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IRREVERSIBILITY OF MOLECULAR DYNAMICS
TRAJECTORIES:
WILL CHAOS DESTROY HMC?

R.G. EDWARDS, I. HORVATH, A.D. KENNEDY
Supercomputer Computations Research Institute, Florida State University,
Tallahassee, FL 32808-4052, USA

Hybrid Monte Carlo algorithm is the main computational tool used in the present-
day simulations of full QCD. While its theoretical justification depends upon the
molecular dynamics trajectories within it being exactly reversible, non-reversibility
may arise due to amplification of rounding errors. We analyse the causes of such
behaviour and give arguments, indicating thai this probably does not pose a sig-
nificant problem for Hybrid Monte Carlo computations. We present data for pure
SU(3) gauge theory and for QCD with dynamical fermions on small lattices to
illustrate and to support some of our ideas.

The theory of the Hybrid Monte Carlo (HMC) algorithm?2 assumes the
exact reversibility of its molecular dynamics (MD) trajectories. Leapfrog in-
tegration guarantees this unless the initial conjugate gradient (CG) vector is
chosen in time asymmetric way or finite precision arithmetic is used. While
the first condition is easily ensured in practice by using a fixed starting vector
for every CG inversion, all numerical computations carried out using floating
point arithmetic are subject to rounding errors.

These rounding errors are normally not considered dangerous unless they
are exponentially amplified. Indeed, without such an amplification, the time
cost of reducing the error to some preset value grows only logarithmically with
the number of arithmetic operations involved in the computation. This is a
very small correction to the growth of the cost of the HMC algorithm as the
volume and correlation length of the system are increased.

Exponential amplification will occur whenever nearby MD trajectories di-
verge from one another exponentially, i.e., when the MD evolution becomes
unstable. There are two distinct mechanisms leading to such an instability 3.
First, this is typical for nonlinear equations in the chaotic regime. In fact, the
existence of a positive leading Liapunov exponent for MD equations of pure
SU(2) lattice gauge theory was recently suggested®. The second possibility is
that the result of the discrete integration scheme diverges exponentially from
the true solution. This instability should grow with the number of integration
steps and is thus expected to have characteristic time scale shorter than the
one associated with intrinsic chaos. OQur numerical results confirm this.

The integration instability can be analysed in the context of free field
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theory3, i.e. for the collection of independent modes with fixed frequencies. In
fact, the behaviour of a single mode already reveals all the essential features.
One can show that the instability accompanied by the exponentially decaying
acceptance rate (P,.. ~ e™¥7) occur when wér > 2. Here 7,67 and w are
the trajectory length, the integration step size and the frequency of the mode
respectively. In Fig. 1 the o = 0’ line shows the characteristic exponent v as a
function of §7 with w fixed to unity. Note the sharp “wall” arising at 67 = 2,
where the instability sets in.

Qualitatively similar behaviour is observed for the case of many stable
modes® . The onset of instability is determined by the highest frequency mode
and occurs when wmq,67 = 2. In order to keep the acceptance rate constant
for free field theory as the lattice volume V — 0o, we must decrease 67 so that
Vér* stays fixed. Consequently, the instabilities go away as we approach the
thermodynamic limit. In this sense the leapfrog instability is a finite volume
effect.

In interacting field theory the notion of independent modes loses its mean-
ing. On the other hand, accepting the standard assumption that it can be
still useful to think in these terms for asymptotically free field theories at
short distances, it is quite plausible to expect similar scenario there too. The
forces acting on the highest frequency mode due to the other modes will fluc-
tuate in some complicated way however, and so we expect that the “wall” at
Wmax6T = 2 will get smeared out. This is illustrated for the simple model of
a harmonic oscillator whose frequency is randomly chosen from a Gaussian
distribution with mean w and standard deviation ¢ before each MD step. The
numerical results shown in Fig. 1 confirm that the “wall” in this mode] does
indeed spread out.

Equipped with the above qualitative picture, we have studied reversibility
numerically for SU(3) gauge theory both in the pure gauge and dynamical
fermion cases 3 (see also related work 5). We evolved a typical equilibrium
configuration U using leapfrog equations for some time 7, then reversed the
momenta and evolved it again for the same amount of time to get the config-
uration U’. Deviations from reversibility were measured by

lasU|? =S just — v, (1)

T,4 a,b

where =, and a, b are the space-time and SU(3) indices respectively. We also
recorded the change of energy at the end of the trajectory (§H) and at the end
of the reversed trajectory (ASH).

In Fig. 2 we collected a typical set of data from one pure gauge config-
uration. The top and bottom graphs clearly show the integration instability
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“wall” at 67 = 0.6, which has spread out as expected. At the same time the
middle graph indicates that as we reach the “wall” 6H = O(10?), implying
a negligible acceptance rate. The integration instabilities thus do not appear
to have a practical importance for this system. Note however the case of the
unreasonably long trajectory (7 = 40), where the reversibility is lost while 6 H
is still very small.

When ploted as a function of 7, all of our data show a clear exponential
instability in ||ASU}|. We extracted a characteristic exponent v (||ASU]| ~
") and show the results in Fig. 3. Note the same qualitative behaviour
we observed for the toy model in Fig. 1 except that the integration instability
“wall” appears at different values of §7. This probably just reflects the different
highest frequencies of these systems. In case of full QCD, the pseudofermions
produce a force of the order of the inverse lightest fermionic mass thus giving
the highest relevant fréquency when simulating close to .. This is reflected in
the bottom graph where the integration instability appears at very small é7.

Notice also that the characteristic exponent does not approach zero for
small 67, which confirms the existence of chaotic continuous time dynamics.
Unlike the integration instability, the intrinsic chaos can not be controlled by
adjusting 67. Moreover, accepting the standard hypothesis that the trajectory
length should be scaled proportionally to the correlation length in order to
reduce the critical slowing down, non-reversibility might cause problems when
simulating closer to the continuum limit.

However, our numerical analysis indicates a strong f—dependence of the
exponent v, characterizing the intrinsic chaos. Indeed, Fig. 4 shows this for
SU(3) pure gauge theory on 4* and 8* lattices. These results can be qualita-
tively understood if we hypothesize that chaos is not only a property of this
continuous time evolution, but is also a property of the underlying continuum
field theory. This would suggest that v scales like a physical quantity. At small
B the lattice theory is in the strong coupling regime and does not obey the
asymptotic scaling behaviour. At large 3 the system is in a tiny box and is thus
in the deconfined phase. The finite temperature phase transition at Ny = 4
occurs near 8 = 5.7, suggesting that the scaling region is in the vicinity of this
value for our lattices. We have fitted our 8 data at 8 = 5.4,5.5,5.6,5.7 to the
one loop asymptotic scaling form v = ce~#/12f with o = (11 = £ny)/167?
and with constant ¢ being the only free parameter.

The resulting fit, shown in Fig. 4 is surprisingly good, suggesting that our
hypothesis might indeed be correct. This might seem quite surprising at first,
but one can gain some understanding of the mechanism by which chaos could
weaken in the vicinity of the continuum limit by noting that v depends on
B in two ways: there is an explicit S-dependence of the equations of motion,
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Figure 1: In||A8U]| is shown as a function of trajectory Jength for three starting gauge
configurations at § = 5.1,5 = 0.16, and 67 = 0.1 on a 4! lattice.

and an implicit f-dependence in the equilibrium ensemble over which v is
measured. The latter is illustrated in Fig. 5, where we plot In [|ASU|| against T
for three different configurations, one hot, one cold, and one chosen at random
from the equilibrium distribution. The hot configuration yields the larger
characteristic exponent than the equilibrium one, and the cold configuration 1s
consistent with power law behaviour. Thus while 3 increases as we approach
the continuum limit, the equilibrium ensemble increasingly prefers the ordered
configurations over the disordered ones, reducing v as a result.

If our hypothesis is indeed correct, it would mean that the characteristic
exponent is constant when measured in “physical” units, that is ¥ would be
constant as £ — ©0. If this is the case, then tuning the HMC algorithm by
varying the trajectory length proportionally to the correlation length does not
Jead to any change in the amplification of rounding eITors as we simulate closer
to the continuum limit.

Acknowledgments

This work was supported by the DOE under Grant Nos. DE-FG05-85ER250000
and DEFG05-92ER40742.

References

1. S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Phys. Rev.
Lett. 195B(2), 216 (1987).

9 P. de Forcrand, these proceedings; K. Jansen, these proceedings.

3. R.G. Edwards, L. Horvath and A.D. Kennedy, FSU-SCRI-96-49, hep-
lat/9606004.

4. K. Jansen and C. Liu, Nucl. Phys. B 453,375 (1995).

5. K. Jansen and C. Liy, hep-lat/9607057.




07 . -
¢ ¢
08
o

05

[
04

>
03}
L
[]
§ o
02t o 4’ lattice .
1) ““ﬁ.‘

01 —= 3T8¢
[ -

2 4 3 ] 10

Figure 2:  Characteristic exponent for
the fluctuating-frequency harmonic oscilla-
tor model. The frequency fluctuates around

Figure 4: Characteristic exponent as a func-
tion of 8 for pure SU(3) gauge theory. The
data was measured on three 4% and two 8*

w=1. configurations.
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Figure 3: Results for pure SU(3) gauge the-
ory with 8 = 5.7 on a 4% lattice as a function
of 6.

Figure 5: Characteristic exponent for pure
SU(3) gauge theory (top), QCD with heavy
dynamical Wilson quarks (middle), and
QCD with light dynamical Wilson quarks
(bottom). The data was measured on three
independent configurations.




DISCLAIMER

This report was prepared as an account of work sponsored in part by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

This document is available upon request in alternate formats for individuals with print-related disabilities. Contact the
Publications Department at (904) 644-1010 for more information.




