements of the group SU(3) and are related to their continuum counterparts by a
simple exponential relation,

z+ayu
Uuw) = expliga,Au@)} ~efig [ dyAum)}- (5)
The quadratic part of the continuum gauge lagrangian then becomes the trace of the path
ordered product of gauge links around an elementary plaquette,
1
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Figure 1: The four dimensional Euclidean space-time lattice.

which yields the standard Wilson gauge action given by the RHS of Eq. 4. The Dirac action
is constructed by replacing the the J) operator with a finite difference operator. For Kogut-
Susskind (KS), or staggered fermions, the quark fields are transformed to a spin diagonal
basis which mixes the spin and flavor degrees of freedom in a complicated way, and all spin
components but one are thrown away. In the limit ¢ — 0, the continuum action for four
degenerate Dirac fermions is recovered. The fermion matrix for KS quarks is

M = 2(amg)d,,y + Z(nﬂ(x)Uﬂ ($)5z+aﬁ.y — Ny (y)Ul(y)‘sr—ﬁ,y)’ (7)

where the 7, s are the KS phases which correspond to the Dirac 7,8 in the spin diagonal
basis.

Once the lattice action has been constructed, it is straightforward to calculate observables.
Integrating over the quark fields (which are Grassman variables), we obtain

(©) = 2~ / [dU)O det(M(U)))™/4e~S¢ where Z = / [dU] det(M(U)))™/4e=5s,  (8)

for any observable. Thus det((M(U)))//*e~5¢ serves as a probability weight for n, flavors of
quarks, and the remaining path integral over gauge fields is done by Monte Carlo simulation.
Using importance sampling to generate the gauge field configurations with the desired weight,
observables become simple averages over the configurations.

Now, let’s return to discussing thermodynamics on the lattice where the volume and
inverse temperature are V = N3a2 and T-! = N,a;. V and T are varied by changing the
number of lattice sites Ny, V;, or the lattice spacings a,, a;, or both. To simulate at finite
temperature in the continuum, the prescription was to cut off the Euclidean time integral in
the action at 7 = T—'. This is accomplished on the lattice by taking N, < N, for the usual
case when a, = a,. This sets the overall temperature scale. To vary the temperature around
this scale, we vary the lattice spacing by adjusting 6/¢* and am,. For small am, increasing
6/¢* is roughly equivalent to raising the temperature. However one should keep in mind
that varying am, also changes the lattice spacing and thus the temperature. Derivatives
with respect to 7-! and V' are most easily obtained by adjusting the couplings. Then, the




interaction measure, or energy density minus three times the pressure is

e (L1 0 0 (6/g%) ,_\ . damy) /-
—_— e — T_ _ 4 [:l q
h ( Ve 6V) g4 =N, ( o(a) ()t dln(a) ()], @
where the rightmost expression is for KS quarks and the Wilson action, and

1 OJdlogZz - 1 OlogZ n; 2
) = —_— = = L
A T s (%) N3N, d(m,a) _ 4 N3N,

(Tr M~7) (10)

are the derivatives of log Z with respect to 6/¢% and am,,. The definition of O is given in Eq. 6,
and the form of 99 results from exponentiating the quark determinant. The derivatives of
6/9° and am, with respect to log(a) are just the 8 function and anomalous dimension of
the quark mass which have been calculated nonperturbatively from spectrum data in the
literature [1]. It is important to use the nonperturbative 3 function since it differs by roughly
a factor of two from the perturbative result in the region of 6 /9* used for present simulations.
The pressure is obtained from
p _ OlogZ logZ

T ev v (1)
which is just a restatement of the fact that the free energy density is independent of volume
for large volumes. The derivatives of log Z, given by Egs. 6 and 10, are calculated rather
than Z itself. These are integrated numerically with respect to 6/¢% and am, to obtain the
pressure.

Together, the interaction measure and the pressure form the equation of state. The
energy density (and pressure) can be calculated directly from an expression similar to Eq. 9,
but with derivatives of the couplings with respect to the temporal (spatial) lattice spacing
at fixed spatial (temporal) lattice spacing. These derivatives are much harder to measure,
and in fact have not been calculated nonperturbatively for QCD with n s #0.

It is important to note that the physical energy and pressure are given after subtracting
off their divergent vacuum, or T = 0, contributions. In practice this is done by subtracting
the same quantities measured on a symmetric lattice (N, = N,) from quantities measured
on the finite temperature, or asymmetric, lattice (N, < N,). These are often referred to
(unfortunately) as cold and hot lattices, respectively. This fact more than doubles the cost
of calculating the EOS since each point in the phase diagram requires two lattices.

Finally, to determine the temperature from T—! = Na, the lattice spacing is given by
by setting one observable to its physical value. For example, in the results discussed below
the (zero temperature) rho mass measured in units of a is used, or am, = a x 770. Since
simulations are done in the strong coupling regime, there are scaling violations. In other
words, using the nucleon mass results in a different a, and therefore a different temperature.
While no one has done a detailed analysis, the conventional wisdom is that these scaling
violations are on the order of ten percent. Also, typically thermodynamic quantities are
normalized by T™ by simply multiplying by Np; for example, pa* x N} = p/T*. While this
also yields physical numbers, the values will show scaling violations depending on N, (see
below). All of these systematic errors disappear in the continuum limit.




2 Results for nf =2

Below we briefly review recent calculations of the two flavor QCD EOS at zero chemical
potential by the MILC collaboration [1, 2]. Most simulations with dynamical fermions have
used two light flavors because doing so cuts the computational burden in half over simulations
with two light and one strange flavor. Since previous simulations have shown the critical
temperature ;. to be roughly 150 MeV, it is reasonable to assume that the dynamics near
T, is governed mainly by pions, and thus two flavor simulations should capture the bulk of
the physics. Fine details, like the order and universality class of the transiton may of course
depend on the presence of the strange quark. Also, presently there is no viable method of
simulating QCD at finite chemical potential; however at RHIC, the baryon number density
in the central rapidity region is expected to be small (see the contribution from J. Harris).
Simulations for the EOS are also limited by computational resources to relatively small
lattices (NV; = 4,6). Results for the pure SU(3) gauge theory and preliminary calculations
with four flavors of quarks have been obtained by the Bielefeld group following a similar
approach, and are also discussed in this volume by Karsch.

In Fig. 2(a) the interaction measure for IV, = 6 is shown as a function of 6/¢g2. The two
curves in the figure correspond to quark masses am, = 0.0125 and am, = 0.025, and up to
an overall shift in the coupling, appear quite similar. The interaction measure rises sharply
through the crossover region (it is normalized to zero at T = 0) and then decreases towards
zero at large 6/¢g* (high temperature).

In Fig. 2(b) we show the V; = 6 EOS as a function of the temperature. Again, there is a
rapid rise in /7 which levels off around 160 MeV. The energy density is about 1 GeV /fm®
at this point. The pressure rises smoothly through the crossover region but has not leveled
off at the highest temperature simulated. Also shown in Fig. 2(b) is an earlier calculation
on N; = 4 lattices. There is a large finite size correction when N, is increased from 4 to 6.
This is expected from the lattice Stefan-Boltzmann results (see Fig. 2(b)). It appears that
the approach to these expected asymptotic values is quite slow.

From the location of the maximum in the slope of (O) or <1ﬁ¢> with respect to 6/g?, the
pseudocritical temperature of the transition is roughly 140 MeV (for both am, = 0.025 and
0.0125) [2]. Figure 2(b) shows that the energy density is already substantial at this point.

The light quark mass is too large in the above simulations, in the sense that the pion mass
is two to four times its physical value (simulations corresponding to the physical pions would
require extremely large amounts of computer time on present computers). Thus results must
be extrapolated to m, ~ 0. Such an extrapolation for the EOS is shown in Fig. 3(a), where
a second order phase transition in the limit m, — 0 has been assumed. Until recently,
lattice simulations and universality arguments {5] have indicated that in the limit m, — 0
two flavor QCD probably exhibits a second order phase transition in the same universality
class as the 3d O(4) spin model [5]. However, new lattice simulations on large volumes
have cast some doubt on both conclusions (see A. Ukawa’s contribution to this volume).
The results displayed in Fig. 3 are from a fit to an O(4) universal scaling function [6) (plus
polynomial terms), although the data are fit equally well to the mean field scaling function.
The appearence of the bump in the energy density just after the transition is likely an artifact
of the extrapolation, although it need not be [4]. Ignoring the bump, the extrapolated EOS
is quantitatively similar to the am, = 0.025 and 0.0125 results: the results depend weakly
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Figure 2: (a) The interaction measure on N; = 6 lattices. (b) The EOS. The horizontal lines
are Stefan-Boltzmann values for ¢/T*. The diamonds indicate an earlier result on N, = 4
lattices.
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Figure 3: (a) The EOS extrapolated to am, = 0.0 from a fit to the O(4) universal scaling
function plus polynomial terms. Each set of curves indicates the central value and a one
standard deviation spread resulting from the statistical uncertainty in the fit. (b) The speed
of sound for am, = 0.0125 from the same fit. Both figures are taken from Ref. [2].




on the quark mass. The gap in £/T* at low temperature is due to a breakdown in the fit
which, for am, = 0, corresponds to an extrapolation in 6/¢>.

The smooth interpolation of the data as a function of T also allows for a determination
of the speed of sound, ¢Z = (dp/dT)/(de/dT), shown in Fig. 3(b). The speed of sound has
important experimental implications for the detection of the quark-gluon plasma (see M.
Gyulassy, these proceedings). At the transition we expect ¢, to be small since de/dT >
dp/dT. However, just below T, c, should approach 1/3, the value for a relativistic free gas
of massless pions (for massive interacting pions the value will be less than 1/3), and above
T., ¢, should again approach 1/3 if the system is a weakly interacting relativistic plasma.
From Fig. 3(b), the second expectation is more or less borne out from the simulations.
Unfortunately, while ¢, is small near T, in the hadronic phase there is no indication of an
increase, and thus no dip. Again, this is because of the difficulty in measuring € and p, and
thus their derivatives, in the low temperature hadronic phase.
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